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Abstract: The parameters of hydrological models should be determined before applying those models
to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely
used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of
the XAJ model parameters has been a subject of intense focus; nevertheless, while many efforts have
targeted parameters related to runoff yield using in-site data sets, classic regression has predominantly
been applied. In this paper, we employed remotely sensed underlying surface data and a machine
learning approach to establish models for estimating the runoff routing parameter, namely, CS,
of the XAJ model. The study was conducted on 114 catchments from the Catchment Attributes
and MEteorology for Large-sample Studies (CAMELS) data set, and the relationships between CS
and various underlying surface characteristics were explored by a gradient-boosted regression tree
(GBRT). The results showed that the drainage density, stream source density and area of the catchment
were the three major factors with the most significant impact on CS. The best correlation coefficient
(r), root mean square error (RMSE) and mean absolute error (MAE) between the GBRT-estimated
and calibrated CS were 0.96, 0.06 and 0.04, respectively, verifying the good performance of GBRT
in estimating CS. Although bias was noted between the GBRT-estimated and calibrated CS, runoff
simulations using the GBRT-estimated CS could still achieve results comparable to those using the
calibrated CS. Further validations based on two catchments in China confirmed the overall robustness
and accuracy of simulating runoff processes using the GBRT-estimated CS. Our results confirm the
following hypotheses: (1) with the help of large sample of catchments and associated remote sensing
data, the ML-based approach can capture the nonstationary and nonlinear relationships between
CS and the underlying surface characteristics and (2) CS estimated by ML from large samples has a
robustness that can guarantee the overall performance of the XAJ mode. This study advances the
methodology for quantitatively estimating the XAJ model parameters and can be extended to other
parameters or other models.

Keywords: remote sensing data; remotely sensed underlying surface characteristics; Xin’anjiang
hydrological model; model parameters; regionalization; machine learning; gradient-boosted
regression tree

1. Introduction

Hydrological models are useful tools for estimating or predicting hydrological vari-
ables across scales. To date, a large number of models have been developed to represent
the main physical processes involved in rainfall runoff processes [1,2]. Depending on
the physics, these models can be categorized as either physical models, which are based
mainly on partial differential equations (e.g., the Richards equation and the Saint-Venant
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equations), or conceptual models, which usually employ a number of mathematical func-
tions or distributed curves to reproduce hydrological processes [3]. Both kinds of models
contain several parameters that should be estimated before applying the model to a given
catchment. However, the estimation of parameters is challenging even for physical models,
whose parameters can be measured directly. This difficulty is due partly to the hetero-
geneity of catchments and to the limitations of measurements, both of which greatly limit
the availability of information; consequently, these parameters need to be extrapolated to
drive the model [1,4]. For conceptual models, researchers depend mainly on mathematical
algorithms to optimize parameters against observed data [5].

The Xin’anjiang (XAJ) model is a conceptual hydrological model that is widely used
throughout China [6]. Considering its conceptual basis, many efforts have been made to
calibrate the model parameters by various optimization methods (e.g., [7–11]). Neverthe-
less, although these approaches are effective and have been shown to ensure the good
performance of the XAJ model, some problems are still encountered during operation,
especially during real-time flood forecasting. Notably, many catchments are influenced
either by water conservancy projects or by human activities; as a result, runoff observations
cannot reflect natural hydrological processes, and calibrating the model parameters using
such impaired runoff observations will result in considerable bias. Additionally, it is im-
possible to optimize parameters in ungauged catchments, for which observed runoff data
are unavailable. Moreover, the parameters of the XAJ model calibrated by optimization
methods are usually constant over the whole study area, thereby neglecting the spatial
variation of the parameters resulting from the heterogeneity of catchments. Studies have
already confirmed the significance of catchment heterogeneity to various hydrological pro-
cesses [12,13]. Finally, the optimized parameters are not unique, which limits the robustness
of the calibrated parameters [14].

