
Citation: Zhang, X.; Cao, Q.; Chen,

H.; Quan, Q.; Li, C.; Dong, J.; Chang,

M.; Yan, S.; Liu, J. Effect of Vegetation

Carryover and Climate Variability on

the Seasonal Growth of Vegetation in

the Upper and Middle Reaches of the

Yellow River Basin. Remote Sens. 2022,

14, 5011. https://doi.org/10.3390/

rs14195011

Academic Editors: Meisam Amani,

Torbern Tagesson, Feng Tian, Per-Ola

Olsson, Arsalan Ghorbanian and

Sadegh Jamali

Received: 24 August 2022

Accepted: 5 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Effect of Vegetation Carryover and Climate Variability on the
Seasonal Growth of Vegetation in the Upper and Middle
Reaches of the Yellow River Basin
Xinru Zhang 1, Qian Cao 2, Hao Chen 1, Quan Quan 3, Changchao Li 1 , Junyu Dong 1, Mengjie Chang 1,
Shuwan Yan 1 and Jian Liu 1,*

1 Environment Research Institute, Shandong University, Qingdao 266237, China
2 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
3 State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology,

Xi’an 710054, China
* Correspondence: ecology@sdu.edu.cn

Abstract: Vegetation dynamics are often affected by climate variability, but the past state of vegetation
has a non-negligible impact on current vegetation growth. However, seasonal differences in the
effects of these drivers on vegetation growth remain unclear, particularly in ecologically fragile areas.
We used the normalized difference vegetation index (NDVI), gross primary productivity (GPP),
and leaf area index (LAI) to describe the vegetation dynamic in the upper and middle reaches of
the Yellow River basin (YRB). Three active vegetation growing seasons (early, peak, and late) were
defined based on phenological metrics. In light of three vegetation indicators and the climatic data,
we identified the correlation between the inter-annual variation of vegetation growth in the three
sub-seasons. Then, we quantified the contributions of climate variability and the vegetation growth
carryover (VGC) effect on seasonal vegetation greening between 2000–2019. Results showed that
both the vegetation coverage and productivity in the study area increased over a 20-year period.
The VGC effect dominated vegetation growth during the three active growing seasons, and the
effect increased from early to late growing season. Vegetation in drought regions was found to
generally have a stronger vegetation carryover ability, implying that negative disturbances might
have severer effects on vegetation in these areas. The concurrent seasonal precipitation was another
positive driving factor of vegetation greening. However, sunshine duration, including its immediate
and lagged impacts, had a negative effect on vegetation growth. In addition, the VGC effect can
sustain into the second year. The VGC effect showed that initial ecological restoration and sustainable
conservation would promote vegetation growth and increase vegetation productivity. This study
provides a comprehensive perspective on understanding the climate–vegetation interactions on a
seasonal scale, which helps to accurately predict future vegetation dynamics over time in ecologically
fragile areas.

Keywords: climate variability; seasonality; vegetation dynamics; vegetation growth carryover; Yellow
River basin

1. Introduction

In terrestrial ecosystems, vegetation controls the cycling of water and energy between
the soil and the atmosphere and provides ecosystem services on which humans depend [1].
The structure and function of vegetation are influenced by climate factors (e.g., tempera-
ture, precipitation, and sunshine) and non-climate factors (vegetation itself and land use
changes) [2–4]. To maintain the health and function of the ecosystem, we need to determine
what factors affect vegetation growth [5,6].

Many studies have focused on the vegetation dynamics, resulting from climate vari-
ation [7,8]. For instance, temperature controls the high-latitude vegetation growth in the
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northern hemisphere [9]. Vegetation greening is primarily affected by solar radiation in
tropical rainforest areas [10], while in arid and semiarid areas, the limiting factor of veg-
etation growth is precipitation [11,12]. However, the response of vegetation to climate
factors is complex and delayed [13]. For example, there is about a 3-month lag between
temperature change and vegetation activity in China [14]. The lag effect of the same type of
vegetation to different climate factors is different, and the lag effect of different types of
vegetation to the same climate factors is also different [15]. In drought areas, the vegeta-
tion dynamic is most sensitive to climate factors in the current and previous month [16].
These observations suggest that vegetation dynamics may be influenced not only by the
current climate conditions but also by earlier climate conditions. Therefore, the time-lag
effects of climate should be considered when exploring the mechanism of vegetation–
climate interaction.

Besides climate factors, vegetation dynamics are also influenced by its past
states [17,18]. The biological cycles of vegetation consist of many successive growth periods
that are tightly connected to the past and present [19], implying that the present growth
state of plants will influence subsequent growth. This phenomenon has been defined as
vegetation growth carryover [17]. For example, vegetation carryover has an important
impact on the daily net carbon exchange in dry-land ecosystems [20], which allows plants
to send greening signals by increasing carbon uptake, resulting in more substantial leaves
and roots [1]. Such structural changes in vegetation may enhance its resistance to external
disturbance unless the change in external environmental conditions exceeds the tolerance
of plant growth [17]. The key question is how substantial the role of the carryover effect
is, especially when compared with the immediate and lagged impacts of climate factors.
Previous researchers analyzed the VGC effect on vegetation growth at hemispheric or
global scales [17,18]. However, processes that dominate at large scales are not necessarily
dominant at small scales. Another important question to answer is how does the VGC
affect the vegetation growth in ecologically fragile areas?

