
����������
�������

Citation: Duan, Y.; Liu, X.; Jatowt, A.;

Yu, H.-t.; Lynden, S.; Kim, K.-S.;

Matono, A. SORAG: Synthetic Data

Over-Sampling Strategy on

Multi-Label Graphs. Remote Sens.

2022, 14, 4479. https://doi.org/

10.3390/rs14184479

Academic Editors: Jungho Im and

Gwanggil Jeon

Received: 26 June 2022

Accepted: 26 August 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

SORAG: Synthetic Data Over-Sampling Strategy on
Multi-Label Graphs
Yijun Duan 1,* , Xin Liu 1 , Adam Jatowt 2, Hai-tao Yu 3 , Steven Lynden 1, Kyoung-Sook Kim 1

and Akiyoshi Matono 1

1 National Institute of Advanced Industrial Science and Technology Tokyo Waterfront, 2 Chome-3-26 Aomi,
Tokyo 135-0064, Japan

2 Department of Computer Science, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
3 Faculty of Library, Information and Media Science, University of Tsukuba, 1 Chome-1-1 Tennodai,

Tsukuba 305-8577, Japan
* Correspondence: yijun.duan@aist.go.jp

Abstract: In many real-world networks of interest in the field of remote sensing (e.g., public transport
networks), nodes are associated with multiple labels, and node classes are imbalanced; that is, some
classes have significantly fewer samples than others. However, the research problem of imbalanced
multi-label graph node classification remains unexplored. This non-trivial task challenges the existing
graph neural networks (GNNs) because the majority class can dominate the loss functions of GNNs
and result in the overfitting of the majority class features and label correlations. On non-graph data,
minority over-sampling methods (such as the synthetic minority over-sampling technique and its
variants) have been demonstrated to be effective for the imbalanced data classification problem.
This study proposes and validates a new hypothesis with unlabeled data over-sampling, which is
meaningless for imbalanced non-graph data; however, feature propagation and topological interplay
mechanisms between graph nodes can facilitate the representation learning of imbalanced graphs.
Furthermore, we determine empirically that ensemble data synthesis through the creation of virtual
minority samples in the central region of a minority and generation of virtual unlabeled samples
in the boundary region between a minority and majority is the best practice for the imbalanced
multi-label graph node classification task. Our proposed novel data over-sampling framework is
evaluated using multiple real-world network datasets, and it outperforms diverse, strong benchmark
models by a large margin.

Keywords: imbalanced data classification; data over-sampling; generative adversarial network;
graph convolutional network; semi-supervised learning; remote sensing

1. Introduction

Graphs are becoming ubiquitous across a large spectrum of real-world applications
in the form of social networks, citation networks, telecommunication networks, biological
networks, etc. [1]. In addition, numerous applications involving multimedia, such as
video surveillance, video streaming, healthcare systems, and intelligent indoor security
systems depend on using graphs as research objects [2–4]. For a considerable number of
real-world graph node classification tasks, the training data follow a long-tail distribution,
and node classes are imbalanced. In other words, each of a few “majority” classes has a large
number of samples, while most classes only contain a handful of instances. Taking the
NCI chemical compound graph as an example, only approximately 5% of molecules are
labeled as active in the anticancer bioassay test [5]. Graph node classification tasks are often
further complicated by the fact that graph nodes can be associated with multiple labels in
many real-world network data. Many social media sites, such as BlogCatalog, Flickr, and
YouTube, allow users to use a diverse set of labels representing their various interests. A
person can join several interest groups on Flickr, such as Landscape and Travel, and different

Remote Sens. 2022, 14, 4479. https://doi.org/10.3390/rs14184479 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184479
https://doi.org/10.3390/rs14184479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5098-8593
https://orcid.org/0000-0002-2336-7409
https://orcid.org/0000-0002-1569-8507
https://doi.org/10.3390/rs14184479
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184479?type=check_update&version=1

Remote Sens. 2022, 14, 4479 2 of 25

video genres on YouTube, such as Cooking and Wrestling. Furthermore, many networks are
characterized by imbalanced label distribution and multi-label nodes at the same time, as
shown in Figure 1.

(a) (b) (c)

Figure 1. Label distribution of three real-world multi-label network datasets: (a) BlogCatalog3 [6],
(b) Flickr [6], and (c) YouTube [7]. The horizontal axis represents the label id, and the vertical axis
represents the number of nodes containing each label. It can be clearly observed that these label
distributions are all highly imbalanced, where a few classes contain many more nodes than the rest
of the classes.

To date, a large body of work has focused on graph representation learning (GRL)
with balanced node classes and simplex labels [8–12]. However, these models do not
perform well when graphs exhibit the aforementioned characteristics of being imbalanced
and multi-label for the following reasons. (1) The problem caused by the imbalanced setting:
The imbalanced data make the classifier overfit the majority class, and the features of
the minority class cannot be sufficiently learned [13]. Furthermore, the above problem
is aggravated by the presence of the topological interplay effect [5] between graph nodes,
making the feature propagation dominated by the majority classes. (2) The problem caused
by the multi-label setting: Multi-label graph architectures typically encode very complex in-
teractions between nodes with shared labels [5], which is challenging to capture. Therefore,
it is essential to develop a specific graph learning method for class imbalanced multi-label
graph data. However, research in this direction is still in its infancy. Thus, in this study,
we propose imbalanced multi-label GRL to address this challenge while also contributing to
graph learning theory.

For imbalanced data, minority over-sampling is an effective measure to improve the
classification accuracy [14–16]. This strategy has recently been confirmed to be effective
for graph data as well [17]. Traditional over-sampling techniques consist of a two-step
process: (1) the selection of some minority instances as “seed examples”; (2) the generation
of synthetic data with features and labels similar to the seed examples, which are then
added to the training data. For example, the most popular over-sampling technique—
the synthetic minority over-sampling technique (SMOTE) [14]—addresses the problem
of minority generation by performing interpolation between randomly selected minority
instances and their nearest neighbors. Cost-sensitive learning is another type of effective
approach for alleviating the problem of imbalanced data applied to a classification [16],
where the basic assumption is that the cost resulting from different types of misclassification
varies significantly (e.g., the cost of treating an intruder as a non-intruder is much greater
than treating a non-intruder as an intruder). The principle of applying cost-sensitive
learning methods to imbalanced learning problems is to assign a larger penalty cost to
misclassified minority class samples [18]. Existing cost-sensitive classification algorithms
can generally be grouped into three categories [19]: algorithms that (1) pre-process the
training data, (2) post-process the output, and (3) apply direct cost-sensitive learning
methods. Data pre-processing aims to make the classification results on the new training
set equivalent to cost-sensitive classification decisions on the original training set, typically

Remote Sens. 2022, 14, 4479 3 of 25

along the lines of sampling [18] and weighting [16]. Post-processing the output makes
the classifier biased toward minority classes by adjusting the classifier decision threshold,
as represented by MetaCost [20] and ETA [21]. Direct cost-sensitive learning methods
embed the cost information into the objective function of the learning algorithm to obtain
the minimal expected cost, such as cost-sensitive decision trees [22] and cost-sensitive
SVM [23].

However, mainstream over-sampling techniques have significant shortcomings when
applied to graph data, as the selection of seed examples prioritizes global minority nodes
while ignoring local minority nodes, and each synthetic instance is always assigned a label
based on some specific strategy, which may be incorrect. This is because, in contrast to
non-graph data, the relationships between graph nodes are explicitly expressed by the
edges connecting them, meaning that the representation learning of a node can be heavily
dependent on its neighboring unlabeled nodes through the feature propagation mechanism
inherent to graphs.