To resolve these problems, researchers have attempted to quantitatively calculate
parameters by establishing relationships between the model parameters and different
underlying surface characteristics. It is possible to estimate a parameter from the underlying
surface characteristics if the parameter has a physical definition, which can be converted
into an explicit formulation. For example, the parameter WM in the XAJ model denotes
the tension water capacity, which is solely dependent on soil properties. Yao et al. [15]
developed a grid-based XAJ model and proposed formulations to estimate WM at the grid
scale using soil texture and depth data. Gong et al. [16] proposed a set of formulations
to derive the outflow coefficients (KI and KG) from soil properties. In contrast, it is less
straightforward to estimate parameters that do not have physical definitions. Since the
prediction in ungauged basins (PUB) era, researchers have intensively focused on the
regionalization of model parameters [17]; accordingly, different algorithms have been
developed to calibrate parameters in donor (gauged) catchments and then transfer them to
ungauged catchments (e.g., [18–20]). For the XAJ model, the regression method has mainly
been used for regionalization purposes [21–23]. Using the above-mentioned approaches,
some sensitive parameters of the XAJ model can be quantitatively calculated rather than
calibrated [15,16,24,25]. However, most of these efforts are targeted at modeling runoff
yield. In contrast, the parameters related to runoff routing remain poorly understood
despite the fact that for real-time flood forecasting purposes, for which the XAJ model
is widely used, the runoff route is highly critical because it exerts strong influences on
the magnitude and timing of the flood peak [26,27]. Given some data and computational
constraints, the XAJ model employs a conceptual component to represent the lumped
attenuation effects of the stream network on streamflow. Unfortunately, the parameter
of this conceptual component, i.e., CS, cannot be derived directly from the underlying
surface characteristics since it lacks a physical definition. Nevertheless, CS is an incredibly
important parameter since it determines the shape of the simulated runoff series. However,
few studies have documented efforts to estimate CS by linear regression with the area,
slope and elevation of the catchment [28], although a simple linear regression might fail to
capture the real relationships between the parameters and the influencing factors [29,30].
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A promising tool for better exploring the relationships between the parameters and
influencing factors is machine learning (ML), which has been extensively used within
the hydrology community to solve water-related problems (e.g., [31–33]). Using ML,
efforts have been made to estimate streamflow [34–36], runoff signatures [37–40], soil
moisture [41,42], evapotransportation [43,44] and many other water-related variables.
Generally, these studies selected several predictors and analyzed the relationship among
predictors and target variable based on ML. Although the ML algorithms adopted by
the above-mentioned studies differed, they all showed that ML-based approaches were
able to produce accepted estimations of target variable. Some studies (e.g., [36,37]) also
reported that ML approaches outperformed conventional regression methods in predicting
hydrological variables. Comparing with predicting hydrological variables, there are few
studies targeting the estimating hydrological parameters using ML. One major challenge is
that since the parameters of hydrological models are considered as static and determined
by catchment properties, unlike dynamic streamflow or soil moisture data, it is difficult
to collect a large number of catchments with the detailed data needed by ML. Some other
studies have tried to tackle the regionalization of the parameters using linear regression
models or artificial neural networks [29,45]. Specifically, Lu [22], Zhang et al. [46] tried to
estimate CS using a few catchments by a conventional regression method. However, other
studies raised concerns regarding the performance of hydrological models at ungauged
links [47]. With the rapid development of remote sensing, remotely sensed data, including
forcing (e.g., precipitation) or underlying surface values (e.g., terrain and vegetation)
have widely been applied in the hydrology community and achieved a considerable
success [48–51]. Motivated by the capabilities of remote sensing data and ML in hydrology,
the purpose of this paper was to fill the gap when using ML for hydrological model
parameter estimation by investigating the routing parameter CS of the XAJ model, namely,
the runoff recession coefficient in a stream network.

To sum up, hydrological parameters estimation is essential in ungauged basins; how-
ever, knowledge gaps still exist when using ML for estimating parameters. Based on our
previous work and a literature review, we hypothesize that: (1) with the help of a large
sample of catchments and associated remote sensing data, an ML-based approach can
capture the nonstationary and nonlinear relationships between CS and various underlying
surface characteristics; and (2) CS estimated by ML from large samples has a robustness
that can guarantee the overall performance of the XAJ model. To test our hypothesis,
we collect various data and establish the ML model for CS estimation (Section 1). We
then analyze the factors that have the most significant effects on CS, the accuracy of CS
estimation and the performance of XAJ model with ML-estimated CS (Section 2). We also
discuss our findings in this study including implications and limitations (Section 3).

2. Data and Methodology
2.1. Study Area and Data

For this study, we used catchments from the Catchment Attributes and MEteorology
for Large-sample Studies (CAMELS) data set [52], which covers 671 catchments in the
contiguous United States (CONUS) that are minimally impacted by human activities,
which is suitable for model calibration. In the CAMELS data set, hydrometeorological
forcings were derived rom DAYMET and streamflow time series were retrieved from
USGS observations.

The CAMELS data set also includes catchment-averaged land cover, soil and geology
data; however, some data used to generate the CAMELS data set are not globally available
(e.g., elevation and soil data). To ensure that the data of the US and Chinese catchments
were consistent, we used various remote sensing data to generate the underlying surface
data needed to drive the model.