Here, we focus on the Yellow River basin (YRB). The YRB spans the arid, semiarid, and
semi-humid areas in China [4]. Droughts occur frequently in the YRB with increasing dura-
tion and intensity [21]. Moreover, problems, such as soil erosion and reduced biodiversity,
are also prominent in the basin [22], which makes the YRB vulnerable to environmental
change [23]. The upper and middle reaches of the YRB account for 91% of the total area of
the YRB [4]. There are a large number of tributaries flowing into the main stream in the
upper reaches of the Yellow River, which is the main source of runoff in the basin [24]. The
loss of the soil and water is serious in the middle reaches, which is the main source area of
sediment in the basin [25]. Therefore, our research area is the upper and middle reaches of
the YRB, which is very important to the development of the lower reaches and the whole
basin. Previous studies on vegetation dynamics in the upper and middle reaches of the YRB
have focused on the growing season or annual time scale [4,6,21]. However, the long-term
climate changes often differ between seasons, so the vegetation responses to climate also
vary significantly between seasons. In recent years, some studies have explored the charac-
teristic patterns and driving factors of vegetation growth from the perspective of seasonal
dynamics. For example, a study has shown that the seasonal change of temperature can
regulate the spatial heterogeneity of deciduous broadleaf forests greening [26]. A previous
study reported that the decrease in vegetation greenness in the Northern hemisphere after
1997 was mainly due to the decrease in vegetation cover in the early parts of the growing
season and the slowdown increase in vegetation cover in the peak of the growing sea-
son [27]. Since the seasonal dynamics of vegetation in different regions and ecosystems are
different, it is not accurate to study the seasonal changes of vegetation in a certain region by
simply using meteorological seasons based on a constant calendar (for example, spring is
defined as March–May). Therefore, it is more universal to define seasonality based on local
vegetation phenology information. Analyzing the interseasonal relationship of vegetation
growth will help to better understand the climate-vegetation interaction.
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In this study, we first assessed the vegetation indexes change from three different
datasets to detect and characterize vegetation growth trends in the upper and middle of the
YRB from 2000–2019. The satellite-derived NDVI, GPP, and LAI were regarded as indicators
to reflect vegetation dynamics and productivity. Secondly, we divided the growing season
into three active seasons based on phenological metrics [17,28]. Then, we assessed the
effect of vegetation carryover on vegetation growth across the phenology-based season
using partial correlation analysis and compared the size of this effect against that of the
immediate and lagged impacts of climate factors. Temperature (TEM), precipitation (PRE),
and sunshine duration (SSD) were used to represent the climate conditions. Finally, the
individual contributions of climate variability and the vegetation carryover on vegetation
greening were calculated. Our research is expected to increase understanding of vegetation–
climate interactions at the seasonal scale and provide insight on how to better manage
vegetation under global climate change in the future.

2. Materials and Methods
2.1. Study Area

The Yellow River is the second-longest river in China. It has a watershed area of
79.5 km2, 91% of which (72.3 × 104 km2) is considered the upper and middle reaches [4].
Our study area covered the upper and middle reaches of the YRB, and its undulating
terrain varies in elevation between 84 and 6119 m (Figure 1a). The upper and middle
reaches of the YRB span many climatic zones (Figure 1b). The upper reaches of the YRB
are dominated by polar climate (ET and EF). The Ningxia Plain and the western part of
Hetao Plain have cold desert climate (BWk). The eastern part of Hetao Plain and Ordos
Plain have cold steppe climate (BSk). The southern part of the study area is dominated by
hot, warm-summer continental climate (Dwa and Dwb) [29]. The main land-cover types
(>104 km) are grasslands, croplands, deciduous broadleaf forests, barrens, savannas, urban
and built-up lands, and mixed forests (Figure 1d and Table 1). The quality of the ecological
environment in the upper and middle reaches directly determines the environmental
conditions in the lower reaches of the YRB, so this area has crucial strategic significance in
terms of geographical location and ecological protection [4].

Table 1. The main land cover types (>104 km) and proportion of the upper and middle reaches of the
YRB in 2019.

Land Type. Area (104 km2) Area Proportion (%)

Grasslands 52.33 67.77
Croplands 13.71 17.75

Deciduous Broadleaf Forests 3.60 3.54
Barrens 2.41 3.12

Savannas 2.04 2.64
Mixed Forests 1.35 1.54

Urban and built-up lands 1.16 1.50

Note: Land cover types with an area of less than 104 km2 are not listed.
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Figure 1. Location and altitude (a), stations and climate classification (BWk: cold desert; BSk: cold
steppe climate; Cwa: dry-winter humid subtropical climate; Dwa: hot-summer continental climate;
Dwb: warm-summer continental climate; Dwc: boreal climate; ET: tundra climate; EF: ice-cap climate)
(b), main tributaries (c), and land cover types in 2019 (d) of the upper and middle reaches of the
Yellow River Basin.