Motivated by the above observations, we propose and test the following hypothesis.
In addition to synthetic minority samples, synthetic unlabeled samples can also facilitate the
debiasing of graph neural networks (GNNs) on an imbalanced training set. In particular,
for nearby global minority samples that are a local majority, we can “safely” produce
virtual samples of the same class and add them into the training sets to balance the class
distribution. Global minority samples that are also a local minority are more likely to
be local outliers, and thus, they are risky for selection as seed examples for further over-
sampling. For nearby global minority samples whose neighbors are class-balanced, it
is difficult to determine the labels of virtual samples. Thus, the production of unlabeled
virtual nodes should be encouraged, which can help minorities by “blocking” the over-
aggregation of the majority features delivered through edges. This idea is illustrated in
Figure 2. We argue that the key to over-sampling on an imbalanced multi-label graph is
to flexibly combine the synthesis of both labeled and unlabeled instances enriched by
label correlations.

Figure 2. A comparison between our method and the current state-of-the-art graph over-sampling
method GraphSMOTE [17]. In the current method, the idea is to generate new minority instances
near randomly selected minority nodes and create virtual edges (dotted lines in the figure) between
those synthetic nodes and real nodes. Instead, we synthesize minority instances in safe areas (i.e.,
A1), generate unlabeled instances in locally balanced areas (i.e., A2), and do not conduct data over-
sampling near minority nodes that are outliers (i.e., A3). For the simplicity of illustration, only a
single-label scenario is shown.

Remote Sens. 2022, 14, 4479 4 of 25

We extend the existing over-sampling algorithms to a novel framework for the imbal-
anced multi-label graph node classification task based on the above considerations. We
extend the classic global minority-based seed example selection to the local minority perspec-
tive (see Section 3.2). Distinct from interpolation, which is commonly used in mainstream
over-sampling techniques [24], we use a generative adversarial network (GAN) [25] to gen-
erate new instances. As a representative deep generative model, a GAN can capture label
correlation information by estimating the probability distribution of seed examples [26].
We propose an ensemble architecture of a GAN and conditional GAN (CGAN) [27] for the
flexible generation of both unlabeled and labeled synthetics (see Section 3.3). To make use
of the graph topology information, we propose a method to obtain new edges between the
generated samples and existing data with an edge predictor (see Section 3.4). The augmented
graph is finally sent to a graph convolutional network (GCN) [12] for representation learn-
ing, together with the learned label correlations (see Section 3.5). We name our proposed
framework SORAG, abbreviated from Synthetic data Oversampling StRAtegy on Graph.

In summary, our contribution is three-fold:

• We study an unexplored and novel research problem. We advance the traditional
simplex-label graph learning to an imbalanced multi-label graph learning setting,
which has diverse real-world applications (e.g., long-tailed graph node classification,
link prediction, community detection, and ranking). To the best of our knowledge,
this study is the first to focus on this task.

• We propose a new, general, and efficient GNN that addresses the deficiencies of previ-
ous graph over-sampling methods. Our framework flexibly ensembles the synthesis
of labeled and unlabeled nodes to support the minority classes and leverage label
correlations to generate more natural nodes.

• Extensive experiments on multiple standard real-world datasets demonstrate the high
effectiveness of our approach. Compared with the current state-of-the-art model
GraphSMOTE [17], our method has an improvement of 1.5% in terms of Micro-F1
and 3.3% in terms of Macro-F1 on average. The experimental results demonstrate
the high effectiveness of the proposed approach. Detailed analyses of SORAG under
different experimental environments and parameters are also presented.

2. Related Works
2.1. Graph Representation Learning

A growing number of applications use non-Euclidean methods to generate data, which
are then represented as graphs with complex relationships and inter-object dependencies.
Past feature representation and extraction algorithms face substantial difficulties in han-
dling the complexity of graph data. Over the past decade, many studies on extending
traditional feature extraction approaches for graph data have emerged. Among them, GRL
has evolved considerably and can be roughly divided into three generations, including
traditional graph embedding, modern graph embedding, and deep learning on graphs. The
first generation of methods are classic dimension reduction techniques, such as IsoMap [28]
and LLE [29]. The second generation of feature extraction methods on graphs are modern
graph embedding methods, such as DeepWalk [30] and LINE [31]. GNNs can be broadly
regarded as the third (and latest) generation of GRL after the traditional and modern graph
embedding, and they are reported to achieve the most promising performance in a wide
range of computational tasks on graphs [32].

A growing body of research has shown that GNNs are extremely effective for both
traditional GRL tasks (e.g., recommender systems and social network analysis) and new
research areas (e.g., healthcare, physics, and combinatorial optimization) [32]. A typical
GNN consists of graph filters and/or graph pooling layers. The former take the node
features and graph structure as inputs and output new node features. The latter take the
graph as an input and output a coarsened graph with a few nodes.GNNs can be broadly
classified into spatial and spectral approaches based on their graph filters. The former
explicitly leverages the graph structure, for example, spatially close neighbors, whereas the

Remote Sens. 2022, 14, 4479 5 of 25

latter analyzes the graph using a graph Fourier transform and an inverse graph Fourier
transform [33].

Classical spatial-based GNNs include [9–11,34–37]. Ref. [9] is a very early GNN that uses
the local transition function as a graph filter. A GraphSAGE filter [10] uses different aggregators
(mean/LSTM/pooling) to aggregate information regarding the one-hop neighbors of the nodes.
In addition, a GAT-filter [11] relies on a self-attention mechanism to distinguish the importance
of neighboring nodes during the aggregation process. An ECC-filter [34] was also proposed
to handle graphs with different types of edges. Similarly, a GGNN-filter [36] was designed
for graphs with different types of directed edges. By contrast, a Mo-filter [35] is based on a
Gaussian kernel. Finally, an MPNN [37] is a more general framework, with the GraphSAGE-
filter and GAT-filter mentioned above being special cases. In general, spatial-based GNNs are
more generalized and flexible.

Spectral-based graph filters use the graph spectral theory in the design of the filtering
operations within the spectral domain. Early studies [33] dealt with the eigen decomposition
of the Laplacian matrix and the matrix multiplication between dense matrices; thus, they are
computationally expensive. To overcome this problem, a Poly-filter [38] based on a K-order
truncated polynomial was proposed. To solve the problem of a Poly-filter in which the basis of
the polynomial is not orthogonal, a Cheby-filter [38] based on the Chebyshev polynomial was
introduced. A GCN-filter [12] is a simplified version of a Cheby-filter. The latter involves a
K-hop neighborhood of a node during the filtering process, whereas in the former, K = 1. A
GCN-filter can also be regarded as a spatial-based filter. Currently, GCNs are among the most
widely used types of GNN. In our model, we used a GCN as the key component.

Feature extraction methods such as graph embedding and graph kernel techniques
are strongly related to the study on GNNs. Compared to GNNs, the former only focus on
representing network nodes as low-dimensional vector representations without targeting
subsequent tasks, such as graph node classification and link prediction. Many graph embed-
ding techniques are linear and not in an end-to-end manner, such as random walk [39] and
matrix factorization [40]. Graph kernel techniques employ a kernel function to obtain the
vector representations of graphs. They are also an important type of approaches to solve the
graph classification problem. However, compared to GNNs, they are not learnable and far
less efficient.

GNNs are designed for different graph-based tasks, such as node classification, link
prediction, graph classification, and community detection. In particular, our task is semi-
supervised, which means that we need to learn the representation of all nodes from a few
labeled nodes and the remaining unlabeled nodes. GNNs are a rapidly growing field at the
present time. For a more comprehensive and detailed introduction to this field, we refer
the reader to [32].

2.2. Imbalanced Learning

If the classification classes are not approximately equal, and a few classes contain
many more samples than the others, the dataset is called imbalanced. Representative
techniques to handle imbalanced datasets include sampling methods, ensemble algorithms,
and cost-sensitive approaches.