We used the 30 m Global Digital Elevation Model (GDEM) from the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) satellite to derive the surface
elevation distribution in the catchment, which provides the basis for estimating other
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terrain-related variables. The land cover data we chose were from the 0.5 km MODIS-based
Global Land Cover Climatology developed by Broxton et al. [53] based on the MODIS land
cover (MCD12Q1, Collection 5.1) product. We also used the High-Resolution Global Map
of Soil Hydraulic Properties [54] to obtain the soil-related characteristics.

The XAJ model is a rainfall-runoff model that is applicable only in humid and semihu-
mid regions dominated by the saturation excess runoff yield mechanism. Therefore, for this
study, we selected only catchments in which the annual precipitation was greater than
800 mm, there were fewer than 30 days of snow cover and the wet land area was less than
10%. A total of 196 catchments located primarily in the western and southeastern US met our
criteria (Figure 1a). Details of these catchments can be found in the Supplementary Materials.

To better evaluate the parameters estimated by the ML approach, we also selected
two catchments, Bazhong and Wucha, in the Jialing River Basin (one of the largest sub-
basins within the Yangtze River Basin), China, to perform cross-validation (Figure 1b).
The drainage area of those two catchments are 2737 km2 and 5566 km2, respectively.
The precipitation was derived from China’s meteorological forcing dataset which combines
the TRMM satellite precipitation estimates and ground observations. Other hydrological
data, including discharge and pan evaporation data, were collected and processed by the
Hydrological Bureau of the Changjiang Water Resources Commission. We used three years
of data (2013–2015) for validation purpose. The original data we collected had different
temporal resolutions, so we linearly interpolated these hydrological data into a daily time
step to drive the XAJ model.

Figure 1. Cont.
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Figure 1. Map of study area. (a): location of 196 catchments in the CAMELS data set that are suitable
for simulation using the Xin’anijang hydrological model; (b): location of two catchments in Jialing
River Basin, China.

2.2. XAJ Hydrological Model

The XAJ model was developed based on the saturation excess runoff yield mechanism,
which dominates the runoff yield processes in humid and semihumid regions [6]. The XAJ
model divides catchments into several subcatchments based on the corresponding terrain
and vegetation conditions and then simulates the hydrological processes in each subcatch-
ment in three stages: runoff yield, runoff separation and runoff routing. All subcatchments
are linked by the main stream, and the outflow of each subcatchment is routed through
the main stream by the Muskingum method. Readers are referred to Zhao [6] for more
details on the XAJ model, including theory, structure and parameters. This paper mainly
addresses the routing component of the XAJ model at the subcatchment scale. As discussed
in the Introduction, due to the high heterogeneity of the stream network in a subcatchment,
the XAJ model uses a conceptual component to represent the lumped attenuation and lag
effects of the stream network on streamflow:

TQ(t) = CS × TQ(t − 1) + (1 − CS)× QIN(t − L) (1)

where TQ is the outflow of the subcatchment (L3/T), QIN is the XAJ-simulated inflow to
the stream network of the subcatchment (L3/T) and CS (-) and L (T) are two parameters
reflecting the attenuation and lag effects of the stream network, respectively.

According to the theory of hydrological processes, CS should be affected mainly by
topographic indices such as the stream geometry, shape of the catchment, slope, etc. We
relied on the ML technique to explore the relationships with these variables.
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2.3. Baseline Model Calibration

To apply ML, we first calibrated the XAJ model for the 196 CAMELS catchments. We
followed the same calibration strategy as reported in [55]. Before calibration, we calculated
WM and SM using remote sensing data to reduce the potential nonuniqueness of the
parameters. For the remaining parameters, we used a two-stage approach for calibration:
we first introduced Model-Independent Parameter Estimation and Uncertainty Analysis
(PEST) [56] to provide an optimized combination of parameters and then applied the
conventional trial-and-error method to adjust some parameters based on our experience,
to calibrate the XAJ model and ensure the consistent simulation of both high- and low-
flow hydrographs.

Given that the data periods of the CAMELS catchments differ (see the Supplementary
Materials), we used 70% of the data for calibration, while the remaining 30% were used for
validation purposes. Both the calibration and the validation were conducted at a daily time
scale. We examined both the relative error of the total runoff volume (bias, Equation (2))
and the Nash–Sutcliffe efficiency (NSE, Equation (3)) to determine the model performance
in a specific catchment:

Bias =
Vsim − Vobs

Vobs
× 100%

Vsim =
n−1

∑
i=1

(
Qsim,i + Qsim,i+1

2

)
∆ti

Vobs =
n−1

∑
i=1

(
Qobs,i + Qobs,i+1

2

)
∆ti

(2)

NSE = 1 − ∑n
i=1(Qobs,i − Qsim,i)

2

∑n
i=1(Qobs,i − Qobs)2

(3)

where Qobs,i and Qsim,i are the observed and modeled discharge (L3/T) at time step i,
respectively, n is the total time step and ∆ti is the interval between time steps i and i + 1 (T).