2.2. Data Sources and Processing

Normalized difference vegetation index (NDVI) reflects vegetation growth trend and
is widely used to describe the physiological condition of vegetation [17]. Here, NDVI
data were provided by the Moderate Resolution Imaging Spectroradiometer (MODIS)
products (https://lpdaac.usgs.gov/) at a spatial resolution of 500 m × 500 m and temporal
resolution of 16 days. The time-series data covers 2000–2019. We selected MOD13A1 NDVI
data of four imagery data sets, including h25v05, h26v04, h26v05, and h27v05. NASA’s
MRT (MODIS Reprojection Tools) software was used for data processing, including image
mosaic, projection, format transformation, and resampling. Then, vector boundaries of the
upper and middle reaches of the YLB were used to extract the study area in ArcMap 10.2.2.
The synthetic NDVI data may have outliers or missing values. Therefore, the MODIS
NDVI datasets were smoothed and denoised by the Savitzky–Golay (S-G) filter [30,31]. The
basic idea is first to filter the data after reprojection, and then the pixels with good quality
remain unchanged, while those with poor quality are filtered to form a new NDVI sequence.
Considering that NDVI is easily saturated in dense vegetation areas, we also introduced two

https://lpdaac.usgs.gov/
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data products, leaf area index (LAI) and gross primary productivity (GPP) to independently
verify the robustness of the NDVI results. LAI and GPP data (MOD15A2H) are also derived
from the MODIS products (https://lpdaac.usgs.gov/). The LAI and GPP dataset are
available at a spatial resolution of 500 m × 500m and 8-day temporal resolution. All
pretreatments were the same as for NDVI.

Temperature affects many plant processes, such as photosynthesis, respiration, and
transpiration [26]. In arid and semi-arid areas, vegetation is very sensitive to precipita-
tion [21]. Sunshine is the source of energy for plant growth [32]. Therefore, precipitation,
temperature and sunshine duration were selected as meteorological indicators in this study.
Monthly mean temperature and monthly total precipitation with a spatial resolution of
0.00833◦ were obtained from the Institute of Tibetan Plateau Research, Chinese Academy
of Sciences (https://data.tpdc.ac.cn/). Daily sunshine duration (meteorological station
data) was acquired from the Chinese National Bureau (https://data.cma.cn/) (Figure 1b).
The period for time-series meteorological data is 2000–2019. To maintain the same spatial
resolution, vegetation indexes and shine duration were resampled or interpolated into a
grid cell with a spatial resolution of 0.00833◦.

We obtained the land cover data (MCD12Q1) from the United States Geological Survey
(USGS) platform (https://lpdaac.usgs.gov/). The MCD12Q1 supplies global maps of
land cover at annual time steps and 500 m spatial resolution since 2001 and was classified
according to the International Geosphere-Biosphere Program (IGBP) land use classifi-
cation scheme. The spatial distribution of the altitude (DEM) data was obtained from
the Resources and Environment Science and Data Center, Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx).

Details of data used in this research are shown in Table 2.

Table 2. Main data used in this study.

Data
Type

Data
Sources

Spatial
Resolution

Temporal
Resolution

Temporal
Span

Acquisition
Time

NDVI https://lpdaac.usgs.gov/ 500 m 16-day 2000–2019 2021.10.11
GPP https://lpdaac.usgs.gov/ 500 m 8-day 2000–2019 2021.10.19
LAI https://lpdaac.usgs.gov/ 500 m 8-day 2000–2019 2021.10.23
TEM https://data.tpdc.ac.cn/ 1 km monthly 2000–2019 2021.10.15
PRE https://data.tpdc.ac.cn/ 1 km monthly 2000–2019 2021.10.05
SSD https://data.cma.cn/ 2400 stations daily 2000–2019 2021.12.23

Land Cover
(Type 1)

https://www.resdc.cn/
Default.aspx 500 m yearly 2000–2019 2022.4.3

2.3. Trend Analysis and Significance Test

Linear regression analysis was done to simulate the trend of vegetation index variation
on the pixel scale from 2000 to 2019. The formula is as follows:

slope =
n∑n

i (i×Vari)−∑n
i=1 i×∑n

i=1 Vari

n∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where the slope is the inter-annual variation rate of relevant variables i, Vari the value of
the relevant variable in the ith year (season), and n represents the length of the dataset
(n = 20). Slope > 0 indicates an increasing trend of the Vari during the study period, and
slope < 0 indicates a negative trend of the Vari during the study period.

n

∑
i=2

i=1

∑
j=1

sign(Xi − Xj) (2)

https://lpdaac.usgs.gov/
https://data.tpdc.ac.cn/
https://data.cma.cn/
https://lpdaac.usgs.gov/
https://www.resdc.cn/Default.aspx
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
https://data.cma.cn/
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
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sign(Xi − Xj) =


−1, Xj − Xi < 0
0, Xj − Xi = 0
+1, Xj − Xi > 0

(3)

Var(s) = n(n− 1)(2n + 5)/18 (4)
Z = S−1√

Var(S)
, S > 0

Z = 0, S = 0
Z = S+1√

Var(S)
, S < 0

(5)

At the same time, the Mann–Kendall test by Equations. (2)–(5) was used to check the
significance level of the vegetation trend.