Re-sampling the original dataset is a strategy for balancing the majority and minority
classes at the data level. This type of method constructs a well-balanced training set by
over-sampling the minority class or under-sampling the majority class during the pre-
processing step. Following that, any learning algorithm might be trained on the new
dataset to reduce the system’s bias towards the majority classes. A typical example of
sampling models is SMOTE [14]. To shift the learning bias toward the minority class, it
generates synthetic samples depending on their nearest neighbors. Numerous extensions
using various distance measures or selection criteria of seed samples are proposed based on
the regular SMOTE algorithm. Among them, representative methods include the borderline
SMOTE [41], the safe-level SMOTE [42], and the density-based SMOTE [43].

Remote Sens. 2022, 14, 4479 6 of 25

The methods of over-sampling and under-sampling are not limited to any modeling
algorithm, which could be essentially regarded as data pre-processing processes. Ensemble
classifiers and cost-sensitive approaches, which are algorithm-specific, could also be used
to address data imbalance concerns as algorithm-level enhancement. The former type of
method includes diverse hybrid sampling/boosting algorithms, such as SMOTEBoost [44],
random under-sampling boost (RUSB) [45], and the balance cascade approach [46]. Besides
the boosting algorithms, other ensemble methods such as balanced random forest [47] can
also be applied for imbalanced datasets. Cost-sensitive approaches, which penalize the
misclassification of the minority more severely, have also been reported to be effective in
addressing the problem of class imbalance. Two popular examples of them are AdaCost [48]
and weighted random forest [47].

2.3. Connections to Our Work

The focus of this study is to investigate solutions for semi-supervised GRL and graph
node classification on imbalanced multi-label graphs. The most closely related works can
be found in the emerging area of imbalanced graph node classification [5,17,49]. Among
these works, the dual-regularized graph convolutional network (DR-GCN) [5] model relies
on a class-conditioned adversarial training process to facilitate the separation of labeled
nodes and the identification of minority class nodes. GraphSMOTE [17] attempts to transfer
the classical SMOTE method [14], which deals with imbalanced data, to graph data. In
addition, the relaxed GCN network (RECT) [49] has reported the best performance on
imbalanced graph node classification tasks, and its core idea is based on the design and
optimization of a class-semantic-related objective function. Unlike GraphSMOTE, which
is based on labeled minority generation, we present the first graph node over-sampling
model that utilizes synthetic unlabeled nodes to inhibit the tendency of GNNs to overfit
to majority under the topological effect. The new supervision information resulting from
labeled synthetics and the blocking of over-propagated majority features by unlabeled
synthetics facilitates balanced learning between different classes, taking advantage of the
strong topological interdependence between nodes on a graph. We specify the details of
the proposed model in the next section.

3. Methodology
3.1. System Overview

An illustration of the proposed framework SORAG is shown in Figure 3. SORAG is
composed of four components: (1) the first part is in charge of determining the global minority
degree (GMD) and local minority degree (LMD) of each node and constructing training data
(i.e., seed examples) for the virtual node generator; (2) the second part, the node generator, is
an ensemble of a GAN [25] network and a CGAN [27] network, where the GAN is responsible
for creating unlabeled nodes and the CGAN is used for generating labeled nodes; (3) the third
component is an edge generator. Its job is to create virtual edges between the synthetic and
real nodes so that the generated nodes can participate in the message passing on the graph
more effectively; (4) finally, a GCN-based node classifier is designed for learning the node
representations of the augmented graph as well as the inter-label dependencies for multi-label
node classification. We elaborate on each component as follows.

Remote Sens. 2022, 14, 4479 7 of 25

Figure 3. Overview of the SORAG framework. First, based on the feature matrix and the adjacency
matrix of the input graph, we calculate the local minority degree (LMD) value of each node in the
training set and classify it into one of the four types: safe (SF), borderline (BD), rare (RR), and outlier
(OT). After that, we calculate the seed probability (SP) values of nodes in the SF and BD classes and
select the seed nodes based on such values (see Section 3.2). Then, we use the seed nodes to train the
node generator (i.e., the ensemble of GAN and CGAN) to generate high-quality unlabeled synthetic
nodes and labeled synthetic nodes. Notice that by adjusting the objective function, we can flexibly
manipulate the data distribution simulated by the node generator (see Section 3.3). With virtual
nodes, an edge generator, which is essentially a feed-forward neural network, is used to generate
virtual edges connecting the virtual nodes and the real nodes. The role of the generated edges is to
facilitate feature propagation between two types of nodes (see Section 3.4). Finally, the new graph
containing virtual nodes and virtual edges is fed into a GCN that learns the discriminative graph
embeddings and performs effective node classification. During this process, the label correlation
matrix provides helpful label correlation and interaction information (see Section 3.5).

3.2. Imbalance Measurement

In multi-label learning, a commonly used measure that evaluates the global imbalance
of a particular label is IRLbl. Let |Ci| be the number of instances whose i-th label value is 1;
IRLbl is then defined as follows:

IRLblj =
max{|c1|, |c2|, . . . , |cm|}

ci
. (1)

Therefore, the larger the value of IRLbl for a label, the more minority class it is. For a
node vi, its GMD is defined as follows:

GMDi =
IRLblj · [Bij = 1]

∑m
j=1 [Bij = 1]

, (2)

where [Bij = 1] means vi has the j-th label, and ∑m
j=1 [Bij = 1] counts the number of labels

that vi has.
The LMD of a node can be measured by the proportion of opposite class values in its

local neighborhood. For vi, let Nk
i denote its k-hop neighbor nodes. Then, for label cj, the

proportion of neighbors having an opposite class to the class of vi is computed as

Sij =
∑vm∈Nk

i
[Bij 6= Bmj]

|Nk
i |

, (3)

Remote Sens. 2022, 14, 4479 8 of 25

where S ∈ Rn×m is a matrix defined to store the local imbalance of all nodes for each label.
Given S, a straightforward way to compute the LMD for vi is to average its Sij for all labels
as follows:

LMDi =
∑m

j=1 Sij[Bij = gj]

m
, (4)

where gj ∈ {0, 1} denotes the minority class of the j-th label. Namely, if |cj| ≥ 0.5 · n, gj = 1;
otherwise, gj = 0. Here, n is the total number of vertices. Further, we group the global
minority nodes into different types based on the LMD, and each type is identified correctly
by the classifier with different difficulties. Following [50,51], we discretize the range [0, 1]
of LMDi to define four types of nodes, namely safe (SF), borderline (BD), rare (RR), and
outlier (OT), according to their local imbalance:

• SF: 0 ≤ LMDi < 0.3. Safe nodes are basically surrounded by nodes containing
similar labels.

• BD: 0.3 ≤ LMDi < 0.7. Borderline nodes are located in the decision boundary between
different classes.

• RR: 0.7 ≤ LMDi < 1.0. Rare nodes are located in a region overwhelmed by different
nodes and are distant from the decision boundary.

• OT: LMDi = 1.0. Outliers are totally connected to different nodes.

Based on the above categories, we are confident about generating new virtual samples
for the global minority samples belonging to SF by imitating their features and labels to
balance the distorted class distribution. The global minority samples belonging to BD are
located in the decision boundary; hence, it is challenging to determine the label for virtual
samples similar to them. Therefore, we keep the new samples unlabeled and use them to
weaken the over-propagation of majority class features by taking advantage of the feature
smoothing mechanism on the graph. The global minority samples belonging to RR/OT are
more likely to be outliers and should not be selected as seeds to generate new samples.

Furthermore, for vi, we define two metrics: labeled seed probability (LSP) and unla-
beled seed probability (USP) to describe the probability of being selected as a seed example
to generate labeled synthetic nodes and unlabeled synthetic nodes, respectively. The seed
probabilities (LSP/USP) are calculated as follows:

SPi = GMDi · LMDi =

{
LSPi, if vi ∈ SF
USPi, if vi ∈ BD

(5)

We compute the LSP and USP scores for all nodes and sort them in descending order.
The top-ranked nodes (controlled by the hyper-parameter seed example rate ρ) will be
selected as seed examples. A min-max normalization processes all the GMD and LMD
scores to improve the computation stability.