We calibrated the model to have a bias of less than 5% to ensure the water balance of
the simulation. We then set an NSE cutoff value of 0.5 for selecting catchments for further
ML modeling.

Note that due to the nonuniqueness of the parameters, we assumed that the model
parameters were constant over the catchment and calibrated only a single parameter value.
Since most of the CAMELS catchments used herein were relatively small, we believed such
an assumption was reasonable.

2.4. Estimating CS Using a Gradient-Boosted Regression Tree (GBRT)

Many ML algorithms have been used in the hydrology community. As reviewed
by Zounemat-Kermani et al. [57], the boosting techniques have been more frequent and
successfully implemented in hydrological problems than the bagging, stacking and dagging
approaches. It is also documented that the gradient-boosted regression tree (GBRT) can
outperform individual methods of classification and regression trees [58]. Our previous
work further confirmed the potential capability of the GBRT in predicting model parameters.
As such, we decided to adopt the GBRT to test our hypothesis.

2.4.1. Basic Theory of GBRT

The GBRT [59] is an ML method that combines basic regression trees and boosting
to perform nonlinear regression and classification. The motivation of the GBRT is to add
additional trees in sequence without changing the model parameters that have already been
added to minimize a loss function of the training data. After learning, weak decision trees
(i.e., weak prediction models) are combined into a powerful committee classifier [60]. The
GBRT is also capable of evaluating the most important variables that affect targets. These
features make the GBRT the preferable tool for determining the most significant underlying
surface characteristics that affect CS and establishing a model for estimating CS.
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The technical details of the GBRT can be found in [59]. We used the Scikit-learn
(sklearn) module in Python to construct the GBRT model [61].

Several parameters of the GBRT should be optimized to achieve good performance,
including the depth of the trees (max_depth, the maximum depth of the regression tree),
number of weak learners (n_estimators, the maximum number of iterations of weak learn-
ers) and learning rate (learning_rate, the weight decay coefficient of each base learner). All
these parameters are dimensionless.

2.4.2. Initial Selection of Independent Predictors

The selection of independent predictors is crucial for the GBRT, and appropriate
predictors should meet the following criteria: (1) no significant correlation should exist
among the predictors; (2) the predictors should have impacts on the target; and (3) the
predictors should be estimated from the available data set.

After analyzing the routing process within each subcatchment, we selected seven
underlying surface indices as predictors for the further application of the GBRT. Table 1
lists the predictors and their corresponding definitions. All these indices were derived at
the subcatchment level where CS can be calibrated.

Table 1. Variables used to construct the GBRT model for estimating CS.

Predictor Definition

Area (A) Total area of the subcatchment
Slope (α) Average slope of the stream network
Coefficient of variation of the terrain (CVter) σter

µter

Drainage density (Dd) Ss
A

Stream source density (Dss) Nrs
A

Roundness (RN) A
P

Shape factor (SF) A
S2

σter and µter denote the standard deviation (L) and average (L) of the elevation of the subcatchment, respectively;
Nrs is the number of sources of streams in the subcatchment quantified as first-order streams based on the Strahler
stream order (-); Ss is the total length of the stream network in the subcatchment (L); P is the perimeter of
the subcatchment (L); S is the length of the subcatchment measured along the principal watercourse from the
catchment outlet to a point located closest to the centroid (L).

2.4.3. Construction of the GBRT Prediction Model

All indices in Table 1 were calculated for each catchment. We divided all the catch-
ments into training (156 catchments) and testing (40 catchments) groups. The training
groups were used by the GBRT to explore the relationships between the calibrated CS and
various indices and to establish the prediction model. The prediction model was then used
to estimate CS using the indices in the testing group, and the result was compared with the
calibrated CS to validate the GBRT model.

Studies have reported that the selection of training samples may affect the generaliza-
tion of ML [33]. To ensure the robustness of the prediction model, we used five different
combinations of catchments for training, which were selected by assigning different ran-
dom seeds. As such, we developed 5 different GBRT models (Models #1∼#5) to estimate
CS in this study.

Based on the technical document of the GBRT [59] and previous studies (e.g., [62]), we
defined the parameter range and step size for calibration (Table 2). We then applied the
complete trial-and-error method (i.e., testing all possible combinations of parameters) to
determine the best parameter.
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Table 2. Criterion used for optimizing the GBRT parameters.

n_estimators (-) learning_rate (-) max_depth (-)

Parameter ranges [50, 300] [0.01, 0.05] [2, 4]
Optimization step size 50 0.005 1

2.5. Validation of the GBRT-Estimated CS

We evaluated the accuracy and robustness of the GBRT-estimated CS by performing
the following steps.