2.4. Identifying Phenology-based Seasons

The length and period of the growing season for each grid cell are not directly defined
by a constant calendar-based meteorological season, for example, the growing season is
April–October [33] or the spring season is April–May [34,35]. Instead, we defined growth
seasons based on vegetation phenology [17,18,36]. We extracted the start of the growing
season (SOS) and the end of the growing season (EOS) based on phenological events [17,28],
and then divided the growing season into three active seasons: early growing season
(EGS), peak growing season (PGS), and late growing season (LGS). The specific extraction
process was as follows. The 16-day NDVI time series datasets were input into TIMESAT
3.3 software [32] to extract SOS and EOS for determining the length of the growing season.
Dynamic thresholds of vegetation SOS and vegetation EOS were set at 20% and 80%,
respectively [37]. Since the TIMESAT 3.3 software can only extract phenological parameters
of n-1 year from n-year data, we obtained 2001–2019 phenological parameters based on
20 years of NDVI data. SOS and EOS are the 19-year averages. The two consecutive months
with the largest NDVI value were defined as PGS (not before April or after October). EGS
is defined as the intermediate month from the month of SOS to the month of PGS, and LGS
is defined as the intermediate month from the month of PGS to the month of EOS. The
preceding-season NDVI for EGS is the NDVI of the last year’s LGS [17].

2.5. Correlation between the Vegetation Indicators and Their Driving Factors

Partial correlation analysis was applied to assess the relationship between seasonal veg-
etation growth and productivity (NDVI, GPP, and LAI) and their driving factors between
2000–2019. We considered the concurrent climate factors (temperature, TEM, precipitation,
PRE, and sunshine duration, SSD) and climate factors (TEMps, PREps, and SSDps) and
NDVI (NDVIps) of the preceding season as driving factors of seasonal NDVI (GPP and
LAI) variations.

2.6. Contribution of Climate Variability and the VGC Effect on Vegetation Greening

We quantified the individual contributions of climate factors (TEM, PRE, and SSD
of the present and preceding season) and VGC effect (preceding-season NDVI) to the
observed NDVI trend of each season during 2000–2019, so as to decompose the linear trend
of NDVI (dNDVI/dt) for each season over a 20-year period into the additive contribution
of eight components:

dNDVI
dt = ∂NDVI

∂NDVIps

dNDVIps
dt + ∂NDVI

∂TEMps

dTEMps
dt + ∂NDVI

∂PREps

dPREps
dt

+ ∂NDVI
∂SSDps

dSSDps
dt + ∂NDVI

∂TEM
dTEM

dt + ∂NDVI
∂PRE

dPRE
dt + ∂NDVI

∂SSD
dSSD

dt + σ

= ∆NDVIps + ∆TEMps + ∆PREps + ∆SSDps + ∆TEM + ∆PRE + ∆SSD + σ

= ∆NDVIps + ∆climateps + ∆climate + σ

(6)
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where ∆NDVIps, ∆climateps, ∆TEMps, ∆PREps, ∆SSDps, ∆climate, ∆TEM, ∆PRE, and ∆SSD
represent the individual contributions to the interannual NDVI changes, respectively.
∆climateps (preceding-season climate) is the sum of ∆TEMps, ∆PREps, and ∆SSDps. ∆climate
is the sum of ∆TEM, ∆PRE, and ∆SSD. Moreover, ∂NDVI/∂NDVIps is equal to the partial
correlation coefficient between NDVI and NDVIps when removing the disturbances of the
concurrent and preceding season for temperature, precipitation, and sunshine duration;
dNDVIps/dt is the inter-annual variation rate (slope) of NDVIps; ∆NDVIps is calculated as
the product of ∂NDVI/∂NDVIps and dNDVIps/dt. A similar method is also suitable for
other variables. Before quantification analysis, we detrended all variables to transform the
time series to Z-score standardized anomalies:

Z =
x− x

ω
(7)

where x and ω are the mean and standard deviation of study variables in each active season,
respectively. x is the value of the study variable.

3. Results
3.1. Spatiotemporal Variations of Vegetation Growth

We obtained the vegetation coverage levels of the upper and middle reaches of the
YRB during the growing season from 2000 to 2019 (Table 3). The medium vegetation cover
areas were the largest (33.54%), followed by medium-high vegetation cover areas (30.92%,
Table 3). Overall, the spatial distribution of mean NDVI during the growing season declined
trend from southeast to northwest (Figure 2a), which was consistent with the spatial pattern
of precipitation (Figure S1a) but opposite to the spatial distribution of sunshine duration
(Figure S1c). NDVI had no obvious relationship with the spatial pattern of temperature
(Figure S1b). The NDVI of the forests and savannas is high, while the grasslands have a low
NDVI. Although the upper reach is primarily occupied by grasslands (Figure 1d), rivers are
widely distributed (Figure 1c), which is conducive to vegetation growth, showing a high
NDVI value. Compared with other study areas, the southeast has more precipitation and
has extensive forests, croplands, and savannas (Figure 1d), so the NDVI is relatively high.

Figure 2. Spatial distribution of the mean NDVI (a) and inter-annual variation rate (slope) (b) during
the growing season in the upper and middle reaches of the Yellow River basin from 2000 to 2019.
Black dots indicate statistically significant correlations at the 95% confidence level. Same below.
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Table 3. Vegetation coverage levels in the upper and middle reaches of the YRB during the growing
season from 2000–2019.