3.3. Node Generator

We denote the joint distribution of node feature x and label y in the SF region as
PSF(x, y), the marginal distribution of y as PSF(y), and the marginal distribution of x in
the BD region as PBD(x). Generator Gl is expected to generate labeled instances in the SF
region, while generator Gu should output unlabeled synthetics in the BD region. Let the
data distribution produced by Gl and Gu be denoted as Pl(x, y) and Pu(x), respectively;
then, we expect PBD(x) ≈ Pu(x) and PSF(x, y) ≈ Pl(x, y). Furthermore, a more flexible goal
is to have PBD(x) ≈ α · Pu(x) + (1− α) · Pl(x), PSF(x, y) ≈ β · Pl(x, y) + (1− β) · Pu(x, y),
α ≈ 1, β ≈ 1. α and β are parameters used to control Gl and Gu to produce various data
distributions to fit the original data. Here, Pu(x, y) is the joint distribution of Pu(x) and
PSF(y), and Pl(x) is the marginal distribution of Pl(x, y).

To achieve the above goal, we propose a node generator, which is essentially an
ensemble of a GAN [25] and a CGAN [27]. The GAN is responsible for generating unlabeled
synthetic nodes, whose generator and discriminator are, respectively, denoted as Gu and
Du. The CGAN is used for generating labeled synthetic instances, where its generator and

Remote Sens. 2022, 14, 4479 9 of 25

discriminator are denoted as Gl and Dl , respectively. Our loss function for training the
GAN is

min
Gu

max
Du
LGAN = Ex∼PBD(x)logDu(x) + α ·Ex∼Pu(x)log(1− Du(x)) (6)

For the CGAN, our objective is given as

min
Gl

max
Dl
LcGAN = E(x,y)∼PSF(x,y)logDl(x, y) + β ·E(x,y)∼Pl(x,y)log(1− Dl(x, y)) (7)

To achieve flexible control over Gl and Gu, we design the following loss function based
on the interaction between the GAN and CGAN:

min
Gu ,Gl

max
Du ,Dl

LGAN−cGAN = (1− α) ·Ex∼Pl(x)log(1− Du(x))

+ (1− β) ·E(x,y)∼Pu(x,y)log(1− Dl(x, y))
(8)

Combining these equations, our final loss for node generation Lnode is

Lnode = min
Gu ,Gl

max
Du ,Dl

LGAN + LcGAN + LGAN−cGAN (9)

For our proposed generator, the following theoretical analysis is performed.

Proposition 1. For any fixed Gu and Gl , the optimal discriminator Du and Dl of the game defined
by Lnode is

D∗u(x) =
PBD(x)

PBD(x) + Pα(x)
, D∗l (x, y) =

PSF(x, y)
PSF(x, y) + Pβ(x, y)

(10)

where Pα(x) = α · Pu(x) + (1− α) · Pl(x), and Pβ(x, y) = β · Pl(x, y) + (1− β) · Pu(x, y).

Proof. We have

Lnode =
∫

x
PBD(x)logDu(x)dx +

∫
x,y

PSF(x, y)logDl(x, y)dxdy

+ α ·
∫

x
Pu(x)log(1− Du(x))dx + β ·

∫
x,y

Pl(x, y)log(1− Dl(x, y))dxdy

+ (1− α) ·
∫

x
Pl(x)log(1− Du(x))dx + (1− β) ·

∫
x,y

Pu(x, y)log(1− Dl(x, y))dxdy

=
∫

x
PBD(x)logDu(x) + Pα(x) · log(1− Du(x))dx

+
∫

x,y
PSF(x, y)logDl(x, y) + Pβ(x, y) · log(1− Dl(x, y))dxdy

(11)

For any (a, b) ∈ R2\{0, 0}, the function f (y) = alogy + blog(1 − y) achieves its
maximum in [0, 1] at a

a+b . This concludes the proof.

Proposition 2. The equilibrium of Lnode is achieved if and only if PBD(x) = Pα(x) and
PSF(x, y) = Pβ(x, y) with D∗u(x) = D∗l (x, y) = 1

2 , and the optimal value of Lnode is −4log2.

Proof. When Du(x) = D∗u(x), Dl(x, y) = D∗l (x, y), we have

Remote Sens. 2022, 14, 4479 10 of 25

Lnode =
∫

x
PBD(x)log

PBD(x)
PBD(x) + Pα(x)

dx +
∫

x,y
PSF(x, y)log

PSF(x, y)
PSF(x, y) + Pβ(x, y)

dxdy

+
∫

x
Pα(x)log

Pα(x)
PBD(x) + Pα(x)

dx +
∫

x,y
Pβ(x, y)log

Pβ(x, y)
PSF(x, y) + Pβ(x, y)

dxdy

= −4log2 + 2 · JSD(PBD(x)||Pα(x)) + 2 · JSD(PSF(x, y)||Pβ(x, y))

≥ −4log2

(12)

where the optimal value is achieved when the two Jensen–Shannon divergences are equal
to 0, namely, PBD(x) = Pα(x), and PSF(x, y) = Pβ(x, y). When α = β = 1, we have
PBD(x) = Pu(x), PSF(x, y) = Pl(x, y).

In the implementation, both Gu and Gl are designed as a three-layer feed-forward
neural network. In contrast, Du and Dl are designed with a relatively weaker structure: a
one-layer feed-forward neural network for facilitating the training.

3.4. Edge Generator

The edge generator described in this section is responsible for estimating the relation
between virtual nodes and real nodes, which facilitates feature propagation, feature ex-
traction, and node classification. Such edge generators will be trained on real nodes and
existing edges. Following a previous work [17], the inter-node relation is embodied in the
weighted inner product of node features. Specifically, for two nodes vi and vj, let Eij denote
the probability of the existence of an edge between them, which is computed as

Eij = σ(xi ·Wedge · xT
j) (13)

where xi and xj are the feature vectors of vi and vj, respectively. Wedge ∈ Rk×k is the weight
parameter matrix to be learned, and σ = Sigmoid(). Then, the extended adjacency matrix
A′ is defined as follows:

A′ij =
{

Aij, if vi and vj are real nodes
Eij, if vi or vj is synthetic node

(14)

Compared to A, A′ contains new information about virtual nodes and edges, which
will be sent to the node classifier in Section 3.5. As the edge generator is expected to be
partially trained based on the final node classifier (see Section 3.6), the predicted edges
should be set as continuous so that the gradient can be calculated and propagated from
the node classifier. Thus, Eij is not discretized to some value in {0,1}. The edge generator
should be capable of accurately predicting real edges to generate realistic virtual nodes.
Then, the pre-trained loss function for training the edge generator is

Ledge = ‖E− A‖2 (15)

where E refers to predicted edges between real nodes.

3.5. Node Classifier

We now obtain an augmented balanced graph G′ = {V′, A′, X′, B′}, where V′ consists
of both real nodes and synthetic labeled and unlabeled nodes; further, A′, X′, and B′ denote
the edge, feature, and label information of the enlarged vertex set, respectively. A classic
two-layer GCN structure [12] is adopted for node classification, given its high accuracy
and efficiency. Its first and second layers are denoted as L1 and L2, respectively, and their
corresponding outputs {O1, O2} are

O1 = ReLU(D̃−
1
2 Ã′D̃−

1
2 X′W1) (16)

Remote Sens. 2022, 14, 4479 11 of 25

O2 = σ(FD̃−
1
2 Ã′D̃−

1
2 O1W2) (17)

where Ã′ = A′+ I, I is an identity matrix of the same size as A′. D̃ is a diagonal matrix, and
D̃ii = ∑j Ã′ ij. D̃−

1
2 Ã′D̃−

1
2 is the normalized adjacency matrix. Further, W1 and W2 are the

learnable parameters in the first and second layers, respectively. ReLU and σ are the respec-
tive activation functions of the first and the second layer, where ReLU(Z)i = max(0, Zi),
σ(Z)i = Sigmoid(Z)i =

1
1+exp(−Zi)

. O2 is the posterior probability of the class to which the
node belongs. F is the label correlation matrix that is computed in the same way as in [5],
which provides helpful label correlation and interaction information.