We first compared the GBRT-estimated CS with the calibrated CS, directly enabling us
to evaluate the performance of the GBRT and the accuracy of the GBRT-estimated CS.

We then ran the XAJ model using both the calibrated and the GBRT-estimated CS
values and compared the metrics of the simulated streamflow, enabling us to evaluate the
applicability of the GBRT-estimated CS in hydrological simulations.

The above evaluations were based on the CAMELS catchments. Finally, we used the
best GBRT model to estimate the CS in the two catchments within the Jialing River Basin
and evaluated the metrics of the simulated streamflow. This allowed us to evaluate the
robustness of the GBRT-estimated CS.

3. Results
3.1. Calibration of the XAJ Model in the CAMELS Catchments

Following the above calibration strategy, we performed a two-stage calibration for
all 196 catchments in the CAMELS data set suitable for the XAJ model. The calibrated CS
values ranged from 0.10 to 0.87, which was a reasonable range. Figures 2 and 3 show the
NSE values averaged over the calibration and validation periods, respectively. According
to the results, 117 (60%) catchments had an NSE ≥ 0.5 for the calibration period, and 114
(58%) catchments had an NSE ≥ 0.5 for the validation period. All catchments had a bias
≤5%, which indicated an acceptable water balance. The model performance was consistent
between the calibration and validation periods, and we did not find significant degradation
of the model performance in the validation period.

As reported by [63], simulations using the coupled Snow17 snow model and the
Sacramento Soil Moisture Accounting Model in 671 CAMELS catchments showed that,
at the monthly scale, 90% of the catchments displayed an NSE ≥ 0.55 for the calibration
period, and 34% exhibited an NSE ≥ 0.8. Since it is more difficult to obtain a higher
NSE at a finer temporal scale (i.e., the daily scale in this study), we assumed that the
114 catchments with an NSE ≥ 0.5 had a sufficient model skill; therefore, the calibrated
parameters, including CS, were considered reasonable and were used for further analysis.
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Figure 2. Nash–Sutcliffe model efficiency coefficient (NSE) of 196 catchments in CAMELS data set
averaged over calibration period.

Figure 3. Nash–Sutcliffe model efficiency coefficient (NSE) of 196 catchments in CAMELS data set
averaged over validation period.

3.2. Importance of the Selected Predictors

After optimizing the parameters of the GBRT (Table 3), we used the results from five
GBRT models to investigate the importance of the selected predictors. Figure 4 shows
the importance index of seven predictors evaluated by the GBRT models. In this figure,
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the importance index is expressed by a color ramp, with yellow representing the largest
value. To make it clearer, Figure 4 also shows the ranking of different predictors with
one corresponding to the most important predictor and seven corresponding to the least
important predictor. According to Figure 4, regardless of the combination of training
catchments, the GBRT identified the drainage density (Dd), stream source density (Dss) and
area (A) as the most important factors. All models except model #1 identified the drainage
density (Dd) as the most important factor, with the importance index ranging from 0.22 to
0.38. The other four predictors exhibited relatively low important levels. The shape factor
was the least important predictor, with the importance index ranging from 0.04 to 0.1. We
used the five most significant variables to construct the GBRT model.

Table 3. Optimized GBRT parameters of five models.

Model #1 Model #2 Model #3 Model #4 Model #5

n_estimators (-) 100 50 150 100 150
learing_rate (-) 0.03 0.045 0.025 0.035 0.02
max_depth (-) 3 2 2 2 2

Figure 4. Important level of different predictors evaluated by five GBRT models with yellow repre-
senting the largest importance index. Shown also is the sorted importance of different predictors
with 1 corresponding to the most important predictor.