Mean NDVI Level Proportion (%)

<0.1 Low vegetation cover area 0.88
0.1–0.3 Medium-low vegetation cover area 24.50
0.3–0.5 Medium vegetation cover area 33.54
0.5–0.7 Medium-high vegetation cover area 30.92

>0.7 High vegetation cover area 10.16

From 2000 to 2019, the mean NDVI during the growing season of the upper and mid-
dle reaches of the YRB exhibited a significant growth trend with a rate of 0.0056 per year
(p < 0.001) (Figure 2b). Similarly, the mean GPP and LAI also showed a positive and signifi-
cant trend (p < 0.001) at rates of 0.3718 per year and 0.0231 per year (Figure S2), respectively.
The inter-annual variation of these vegetation indicators suggested that the vegetation
coverage and productivity significantly increased in the study area over the two decades. In
addition, we calculated the inter-annual variation rates of vegetation NDVI in each active
season over the study period (Figure S3). The spatial distribution of inter-annual variation
rates of NDVI in the early, peak, and late growing season (EGS, PGS, and LGS) was similar,
with the rates equal to 0.0062 per year (p < 0.001), 0.0059 per year (p < 0.001), and 0.0046
per year (p < 0.001), respectively. EGS showed the strongest trend of vegetation greening,
followed by PGS, although PGS showed a higher vegetation degradation trend than the
other two sub-seasons (Figure S3b). Only LGS had a lower vegetation variation trend
than the 20-year growing season mean trend (0.0056 per year). For climate variables, the
precipitation in the growing season in the upper and middle reaches of the YRB increased
significantly over the 20-year period, at a rate of 2.467 mm/year (p < 0.05) (Figure S1d).
However, the interannual variation rate of sunshine duration decreased significantly, by
–6.0620 h/year (p < 0.05) (Figure S1f). We found that the temperature increased at a rate of
0.012 °C/year (p > 0.05), which did not pass the significance test (Figure S1e).

3.2. Inter-Seasonal VGC Dominates Seasonal Vegetation Growth

At the seasonal scale, the relationships among the three vegetation indicators (NDVI,
GPP, and LAI) and each driving factor were analyzed from 2000–2019. The results showed
that the preceding-season NDVI significantly (p < 0.05) controls the current season vege-
tation NDVI in the three active seasons (Figure 3). The VGC effect was also positive for
seasonal vegetation growth across the majority (91%, 93%, and 95% for EGS, PGS, and LGS,
respectively) of the upper and middle reaches of the YRB (Figure 4). The partial correlation
coefficients between the concurrent seasonal NDVI and the preceding-season NDVI in
EGS, PGS, and LGS were 0.5168, 0.5743, and 0.6146, respectively (Figure 3), indicating that
the strength of the VGC effect on vegetation growth increased from early to late growing
season. In addition, the positive effect of VGC controlling vegetation growth in the three
active seasons was also verified by examining the other vegetation growth and productivity
indicators GPP and LAI (Figures S4 and S5). The matrix diagram and spatial distribution
diagram of partial correlation coefficients of NDVI, GPP, and LAI showed a strong similar-
ity. The vegetation growth and productivity of the preceding season were the dominant
factors predicting vegetation greenness in each active growing season, implying that our
results are reliable and the VGC cannot be ignored in the research of vegetation dynamics.
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Figure 3. Partial correlation coefficients between 20-year seasonal NDVI time series and concurrent
climate factors (temperature, TEM, precipitation, PRE, and sunshine duration, SSD), and climate
factors (TEMps, PREps, and SSDps) and NDVI (NDVIps) of the preceding season. The color block
size represents the element value size. Squares with black outlines show statistically significant
correlations at the 95% confidence level.

Figure 4. Spatial distribution of the partial correlations between NDVI of each season and that of the
preceding season. Correlationpatterns are shown for EGS (a), PGS (b), and LGS (c).

Compared with the positive effect of the VGC, the intensity and direction of climate
factors, including the immediate and lagged impacts of climate, determining the inter-
annual variation of seasonal NDVI (GPP and LAI) varied greatly between seasons and
across regions (Figures 5, 6 and S6–S9). The concurrent precipitation is the primary climate
factor determining the inter-annual variation of EGS and PGS NDVI of the upper and
middle reaches of the YRB over the 20-year period (partial correlation: 0.3122, p < 0.05;
0.2686, p < 0.05, respectively) (Figures 3 and 5d–e). The positive impact of concurrent
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precipitation on vegetation growth in EGS and PGS was also consistent in the analyses of
other vegetation indicators GPP (Figures S4 and S6d–e) and LAI (Figures S4 and S8d–e).
However, the concurrent precipitation had a much weaker impact on LGS vegetation, in
comparison to that of EGS and PGS (Figures 3 and 5f). The immediate impact of precipi-
tation diminished over the season (Figures 3 and 5d–f), contrary to the VGC effect. The
precipitation of the preceding season had no obvious positive effect on vegetation growth
in EGS and PGS, yet the positive effect in LGS increased (Figures 6d–f, S7d–f and S9d–f).
The temperature of the current and preceding season on vegetation growth was very weak
and statistically insignificant during the three active seasons. The weak temperature influ-
ence may be due to a spatial canceling-out of the positive effects and the negative effects
(Figures 5a–c and 6a–c). Both the current- and preceding-season sunshine duration had
negative effects on vegetation growth (Figures 5, 6 and S6–S9). The same results were also
observed for GPP and LAI (Figures S6–S9).