In Equations (16) and (17), the role of D̃−
1
2 Ã′D̃−

1
2 , or the normalized adjacency matrix,

is to enrich the feature vector of a node by linearly adding all feature vectors of its neighbors.
This is because the basic assumption of a GCN is that neighboring nodes (and thus those
having similar neighbors) are more likely to belong to the same class. The role of W1,
W2 is to transform the feature dimension of the nodes, making sparse high-dimensional
node features dense at low dimensions. In addition, Equations (16) and (17) can also be
equivalently described as the process by which the input signal (i.e., node feature X′) is
filtered through a graph Fourier transform in the graph spectral domain [32]; however, in
this study, we consider the spatial domain.

Eventually, given the training labels Btrain, we minimize the following cross-entropy
error to learn the classifier, where p is the number of training samples, m is the size of the
label set, and nc stands for node classifier. By minimizing Lnc, we can learn the parameters
of the GCN such that it predicts the posterior probability of the class to which the unlabeled
node belongs.

Lnc = −
p

∑
i=1

m

∑
j=1

Btrain
ij lnO2

ij (18)

3.6. Optimization Objective

Based on the above content, the final objective function of our framework is given as

min
Θ,Φ,Ψ

Lnc + λ · Lnode + µ · Ledge (19)

where Θ, Φ, and Ψ are the sets of parameters for the synthetic node generator (Section 3.3), edge
generator (Section 3.4), and node classifier (Section 3.5), respectively. λ and µ in Equation (19)
are weight parameters. The best training strategy in our experiments is to first pre-train the
node generator and the edge generator and then minimize Equation (19) to train the node
classifier and fine-tune the node generator and edge generator at the same time. Our entire
framework is easy to implement, general, and flexible. Different structural choices can be
adopted for each component, and different regularization terms can be enforced to provide
prior knowledge.

3.7. Training Algorithm

Algorithm 1 illustrates the proposed framework. SORAG is trained through the
following components: (1) the selection of seed examples based on node LSP and USP
scores; (2) the pre-training of the node generator (i.e., the ensemble of GAN and CGAN) for
synthetic data generation; (3) the pre-training of the edge generator to produce new relation
information; and finally, (4) the training of the node classifier on top of the over-sampled
graph and the fine-tuning of the node generator and edge generator. The computational
complexity of our model is approximately the sum of the computational complexity of the
contained GAN, CGAN, and GCN.

Remote Sens. 2022, 14, 4479 12 of 25

Algorithm 1 Full Training Algorithm

Inputs: Graph data: G = {V, A, X, L, B}
Outputs: Network parameters, node representations, and predicted node class

1: Initialize the node generator, edge generator, and node classifier
2: Compute the node LSP and USP scores based on Equation (5)
3: Select the fraction of nodes with the highest LSP and USP scores as seed examples for

Dl and Du, respectively
4: while Not Converged do . Pre-train the node generator
5: Update Dl by ascending along its gradient based on Lnode (Equation (9))
6: Update Gl by descending along its gradient based on Lnode
7: Update Du by ascending along its gradient based on Lnode
8: Update Gu by descending along its gradient based on Lnode
9: end while

10: while Not Converged do . Pre-train the edge generator
11: Update the edge generator by descending along its gradient based on Ledge

(Equation (15))
12: end while
13: Construct the label–occurrence network and extract label correlations [5]
14: while Not Converged do. Train the node classifier and pre-train the other components
15: Generate new unlabeled nodes using Gu
16: Generate new labeled nodes using Gl
17: Generate the new adjacency matrix A′ using the edge generator
18: Update the full model based on Lnc + λ · Lnode + µ · Ledge (Equation (19))
19: end while
20: Predict the test set labels with the trained model

4. Experimental Settings
4.1. Datasets

We use three popular multi-label networks: BLOGCATALOG3, FLICKR, and YOUTUBE

as benchmark datasets. In Table 1, we list the statistical information of all datasets used,
including the number of nodes, number of edges, number of node classes, and the tuned
optimal value of key parameters of SORAGF: {learning rate, weight decay, dropout rate, k
(Section 3.2), ρ (Section 3.2), α (Section 3.3), β (Section 3.3), λ (Section 3.6), µ (Section 3.6)}
(see the detailed parameter tuning discussion in Section 5.5). For each dataset, we assume
that a majority class is one with more samples than the average class size, while a minority
class is one with less samples. Below is a brief description of each dataset used.

• BLOGCATALOG3 [6] is the dataset crawled in July 2009 from BlogCatalog, which is
a social blog directory website. This contains the friendship network crawled. The
labels represent the topic categories provided by the authors, such as Education, Food,
and Health. This network contains 10,312 nodes, 333,983 edges, and 39 labels. The
edge type is undirected.

• FLICKR [6] is a crawl of the Flickr photo-sharing social network. Nodes are users, and
edges represent that a user added another user to their list of contacts. The labels
represent the interest groups of the users, such as black and white photos. This network
contains 80,513 nodes, 5,899,882 edges, and 195 labels. The edge type is undirected.

• YOUTUBE [7] is a video-sharing website that includes a social network. The dataset
contains a list of all the user-to-user links. The labels represent groups of viewers
that enjoy common video genres such as anime and wrestling. This network contains
1,138,499 nodes, 2,990,443 edges, and 47 labels. The edge type is undirected.

For all datasets, we attribute each node with a 64-dim embedding vector obtained
by performing dimensionality reduction on the adjacency matrix using PCA [52], similar
to [5,17]. All of the above datasets are available at http://zhang18f.myweb.cs.uwindsor.ca/
datasets/ (accessed on 25 June 2022).

http://zhang18f.myweb.cs.uwindsor.ca/datasets/
http://zhang18f.myweb.cs.uwindsor.ca/datasets/

Remote Sens. 2022, 14, 4479 13 of 25

Table 1. Dataset statistics.

Dataset BLOGCATALOG3 FLICKR YOUTUBE

Nodes 10,312 333,983 39
Edges 80,513 5,899,882 195
Classes 1,138,499 2,990,443 47
learning rate 0.05 0.01 0.1
weight decay 5× 10−4 10−4 10−3

dropout rate 0.5 0.5 0.9
k 2 2 2
ρ 0.5 0.5 0.5
α 0.9 0.5 0.8
β 0.8 0.9 0.8
λ 0.1 1 1
µ 1 1 1

4.2. Analyzed Methods

To validate the performance of our approach, we compared it with several state-of-the-
art and representative methods for multilabel graph learning and imbalanced graph learn-
ing, including GCN [12], ML-GCN [5], SMOTE [14], GraphSMOTE [17], and RECT [49].
The analyzed baseline methods are briefly introduced as follows:

• GCN [12] is a representative GNN structure that can naturally learn node repre-
sentations from node features and network structures, where each node forms its
representation by adopting a spectral-based convolutional filter to aggregate features
recursively from all its neighborhood nodes.

• GCN + under-sampling [15]. For the GCN, we tested its combination with one
conventional imbalanced learning technique: under-sampling, which reduces the
degree of imbalance in the training set by under-sampling the majority class samples.
This method is denoted as GCNUS.

• GCN + threshold-moving [15]. We also tested the combination of GCN with another
imbalanced learning technique: threshold-moving, which moves the classification
decision boundary to increase the classifier’s preference for the minority class. This
method is denoted as GCNTM.