3.3. CS Estimation and Hydrological Simulation

Prediction models were developed using the training catchments. Because we used
five different catchment combinations for training purposes, we developed five different
prediction models (Models #1–#5) to derive CS. The solid lines in Figure 5 denote the
metrics of the different models in predicting CS from the training catchments. The perfor-
mances are consistent among the different prediction models, confirming the robustness of
the GBRT for estimating CS. Model #1 has a relatively better performance, with r, RMSE and
MAE values of 0.96, 0.06 and 0.04, respectively. The other models yield comparable results.
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Next, CS was derived for the testing catchments using the same models developed
from the training catchments, and the dashed lines in Figure 5 denote the corresponding
metrics. The performances of the testing catchments are worse than those of the training
catchments. Model #1 has a relatively good performance, with r, RMSE and MAE values of
0.74, 0.11 and 0.10, respectively. In contrast, Model #3 has the worst performance in terms
of r (0.73, Figure 5a), while Model #2 has the worst performance in terms of the RMSE
and MAE (0.13 and 0.11, respectively, Figure 5b,c). Figure 6 shows a scatter plot between
the calibrated and GBRT-derived CS values in the testing catchments, showing that most
points are distributed along the 1:1 line regardless of the models. The correlation coefficient
(r) ranges from 0.73 (Model #3) to 0.80 (Model #4 and #5). Hence, these evaluations confirm
that the GBRT models have relatively good performance when estimating CS.

To evaluate whether the GBRT-estimated CS could be used in hydrological simulations,
we used the XAJ model to carry out simulations using data from 23 catchments in the testing
group. Figure 7 presents a box plot of the NSE of the runoff simulations using the GBRT-
estimated and calibrated CS values. The boxes in this figure represent the distribution of
CS values among these 23 catchments. Our results showed that, due to the bias of CS,
the NSE of several catchments using the GBRT-estimated CS was less than 0.5—the cutoff
value we defined. The lowest NSE was only 0.23 from GBRT Model #5. Although the NSE
degraded in several catchments, we compared the shapes of the boxes and found that the
NSE values of the simulations were comparable even when using different values of CS,
especially for the catchments with an NSE above the first quartile (25%). Among all five
GBRT models, Model #2 had the best performance; there were no significant changes in the
NSE, and the r of the NSE from Model #2 was 0.92 (figure not shown).

Figure 5. Correlation coefficient (r), root-mean-square deviation (RMSE) and mean average error
(MAE) of GBRT-estimated CS compared with calibrated CS for both training and testing groups of
five GBRT prediction models. (a): Correlation coefficient (r); (b): root-mean-square deviation (RMSE);
(c) mean average error (MAE).
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Figure 6. Scatter plot showing comparison between calibrated and GBRT-derived CS of five different
GBRT models using data in testing groups. (a): Model #1; (b): Model #2; (c): Model #3; (d): Model #4;
(e): Model #5.

------- simulation using calibrated CS
------- simulation using GBRT-derived CS

Figure 7. Box plot of Nash–Sutcliffe model efficiency coefficient (NSE) of XAJ-simulated streamflow
during validation period. Each bar shows the distribution of NSE of 114 catchments with calibrated
CS (blue) and GBRT-derived CS (red).

We also examined the relationship between ∆CS (i.e., the GBRT-estimated CS minus
the calibrated CS) and ∆NSE (i.e., the GBRT-estimated NSE minus the calibrated NSE) to
better understand how the bias of CS could affect the streamflow simulations. As shown



Remote Sens. 2022, 14, 4609 13 of 21

in Figure 8, there was no clear pattern between ∆CS and ∆NSE due to the nonlinearity
of the hydrological model; however, most catchments (93.5%) exhibited a ∆NSE within
the ±0.1 limit (solid line in Figure 8). Two catchments (both in Model #5) experienced a
decrease in NSE exceeding 0.2; the largest reduction in the NSE was −0.34 in Model #5,
and the corresponding ∆CS was 0.22.

Based on Figures 7 and 8, we found that, although a bias existed between the GBRT-
estimated and calibrated CS, simulations using the GBRT-estimated CS could still achieve
results that were comparable to those using the calibrated CS. Most catchments had a
∆NSE within the ±0.1 limit. Thus, the overall robustness and accuracy of the simulated
runoff using the GBRT-estimated CS could be guaranteed.

Figure 8. Relationship between ∆CS (i.e., the GBRT-estimated CS minus the calibrated CS) and ∆NSE
(i.e., the GBRT-estimated NSE minus the calibrated NSE) in five different GBRT models. (a): Model #1;
(b): Model #2; (c): Model #3; (d): Model #4; (e): Model #5.

Among all five models, Model #2 had a relatively good performance. Therefore, we
utilized Model #2 to estimate the CS in two catchments, namely, Bazhong and Wucha,
within the Jialing River Basin and evaluate the results. Using the GBRT estimation model,
we could assign different CS values to different subcatchments depending on their unique
morphometric characteristics. Figure 9 shows the resulting spatial distribution of CS
over the Bazhong and Wucha catchments. Figure 10 shows three series of runoff: (1) ob-
served runoff, (2) simulated runoff using the GBRT-estimated CS (spatially distributed)
and (3) simulated runoff using the calibrated CS (spatially lumped). Only the results from
the validation period are plotted. As shown in Figure 10, the simulations with the GBRT-
estimated CS yielded NSE values of 0.37 and 0.65 for the Wucha and Bazhong catchments,
respectively, and have corresponding bias values of −5.98% and 7.4%. Although a degrada-
tion of the NSE and bias could be observed, the simulations using the GBRT-estimated CS
still captured the streamflow series well, and the results were comparable to those using
the calibrated CS.
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Figure 9. Spatial distribution of CS estimated by GBRT Model #2 for Wucha and Bazhong catchments.