Figure 5. Spatial distribution of the partial correlations between NDVI of each season and the
concurrent climate factors. Correlation patterns are shown for EGS (a,d,g), PGS (b,e,h), and LGS (c,f,i),
and for correlation with concurrent TEM (a–c), PRE (d–f), and SSD (g–i).
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Figure 6. Spatial distribution of the partial correlations between NDVI of each season and climate
factors of the preceding season. Correlation patterns are shown for EGS (a,d,g), PGS (b,e,h), and
LGS (c,f,i), and for correlation with TEMps (a–c), PREps (d–f), and SSDps (g–i).

3.3. The Persistence of the Vegetation Carryover into the Next Year

At the annual scale, we performed a partial correlation analysis between the current-
year NDVI and the NDVI of the lag years. For a time lag of one year, 90.7% of study
areas showed positive lagged correlations (Figure 7a). Among them, 52.5% passed the
significance test (p < 0.05). The positive inter-annual vegetation carryover was most
significant in eastern areas, particularly over the Shaanxi and Shanxi provinces. By contrast,
only a few areas, including the upper reaches of the YRB and the northern desert, had a
negative but generally insignificant (p > 0.05) vegetation carryover effect. This positive
inter-annual VGC effect indicates that the vegetation productivity of the current year can
carry over to the next year. If time lags are two years, 80.5% of study areas showed a positive
relationship between the current-year NDVI and the NDVI of two years earlier (Figure 7b),
but only 30.0% of the areas passed the significance test (p < 0.05). Compared to a one-year
time lag, the area of positive correlation passing the significance test is significantly reduced
(22.5%). If time lags are three and four years, the positive lagged correlation areas are
73.4% and 67.6%, respectively (Figure 7c–d), among which 29.5% and 23.1% passed the
significance test (p < 0.05), respectively. From the third year of time lags, the positive VGC
effect areas that passed the significance test remained at about 30%, indicating that the
VGC effect can be carried over to the subsequent year yet weakly to years after that.
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Figure 7. Spatial distribution of the partial correlations between NDVI of each year and that of the
lag time, after controlling for the climate variable of both years.

3.4. The Individual Contributions of Climate Effects and the VGC Effect

For each active season, we further quantified the individual contributions of the VGC
effect, climate effects of the concurrent season, and climate effects of the preceding season
on the 20-year vegetation growth (Figure 8). We combined the impacts of temperature,
precipitation, and sunshine duration into the single variable of climate effects. The results
showed that the greening trends in the three active growing seasons were predominantly
attributed to the VGC (the contributions are 50%, 67%, and 58%, respectively) (Figure 8),
confirming the positive carryover effect of vegetation seasonal growth. It is interesting to
note that the VGC effect had the strongest correlation with NDVI during the LGS (Figure 3)
but the VGC effect contributed the most to vegetation growth in PGS (Figure 8). We also
found that PGS was the season whose inter-annual variation trend (slope) of vegetation
growth was most similar to that of the growing-season mean (gray dashed line, Figure 8).
Concurrent seasonal climate factors also played a positive role in the three active growing
seasons of vegetation growth (the contributions are 14.24% (EGS), 19.38% (PGS), and 13.80%
(LGS), Figure 8). In comparison, the climate of the preceding season played a much smaller
role in the vegetation greening for the three active growing seasons (the contributions are
0.64% (EGS), 5.58% (PGS), and 10.03% (LGS), Figure 8). Residuals is the contributions
of other driving factors, including human activities and natural disturbances, that could
influence vegetation growth but were not analyzed in our research. However, the residuals
had a positive impact on vegetation greening, especially in the EGS (Figure 8). From
Figure 3, VGC- and humid-induced vegetation greening from the early growth season
sustained to the late growing season (ignoring residuals), which was the primary factor
dominating vegetation growth in the upper and middle reaches of the Yellow River in the
20 years period.
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Figure 8. Individual contributions of the vegetation growth carryover (VGC) and the immediate
(climate) and lagged (climateps) climate effects to seasonal NDVI trends over a 20-year period
(2000–2019). The gray dashed line indicates the 20-year growing-season mean NDVI trend. The black
solid lines indicate the observed NDVI trends of each season.