• ML-GCN [5] is a state-of-the-art multi-label graph learning approach. It considers a
two-layer graph structure that allows the preservation of label correlations and enables
the label-correlation enhanced node representation learning.

• SMOTE [14] is the most representative over-sampling technique, which generates syn-
thetic minority samples by interpolating a minority sample and its nearest neighbors
of the same class. Synthetic nodes are set to have the same edges as their seed node
when applying it on the graph. Node representations are then learned by GCN [12].

• GraphSMOTE [17] is the state-of-the-art approach for the imbalanced node classifica-
tion task, which is an adaption of SMOTE on graph data.

• RECT [49] is also an imbalanced graph learning method. It merges a GNN and
proximity-based embeddings for the imbalanced setting and utilizes imbalanced
labels by deducing the class-semantic descriptions for minority classes.

In addition, three variants of the proposed method were implemented:

• SORAGF: The full model. The synthetic nodes include both unlabeled and la-
beled types;

• SORAGL: Only labeled nodes are generated;
• SORAGU : Only unlabeled nodes are generated.

It is necessary to mention that all the baselines above, except ML-GCN (which
is intrinsically designed as a multi-label classifier), are manually set to conduct multi-
label node classification by modifying the last layer of their network structure. The im-
plementation of the baseline approach relies on publicly released code from relevant

Remote Sens. 2022, 14, 4479 14 of 25

sources (SMOTE: https://github.com/analyticalmindsltd/smote_variants (accessed on
25 June 2022), GraphSmote: https://github.com/TianxiangZhao/GraphSmote (accessed
on 25 June 2022), RECT: https://github.com/zhengwang100/RECT (accessed on 25 June
2022), GCN: https://github.com/tkipf/pygcn) (accessed on 25 June 2022).

4.3. Evaluation Metrics

Following many previous studies in the field of multi-label GRL [5,30,31], we adopt
Micro-F1 and Macro-F1 to evaluate the node classification performance, which are defined
as follows:

Micro− F1 =
∑m

i=1 2 · TPi

∑m
i=1(2 · TPi + FPi + FNi)

(20)

Macro− F1 =
1
m

m

∑
i=1

2 · TPi

2 · TPi + FPi + FNi (21)

where TPi, FPi, and FNi represent the number of true positives, false positives, and false
negatives for the i-th label, respectively. m denotes the total number of labels. Micro-F1
measures the F1-score of the aggregated contributions of all the classes. Macro-F1 was defined
as the arithmetic mean of the label-wise F1-scores. Compared to Micro-F1, Macro-F1 does not
consider the class size. Micro-F1 and Macro-F1 combine the precision and recall of the model,
the range of which is [0, 1]. The larger the value, the stronger is the model performance.

4.4. Training Configurations

Following the semi-supervised learning setting, we randomly sampled a portion of the
labeled nodes (i.e., sampling ratio) of each dataset and used them for evaluation. Then, we
randomly split the sampled nodes into 60%/20%/20% for training, validation, and testing.
As in [30], the sampling ratios for the BLOGCATALOG3, FLICKR, and YOUTUBE networks
were set to 10%, 1%, and 1%, respectively. To balance the class size, we experimented with
different amounts of synthetic unlabeled nodes and synthetic labeled nodes (i.e., different
oversampling rates); finally, they were set as those in Section 5.3. All the analyzed models
were trained using the Adam optimizer [53] in PyTorch (2020.2.1, community edition) [54].
Each result is presented as the mean of ten replicated experiments. All models were trained
until they converged with a typical number of training epochs of 200.

5. Experimental Results
5.1. Imbalanced Multi-Label Classification Performance

Tables 2 and 3 show the performance of all the methods in terms of Micro-F1 and
Macro-F1. The results are presented as the mean of ten repeated experiments. Based on
these results, we reached the following conclusions:

• When compared with the GCN and ML-GCN methods, which do not consider class
distribution, the three variants of SORAG show significant improvements. For ex-
ample, compared with ML-GCN, the improvement brought by SORAGF is 7.4%,
4.2%, and 5.2% in terms of Micro-F1 and 9.6%, 5.3%, and 9.1% in terms of Macro-F1,
respectively. This demonstrates that our proposed data over-sampling strategy effec-
tively enhances the classification performance of GNNs on imbalanced multi-label
graph data.

• SORAG provides many more benefits than when applying the previous imbalanced
graph node classifier (SMOTE, GraphSMOTE, RECT). On average, it outperforms
earlier methods by 3.3%, 3.0%, and 1.1% in terms of Micro-F1 and 2.5%, 2.9%, and 4.5%
in terms of Macro-F1, respectively. This result validates the advantage of SORAG
over previous over-sampling techniques in combining the generation of minority and
unlabeled samples.

• Both minority over-sampling and unlabeled data over-sampling can improve the
classification performance. In particular, the former is more effective. A combination

https://github.com/analyticalmindsltd/smote_variants
https://github.com/TianxiangZhao/GraphSmote
https://github.com/zhengwang100/RECT
https://github.com/tkipf/pygcn

Remote Sens. 2022, 14, 4479 15 of 25

of the two strategies works the best. As supporting evidence, SORAGF is the best
performer in 5/6 tasks and the second-best performer in the remaining task.

Table 2. Imbalanced multi-label classification comparison in terms of Micro-F1. The first and second
best results are boldfaced and underscored, respectively.

Metrics Micro-F1 (%)

Methods\Datasets BLOGCATALOG3 FLICKR YOUTUBE

GCN 37.36 34.03 36.19

GCNUS 39.42 36.53 37.85

GCNTM 38.50 34.13 38.25

ML-GCN 37.51 38.91 37.64

SMOTE 40.24 39.30 39.01

GraphSMOTE 42.82 40.01 43.70

RECT 41.72 41.23 42.66

SORAGL 44.58 41.61 41.98

SORAGU 43.21 37.92 40.83

SORAGF 44.89 43.13 42.86

Table 3. Imbalanced multi-label classification comparison in terms of Macro-F1. The first and second
best results are boldfaced and underscored, respectively.

Metrics Macro-F1 (%)

Methods\Datasets BLOGCATALOG3 FLICKR YOUTUBE

GCN 30.27 21.17 26.53

GCNUS 30.28 23.05 27.69

GCNTM 30.32 21.72 26.59

ML-GCN 30.39 21.56 27.52

SMOTE 30.65 23.08 28.53

GraphSMOTE 35.58 24.25 33.81

RECT 38.66 24.47 33.94

SORAGL 38.45 26.48 35.01

SORAGU 37.28 26.15 32.53

SORAGF 40.01 26.85 36.57

5.2. Influence of Training Data

Similar to [30], we increased the sampling ratio of the BLOGCATALOG3 network from
10% to 90% to observe the performance of SORAG on larger training sets. Because the
FLICKR and YOUTUBE networks are considerably larger, we varied the sampling ratio
from 1% to 10%, which is also consistent with [30]. We also tested the performance of the
state-of-the-art method, GraphSMOTE, for comparison.

Figure 4 shows the Micro-F1 and Macro-F1 of each analyzed model with respect to the
sampling ratio on each dataset. It can be observed that with an increase in the training data,
SORAGF exhibits the most stable and promising performance, whereas the performances
of SORAGL and SORAGU fluctuate considerably under different test conditions. This
finding supports our argument that the most effective oversampling strategy for multi-label
graphs is to conjoin the generation of both unlabeled data and labeled data flexibly. It
is also worth mentioning that GraphSMOTE shows competitive performance, especially
on the YOUTUBE dataset. On average, compared with GraphSMOTE, the improvements

Remote Sens. 2022, 14, 4479 16 of 25

brought by SORAGF are 3.9% (BLOGCATALOG3), 6.4% (FLICKR), and 0.4% (YOUTUBE) in
terms of Micro-F1 and 6.2% (BLOGCATALOG3), −0.1% (FLICKR), and 1.4% (YOUTUBE) in
terms of Macro-F1, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Performance of selected methods with reference to sampling ratio: (a) BLOGCATALOG3,
MICRO-F1; (b) BLOGCATALOG3, MACRO-F1; (c) FLICKR, MICRO-F1; (d) FLICKR, MACRO-F1;
(e) YOUTUBE, MICRO-F1; (f) YOUTUBE, MACRO-F1.