Figure 10. Comparison of observed streamflow and XAJ-simulated streamflow using calibrated CS
(red) and GBRT-estimated CS (blue), respectively, in Wucha and Bazhong catchments (note the Y axis
is log-scaled).
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4. Discussion
4.1. Factors Affecting the Routing Process

In the hydrology community, flood routing in a main stream is described by either
the Saint-Venant equations or by the Muskingum method. However, at the scale of the
computational units of hydrological models (∼102 to ∼103 m2), it is difficult and often
unnecessary to simulate the flood routes in each of the relatively small tributaries. As such,
many hydrological models, especially conceptual models, treat the entire stream network
in a computational unit as a system, simulate the lumped routing processes and obtain the
outflow at the subcatchment outlet (e.g., [6,64,65]).

In the XAJ model, CS reflects the lumped attenuation effects of the stream network
in the subcatchment on streamflow. Our results indicate that the drainage density (Dd),
the stream source density (Dss) and the area of the catchment (A) are the three major factors
that have the most significant impact on CS. Our findings are supported by previous
studies focusing on routing processes.

The drainage density has long been recognized as an important factor that regulates
hydrological responses [66–69] and thus has been used to predict various hydrological
variables, including the Soil Conservation Service (SCS) curve number [29], erosion rate [70]
and base flow index [71], among many others. For the routing problem considered in this
study, if all other factors remain the same, the travel time of streamflow in a stream
decreases with increasing drainage density (Dd), which leads to weaker attenuation effects,
as reflected by CS. Moreover, high values of Dd are usually related to impervious hill slopes
and steeper slopes [67], which also have indirect impacts on the flow regime in tributaries.
Our results are in accordance with those of previous studies carried out on both natural hill
slopes [72] and real catchments [73].

Compared with the drainage density (Dd), the stream source density Dss is less com-
monly used to quantify hydrological processes. As reported by [74], the influence of a
deviation in the channel storage volume is significant in mountain rivers. In our study,
catchments with a higher Dss indicate more small tributaries with small storage volumes,
which have relatively weaker attenuation effects compared with higher-order streams.
The area (A) also has a significant control on the routing, and a small catchment tends to be
dominated by hill slope processes [73]; therefore, the attenuation effects of the stream are
weak, leading to a small CS.

4.2. Implications of This Study

Our results (Figures 5 and 6) proves the GBRT ML approach can effectively capture
the nonlinear relationships between CS and various environmental effects. After the evalu-
ation using the XAJ model, although differences were noted between the GBRT-derived
and calibrated CS, the resulting bias in the simulated runoff was still in an acceptable
range (Figures 7 and 8). Validations in two catchments of the Jialing River Basin further
confirmed the applicability of the GBRT-derived parameter. All these findings confirmed
our initial hypothesis.

Previous studies regarding the estimation of CS mainly relied on conventional regres-
sion or even linear regression approaches, and these studies identified catchment area and
slope as dominant factors affecting CS [22,46]. Our results showed that the drainage density,
stream source density and catchment area were three dominant factors while the slope was
less important. To better understand the difference, we carried out a linear regression to
investigate the correlation between CS and seven predictors as defined in Table 1. From
Figure 11, we can clearly see that their exist certain relationships between catchment area
(Figure 11a), drainage density (Figure 11d), stream source density (Figure 11e) and CS.
However, such relationships cannot be simply retrieved by a linear regression since the
linear correlation coefficient (r) is small. In contrast, the GBRT models we developed are
able to capture such complex relationships. In terms of the slope, the linear correlation
between CS and the slope is weak with r being 0.02 and the significance level (p) being 0.82
(Figure 11b). One possible reason is that CS is determined by the slope of the stream net-
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work rather than the average slope of the catchment. However, it is impossible to determine
the slope of the stream network due to the DEM accuracy in a water body [75]. Figure 11b
further proves that when estimating CS using several catchments based on a linear re-
gression, the results might be unreliable and difficult to extrapolate to other catchments.
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Figure 11. Linear regression between calibrated CS and seven predictors as defined in Table 1.