4. Discussion
4.1. The Effects of Climate Variability on Vegetation Growth

Regarding climate variability, vegetation growth in dry-land ecosystems is more
sensitive to external precipitation changes (Figures 3, 5 and 6). The concurrent seasonal
precipitation in the EGS and PGS had a significant positive effect on vegetation growth in
the upper and middle reaches of the YRB, which was consistent with prior work [38]. The
main reason for this sensitivity to precipitation may be that our study area is dominated by
arid and semiarid areas [39]. Another possible explanation involves the widely distributed
grasslands in the area (Figure 1d). Because herbs absorb the water from the upper part of
the soil, they respond quickly to changes in precipitation [40]. Compared with the EGS
and PGS seasons, the effect of concurrent precipitation on vegetation growth was weak in
the LGS season. This phenomenon may be attributed to vegetation growth needing more
moisture during green-up and maturity (EGS and PGS) than in senescence (LGS) [41]. The
preceding-season precipitation in EGS and PGS had a weak effect on concurrent vegetation
seasonal growth, indicating that the lagged effect of precipitation is not significant in the
area with grassland as the main vegetation type [21]. This result is reasonable because the
xylem in the stem of herbaceous plants is underdeveloped, so their water storage capacity is
low [42]. In addition, the root system of plants matures in the late growing season, and the
roots deeper in the soil dry out more slowly, so the precipitation of the preceding season has
a positive effect on vegetation growth in LGS [21]. The sensitivity of precipitation clearly
states that water availability is very important for vegetation growth in water-controlled
ecosystems [43]. The immediate and lagged impacts of temperature had strong spatial
heterogeneity and did not exhibit significant temporal effects on vegetation growth, which
may be because the positive and negative effects cancel each other out. Especially in the
EGS, the concurrent season temperature had a positive effect on vegetation growth in the
western and northern parts of the study area, while it had a negative effect on vegetation
growth in the central part of the study area (Figure 5a). This stemmed from the melting
of snow and ice in early spring in the western alpine region, which promoted vegetation
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growth and improved vegetation productivity [44]. The upper and middle reaches of the
YRB have plenty of sunshine, with an average annual sunshine duration of 2605 h in the
past 30 years [4]. The sunshine duration, including the immediate and lagged impacts, was
negatively correlated with seasonal vegetation growth. This may be because high sunshine
duration increases evapotranspiration and thus drought, further inhibiting vegetation
growth [41].

4.2. The Effects of Vegetation Growth Carryover on Vegetation Growth

Most people believe that vegetation growth depends mainly on external climate fac-
tors and human activity [1,45,46]. Our findings suggest that vegetation carryover has a
significant positive impact on vegetation growth (Figures 3 and 4). That is to say, the VGC
effect is the primary positive factor controlling the seasonal vegetation growth, also shown
by others [17,18]. The positive effect of VGC in the three active growth seasons makes it
easier to carry over the vegetation state in each season, and then affects vegetation growth
in subsequent seasons. For instance, although sunshine duration had a negative effect
on seasonal vegetation growth by increasing evapotranspiration [41,47], the positive and
strong VGC effect can override this adverse effect. The same phenomenon was observed
previously for high temperature [17,18]. In addition, the VGC effect in the central and north-
ern part of our study area was stronger than in other regions, confirming that vegetation in
drought regions may have a stronger VGC effect [10,18]. This strong vegetation carryover
effect in drought regions implies that disturbances might have severer effects on vegetation
in these areas. Initial ecological restoration and sustainable conservation would promote
vegetation growth and increase vegetation productivity, which is of great significance to
arid areas. Our results also exhibited that the persistence of the vegetation carryover can
be sustained to the next year. So, a year with better vegetation growth is often followed
by another year with better vegetation growth. Prior work has reported that drought
legacies mostly last for one year, with significantly fewer legacies in the second and third
years [48], as did our study of the VGC effect (Figure 7). Correspondingly, if vegetation
does not overcome the influence of negative disturbances (e.g., wildfires, insect pests, and
extreme climate) in time, the vegetation will slow growth in the coming years [18]. All the
above evidence confirms the importance of the VGC effect on seasonal vegetation growth.
Vegetation carryover is a critical pathway that should not be ignored.

4.3. Contributions of Climate Variability and Vegetation Carryover to Vegetation Greening

This study revealed that the strong observed greening trend of vegetation in each
active season was mainly contributed by the VGC effect (Figure 8). Although the VGC
effect was weaker during the early growing season, it increased from early to late growing
season. High-quality vegetation growth in the early growing season determines vegetation
growth in the subsequent seasons. The current-season climate factor, especially precipi-
tation, is another important contributor, followed by the climate of the preceding season.
Concerning the effect of current-season precipitation, vegetation was more sensitive in
the early growing season. These phenomena may be attributed to the characteristics of
vegetation—a low tolerance for lack of water during the early growth stage [18,49]. From
this perspective, it is most effective to intervene in the vegetation to promote vegetation
growth in spring through implementing ecological conservation and improving water
conditions. There is still a proportion of unexplained variance (residuals) in vegetation
growth in the three active seasons. These unexplained variances reflected the contributions
of other drivers of vegetation growth, such as carbon dioxide fertilization and nitrogen
deposition [1,50,51], human activities, [24,52,53], natural disturbances [7,15,54], and precipi-
tation pattern shift [55]. The higher growth rate (black solid line) observed in the early parts
of the growing season was primarily inherited from the vegetation carryover and residuals.
However, this study focused on the impacts of climate factors and VGC effects at a seasonal
scale and, therefore, did not quantitatively analyze other factors. As climate change is a
continuous process, it may accumulate over time and then affect vegetation growth. Stud-
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ies have shown that vegetation is significantly correlated with 2–6 months of cumulative
precipitation [7], and precipitation on the Loess Plateau has a positive cumulative effect,
especially in April and May [52]. This means that early spring precipitation may affect
vegetation greening. Thus, the residuals in EGS may be contributed by the cumulative
effect of precipitation. In addition, the melting of alpine snow and ice in early spring also
provides moisture for vegetation growth in EGS [52]. The large-scale ecological restoration
project, Grain to Green Project (GTGP), which was implemented to improve the ecological
environment and maintain the ecological balance in the study area, has reduced arable land
and increased forest and grassland. A prior study demonstrated that vegetation restoration
is faster for lands converted to woodlands and grasslands than land with no conversion
under similar dry conditions [38]. This is also the reason why the VGC effect in the study
area is stronger than other factors. In the PGS, it showed a higher contribution of vegetation
growth carryover effect, which is primarily inherited from the preceding-season vegetation
greening (67%) rather than from the contributions of the climate factors (19%). Without con-
sidering the vegetation growth carryover effect, numerous studies suggested that climate
factors and human activities are the driving factors for vegetation greening [4,21,45]. Yet,
our study shows that the VGC effect contributes much more to vegetation greening than
other factors. Though the positive VGC effect of vegetation growth can override negative
climate impacts under the present climate and carry over into the subsequent year, it is
still an open question whether this positive vegetation carryover will continue with future
climate change.