5.3. Influence of Over-Sampling Rate

In this section, we explore how the performance of SORAG varies with the oversam-
pling rate. We varied the number of synthetic unlabeled nodes and the number of synthetic
labeled nodes in [10%, 20%, . . . , 90%, 100%] of the size of the training set on each dataset
and recorded the performance change in SORAG as follows (see Figure 5). The sampling
ratios for the BLOGCATALOG3, FLICKR, and YOUTUBE networks were set to 10%, 1%, and
1%, respectively, and all the parameters were the same as those in Section 5.2.

Remote Sens. 2022, 14, 4479 17 of 25

(a) (b)

(c) (d)

(e) (f)

Figure 5. Influence of over-sampling rate on the model performance for each dataset: (a) BLOG-
CATALOG3, UNLABELED NODE GENERATION; (b) BLOGCATALOG3, LABELED NODE GENERATION;
(c) FLICKR, UNLABELED NODE GENERATION; (d) FLICKR, LABELED NODE GENERATION; (e) YOUTUBE,
UNLABELED NODE GENERATION; (f) YOUTUBE, LABELED NODE GENERATION.

One clear observation is that the performance of SORAG fluctuates wildly with
changes in the oversampling rate on all datasets. Unlike non-graph data, SORAG generates
new edges for new samples during which more random noise is introduced. Therefore, as
the over-sampling rate varies, the features of the virtual nodes affect the formation of the
virtual edges. As a result, there is substantial variation in the feature propagation process
on the new graph, which highly influences the classification results. This may explain
the high sensitivity of SORAG to the oversampling rate. Below, in Table 4, we show the
selected optimal over-sampling rates for all datasets.

Remote Sens. 2022, 14, 4479 18 of 25

Table 4. Optimal over-sampling rates for the synthetic unlabeled nodes (denoted as RateU) and
synthetic labeled nodes (denoted as RateL) on each dataset. N/A abbreviates for “not applicable”.

BLOGCATALOG3 FLICKR YOUTUBE

RateU RateL RateU RateL RateU RateL

SORAGU 0.9 N/A 0.6 N/A 0.7 N/A

SORAGL N/A 0.1 N/A 0.3 N/A 0.6

SORAGF 0.1 0.9 0.2 0.9 0.2 0.4

5.4. Influence of Imbalance Ratio

This section discusses how the performance of the analyzed models varies as the
imbalance of the training set changes. Similar to [5,17,49], we varied the percentage of global
minority samples removed in [10%, 20, . . . , 80%, 90%] on each dataset, according to the
GMD ranking (see Section 3.2). The more samples were removed, the more imbalanced the
training set became. The sampling ratios for the BLOGCATALOG3, FLICKR, and YOUTUBE

networks were set to 10%, 1%, and 1%, respectively. The oversampling rates were set
as presented in Table 4. All the parameters were the same as those in Section 5.2. The
performance variation of each method is as follows (Figure 6). For comparison, we also
report the performance of the state-of-the-art approach GraphSMOTE.

(a) (b)

(c) (d)

Figure 6. Cont.

Remote Sens. 2022, 14, 4479 19 of 25

(e) (f)

Figure 6. Influence of imbalance ratio: (a) BLOGCATALOG3, MICRO-F1; (b) BLOGCATALOG3,
MACRO-F1; (c) FLICKR, MICRO-F1; (d) FLICKR, MACRO-F1; (e) YOUTUBE, MICRO-F1; (f) YOUTUBE,
MACRO-F1.

Figure 6 demonstrates the strong robustness of SORAG in a variety of scenarios. As
the imbalance ratio increases, the performance of SORAG is maintained at a high level. It
can be observed that SORAG outperformed GraphSMOTE in nearly all comparisons. In
particular, SORAGF was the best method. It achieved the best performance in 15 out of
30 test scenarios in terms of Micro-F1 and in 17 out of 30 test scenarios in terms of Macro-F1.
In contrast, GraphSMOTE performed best only on the YOUTUBE network.

5.5. Parameter Tuning

For the validation set for each dataset, we used a grid search to tune the parameters in
the following order: learning rate (range of {0.001, 0.005, 0.01, 0.05, 0.1})→ weight decay
(range of {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3 })→ dropout rate (range of {0.1–0.9}, step
size 0.1)→ k (range of {1, 2, 3})→ ρ (range of {0.1–0.9}, step size 0.1)→ α (range of {0.1–0.9},
step size 0.1)→ β (range of {0.1–0.9}, step size 0.1)→ λ (range of {0.1, 0.5, 1, 5, 10})→ µ
(range of {0.1, 0.5, 1, 5, 10}). Among these, the last six parameters are specific to the SORAG
family. When tuning the parameters, the sampling ratios for the BLOGCATALOG3, FLICKR,
and YOUTUBE networks were set to 10%, 1%, and 1%, respectively.

Figure 7 shows the variation in the performance of SORAGF on the validation set of
each dataset as the values of key parameters change. We first note that for the three generic
parameters—learning rate, weight decay, and dropout rate—their values have a significant
effect on classification performance and thus should be determined carefully. For k, ρ,
and µ, we observed that their optimal values were consistent for all three datasets. The
experimental results suggest that the best local minority of the nodes should be computed
based on their two-hop neighbors (i.e., k = 2). We assume that this is because the one-hop
information will lead to the omission of valid neighbors, while the three-hop information
will introduce the noise of irrelevant nodes. Moreover, for the objective function, Ledge
has the same weight as Lnc, which indicates that the generation of virtual edges is of
considerable importance. On the two larger datasets (FLICKR and YOUTUBE), the synthesis
of virtual nodes and virtual edges are demonstrated to have equal weights, whereas the
construction of virtual nodes has a smaller weight on the BLOGCATALOG3 network.

By contrast, the optimal values of α and β are close to 1 under almost all conditions
(the only exception is that α = 0.5 for FLICKR). This observation verifies our expectation
that PBD(x) ≈ Pu(x) and PSF(x, y) ≈ Pl(x, y). By introducing these two parameters, we
can regulate the distribution of the synthetic nodes in a more flexible manner.

Remote Sens. 2022, 14, 4479 20 of 25

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. The effect of key parameters on the performance of SORAGF for each dataset: (a) learning
rate; (b) weight decay; (c) dropout rate; (d) k; (e) ρ; (f) α; (g) β; (h) λ; (i) µ.

5.6. Validation of Key Procedures in Training SORAG

In this section, we answer the following research question: Do pre-training and
fine-tuning the network components (i.e., two node generators and one edge generator)
improve the model performance (see Algorithm 1)? For all datasets, we tested the following
variants: {A, only pre-training the unlabeled node generator without fine-tuning; B, only
pre-training the labeled node generator without fine-tuning; C, only pre-training the edge
generator without fine-tuning; D, training the unlabeled node generator jointly with other
components without pre-training; E, only training the labeled node generator jointly with
other components without pre-training; F, only training the edge generator jointly with
other components without pre-training; and G, the full model}. Naturally, {G-A, G-B, G-C}
describe the effects of fine-tuning each focused component on performance, whereas {G-D,
G-E, G-F} describe the performance difference between pre-training each component and
non-pre-training. The results are presented in Table 5. The test method used was SORAGF,
and all the experimental settings and parameters were the same as those in Section 5.2.