Our study also demonstrates the benefits of quantitatively estimating CS. One obvious
benefit of the GBRT approach is that the XAJ model can be applied to ungauged catchments
for which streamflow observations are unavailable or impaired catchments in which the
natural streamflow is affected by human activities. Benefiting from the Earth Observing
System (EOS), many hydrological variables related to runoff yield, such as sediment
transport, soil moisture and land surface temperature, can be accurately retrieved from
remote sensing data. Many studies have confirmed the applicability of remote sensing data
for calibrating parameters related to runoff yield processes [55,76,77]. This is especially
helpful for models focusing on runoff yield processes (e.g., global land models). In contrast,
although some encouraging results in estimating the river discharge or stage from satellite
data have been reported [78,79], the use of satellite data to constrain the calibration of
runoff routing parameters remains challenging. As such, the regionalization of runoff
routing-related parameters should be studied with some urgency, and our work provides a
framework that can be extended to other models. Moreover, by using the GBRT approach,
the spatial distribution of CS can be derived for a large catchment (Figure 9), which can
better reflect the spatial heterogeneity of the catchment. Although many hydrological
models have been designed to represent the spatial heterogeneity of the land surface,
the traditional calibration method on a limited number of discharge stations lumps all
hydrological processes together [77], which makes it difficult to reflect the real spatial
pattern of parameters. Our approach therefore offers an alternative to estimate spatially
distributed parameters that better satisfy the requirements of distributed models.

4.3. Limitations and Future Directions

To make the results more reliable and robust, we selected 196 catchments and devel-
oped five models to explore the relationship among CS and various predictors. However,
several limitations still exist which can be addressed in future studies. First of all, due to
data availability, we mainly focused on catchments with an average slope less than 16◦.



Remote Sens. 2022, 14, 4609 17 of 21

Studies have documented that runoff processes in steep slopes or catchments are quite
different from those with moderate slope [80,81]. Considering catastrophic flash floods
often occur in steep catchments, it is therefore necessary to study the parameters estimation
approach in order to better predict the occurrence of flash floods using hydrological models.
Moreover, we only used one specific ML model, the GBRT, in this study. Although previous
studies and our results have demonstrated the capabilities of the GBRT, other models such
as an ANN and 1D-CNN may also get comparable performances. It is therefore necessary
to carry out a more detailed study to evaluate different models. Last but not least, in this
study, we focused only on one specific parameter of the XAJ model, i.e., CS. However, our
scheme can be easily extended to other model parameters or other hydrological models to
improve the performance of models.

5. Conclusions

In this paper, we combined remote sensing data and a machine learning (ML) scheme,
namely, the gradient-boosted regression tree (GBRT), to establish models to quantitatively
estimate the routing parameter CS in the XAJ model. We chose 114 catchments from
the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data
set suitable for the XAJ model and performed good runoff simulations after calibration.
We used the GBRT to explore the relationships between the calibrated CS and various
underlying surface characteristics in the 114 catchments, based on which we established five
prediction models based on different catchment combinations. The following conclusions
can be drawn from this study:

• The drainage density, stream source density and area of the catchment are the three
major factors with the most significant impact on CS. This outcome is reasonable
based on an examination of the physical discipline of runoff routing.

• Overall, the CS values yielded by the prediction models we developed are comparable
to those from the calibration. Considering the values of CS, the best model (Model #1)
has a correlation coefficient (r), a root-mean-square error (RMSE) and a mean absolute
error (MAE) of 0.96, 0.06 and 0.04, respectively, confirming the good performance of
the GBRT for estimating CS.

• Although a bias exists between the GBRT-estimated and calibrated CS, runoff simula-
tions using the GBRT-estimated CS can still achieve results comparable to those using
the calibrated CS. Most catchments have a ∆NSE within the ±0.1 limit.

• Validations in two catchments further verify that the GBRT-estimated CS can be used
for hydrological simulations and can reflect the spatial patterns of parameters and
therefore better exploit the benefits of distributed models.

This paper confirmed the hypothesis that: (1) with the help of a large sample of
catchments and associated remote sensing data, an ML-based approach can capture the
nonstationary and nonlinear relationships between CS and underlying surface characteris-
tics; and (2) CS estimated by ML from large samples has a robustness that can guarantee
the overall performance of the XAJ mode. Comparing with previous studies, this paper
proposed a more reliable and robust ML-based model to estimate CS, which advanced the
methodology for quantitatively estimating the parameters of hydrological models. Our
approach offers an alternative to estimate spatially distributed parameters that better satisfy
the requirements of distributed models.

Several limitations still exist including the routing process on steep slopes, the perfor-
mance of other ML algorithms and the estimation of other parameters. These limitations
can be addressed by further studies.
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