4.4. Limitations and Implications

Although we studied the responses of vegetation dynamics to various drivers on the
phenology-based seasonal scale, due to the complex driving factors, there are still some
limitations and uncertainties in our study. Firstly, due to differences in sensor performance
and soil background color, satellite-based NDVI data have inherent limitations [18]. Sec-
ondly, other factors, such as natural disturbance and human activities have a non-negligible
impact on vegetation growth [1,50n51]. Taking all these factors into account is the most
likely to yield more comprehensive and accurate outcomes. Finally, we noticed that climate
factors have both a time delay effect and a cumulative effect on global vegetation growth.
Our research only focused on the immediate and lagged impacts of climate. Therefore, in
future work, we should discuss the influence of other variables in detail.

5. Conclusions

Based on the phenological seasonal scale, we exhibit vegetation dynamics in the upper
and middle reaches of the Yellow River basin from 2000 to 2019, as well as immediate
and lagged impacts of climate and vegetation growth carryover effects. The following
conclusions are drawn: (1) From 2000 to 2019, the spatial distribution of mean NDVI, GPP,
and LAI in the growing season exhibited a declining trend from southeast to northwest
in the upper and middle reaches of the YRB. The vegetation coverage and productivity
experienced a significant increase throughout the study area. (2) Significant positive corre-
lations in the statistical analyses suggest that the vegetation carryover effect dominated
the vegetation greening during the three active growing seasons, and this effect increased
from early to late growing season. The concurrent season climate factors, especially pre-
cipitation, are also important drivers, followed by the climate of the preceding season.
Sunshine duration, including its immediate and lagged impacts, always played a negative
effect on vegetation growth. (3) As expected, the strongly observed greening trends of the
three growing seasons were predominately attributed to the vegetation growth state of the
preceding season. In addition, the vegetation growth carryover can be carried over to the
subsequent year.

This carryover in seasonal vegetation growth is conducive to the next stage of vegeta-
tion growth. Although the vegetation growth carryover effect can counteract the negative
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effects of climate factors, whether this growth carryover effect will still exist under future
climate change still needs to be addressed in future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14195011/s1, Figure S1: Spatial distribution (a–c) and inter-
annual variation rates (slope) (d–f) of mean precipitation (PRE), mean temperature (TEM), and mean
sunshine duration (SSD) in growing season in the upper and middle reaches of the YRB over a
20-year period (2000–2019); Figure S2: The inter-annual variation rates (slope) of GPP (a) and LAI
(b) in the growing season in the middle and upper of the YRB over a 20-year period (2000–2019).
Black dots indicate statistically significant correlations at the 95% confidence level. Same below;
Figure S3: The inter-annual variation rates (slope) of NDVI in three active seasons in the upper and
middle reaches of the YRB over a 20-year period (2000–2019). The slopes patterns are shown for EGS
(a), PGS (b) and LGS (c); Figure S4: Partial correlations between vegetation growth and that of its
driving factors. This is same as Figure 3, except that vegetation growth is here based on GPP (a) and
LAI (b); Figure S5: Spatial distribution of the partial correlations between GPP (a–c) or LAI (d–f) of
each season and that of the preceding season. Correlation patterns are shown for EGS (a,d), PGS (b,e),
and LGS (c,f); Figure S6: Spatial distribution of the partial correlations between GPP of each season
and the concurrent climate factors. Correlation patterns are shown for EGS (a,d,g), PGS (b,e,h) and
LGS (c,f,i), and for correlation with concurrent temperature (TEM) (a–c), precipitation (PRE) (d–f)
and sunshine duration (SSD) (g–i); Figure S7: Spatial distribution of the partial correlations between
GPP of each season and climate factors of the preceding season. Correlation patterns are shown for
EGS (a,d,g), PGS (b,e,h) and LGS (c,f,i), and for correlation with preceding season temperature (TEM)
(a–c), precipitation (PRE) (d–f), and sunshine duration (SSD) (g–i); Figure S8: Spatial distribution of
the partial correlations between LAI of each season and the concurrent climate factors. Correlation
patterns are shown for EGS (a,d,g), PGS (b,e,h) and LGS (c,f,i), and for correlation with concurrent
temperature (TEM) (a–c), precipitation (PRE) (d–f), and sunshine duration (SSD) (g–i); Figure S9:
Spatial distribution of the partial correlations between LAI of each season and climate factors of the
preceding season. Correlation patterns are shown for EGS (a,d,g), PGS (b,e,h), and LGS (c,f,i), and for
correlation with preceding season temperature (TEM) (a–c), precipitation (PRE) (d–f) and sunshine
duration (SSD) (g–i).
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