Remote Sens. 2022, 14, 4479 21 of 25

Table 5. Performance comparisons of SORAGF with different training procedures.

BLOGCATALOG3 FLICKR YOUTUBE

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

G-A 11.8% 3.8% 3.7% 0.4% 4.3% 2.1%

G-B 3.5% −1.8% 10.4% 1.5% 1.2% 6.4%

G-C 1.4% 0.0% 11.6% 1.5% 5.5% 4.3%

G-D 2.3% 2.9% 11.5% 0.2% 6.1% 4.3%

G-E 0.0% 0.0% 8.2% 0.2% 4.6% 4.3%

G-F 2.3% 2.9% 9.3% 1.0% 2.4% 2.1%

As presented in Table 5, we found that for all datasets, pre-training SORAGF improved
Micro-F1. Macro-F1 was also improved in most cases, with the exception of pre-training
the labeled generator on the BLOGCATALOG3 dataset, which slightly reduced Macro-F1.
The average Micro-F1 and Macro-F1 improvements were 5.9.

Therefore, we concluded that training strategy G, which combined pre-training and
fine-tuning of key components, was the best practice.

5.7. Case Study: Performance of SORAG on a Geographic Knowledge Graph

In this section, we exhibit the performance of SORAG on a standard geographic
knowledge graph named US-AIRPORT as an example of the application of our approach
in the field of remote sensing, as geographic knowledge graphs are reported to play an
increasing role in the computation, analysis, and visualization of large-scale remote sensing
data [55]. US-AIRPORT is the dataset used in struc2vec [8] (https://pytorch-geometric.
readthedocs.io/en/latest/modules/datasets.html (accessed on 25 June 2022)), where nodes
denote airports and labels correspond to activity levels. One-hot encodings were used as
features. We randomly selected 20% of all nodes as the test set and 80% as the training set.
Additionally, the average results from 10 separate experiments were used. Table 6 shows
the performance of the analyzed methods in terms of Micro-F1 and Macro-F1. As shown,
the performance gain from the state-of-the-art method GraphSMOTE towards SORAGF is
considerable, which demonstrates our data over-sampling strategy is able to weaken the
drawbacks of the imbalanced node distribution.

Table 6. Comparison in terms of Micro-F1 and Macro-F1 on US-AIRPORT. The best results are boldfaced.

GCN SMOTE GraphSMOTE SORAGL SORAGU SORAGF

Micro-F1
(%) 22.69 56.44 59.46 60.57 60.21 62.63

Macro-F1
(%) 9.25 52.60 56.41 59.52 58.83 60.10

5.8. Synthetic Node Visualization

To analyze the synthetic nodes generated by SORAGF and how they differ from the real
nodes more intuitively, we projected the feature vectors of both the real and virtual nodes
generated by SORAGF for all datasets into two dimensions, as illustrated in Figures 8–10. For
the dimensional-reduction method, we used t-SNE [56].

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

Remote Sens. 2022, 14, 4479 22 of 25

Figure 8. A t-SNE visualization of synthetic and real node features of the BLOGCATALOG3 dataset
obtained from SORAGF. The node colors denote the labels.

Figure 9. A t-SNE visualization of synthetic and real node features of the FLICKR dataset obtained
from SORAGF. The node colors denote the labels.

Remote Sens. 2022, 14, 4479 23 of 25

Figure 10. A t-SNE visualization of synthetic and real node features of the YOUTUBE dataset obtained
from SORAGF. The node colors denote the labels.

6. Conclusions

This study investigates a new research problem: imbalanced multilabel graph node
classification. In contrast to existing over-sampling algorithms, which generate only new
minority instances to balance the class distribution, we propose a novel data generation
strategy called SORAG, which conjoins the synthesis of labeled instances in minority
class centers and unlabeled instances in minority class borders. The new supervision
information brought about by the labeled synthetics and the blocking of overpropagated
majority features by the unlabeled synthetics facilitates balanced learning between different
classes, taking advantage of the strong topological interdependence between nodes on
a graph.

We conducted extensive comparative studies to evaluate the proposed framework on
diverse, naturally imbalanced multilabel networks. The experimental results demonstrated
the high effectiveness and robustness of SORAG in handling imbalanced data. In the
future, we will develop GNN models that are more adapted to the nature of real-world
networks (e.g., scale-free and small-world features).

Author Contributions: Methodology/system implementation/experiments/original draft prepara-
tion: Y.D.; Supervision: X.L., A.J., H.-t.Y., S.L., K.-S.K. and A.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This paper is based on results obtained from a project, JPNP20006, commissioned by
the New Energy and Industrial Technology Development Organization (NEDO). We would also
like to acknowledge partial support from JSPS Grant-in-Aid for Scientific Research (Grant Number
21K12042).

Data Availability Statement: The datasets used in this study are available at http://zhang18f.myweb.
cs.uwindsor.ca/datasets/ (accessed on 25 June 2022).

Acknowledgments: We would like to thank the reviewers for the time and effort necessary to review
the manuscript. We sincerely appreciate all the valuable comments and suggestions, which helped us
improve the quality of the manuscript. This manuscript is an extension of the authors’ earlier work,
which is to be presented at the 2022 European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD 2022).

http://zhang18f.myweb.cs.uwindsor.ca/datasets/
http://zhang18f.myweb.cs.uwindsor.ca/datasets/

Remote Sens. 2022, 14, 4479 24 of 25

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GRL Graph representation learning
GNN Graph neural network
GCN Graph convolutional network
GAN Generative adversarial network
CGAN Conditional generative adversarial network
SMOTE Synthetic minority over-sampling technique
SORAG Synthetic data over-sampling strategy on graph

References
1. Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. Network representation learning: A survey. IEEE Trans. Big Data 2018, 6, 3–28.
2. Jalal, A.; Kamal, S.; Kim, D. A depth video sensor-based life-logging human activity recognition system for elderly care in smart

indoor environments. Sensors 2014, 14, 11735–11759. [PubMed]
3. Ren, H.; Xu, G. Human action recognition in smart classroom. In Proceedings of the Fifth IEEE International Conference on

Automatic Face Gesture Recognition, Washinton, DC, USA, 21 May 2002; pp. 417–422.
4. Puwein, J.; Ballan, L.; Ziegler, R.; Pollefeys, M. Joint camera pose estimation and 3d human pose estimation in a multi-camera

setup. In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; pp. 473–487.
5. Shi, M.; Tang, Y.; Zhu, X.; Liu, J. Multi-label graph convolutional network representation learning. IEEE Trans. Big Data 2020,

1169–1181. [CrossRef]
6. Tang, L.; Liu, H. Relational learning via latent social dimensions. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 817–826.
7. Tang, L.; Liu, H. Scalable learning of collective behavior based on sparse social dimensions. In Proceedings of the 18th ACM

Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009; pp. 1107–1116.
8. Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. struc2vec: Learning node representations from structural identity. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August
2017; pp. 385–394.

9. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2008, 20, 61–80.

10. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.

11. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
12. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
13. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
14. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357.
15. Zhou, Z.H.; Liu, X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans.

Knowl. Data Eng. 2005, 18, 63–77.
16. Zhou, Z.H.; Liu, X.Y. On multi-class cost-sensitive learning. Comput. Intell. 2010, 26, 232–257.
17. Zhao, T.; Zhang, X.; Wang, S. Graphsmote: Imbalanced node classification on graphs with graph neural networks. In Proceedings

of the 14th ACM International Conference on Web Search and Data Mining, Virtual, 8–12 March 2021; pp. 833–841.
18. Elkan, C. The foundations of cost-sensitive learning. In International Joint Conference on Artificial Intelligence; Lawrence Erlbaum

Associates Ltd.: Seattle, WA, USA, 2001; Volume 17, pp. 973–978.
19. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Cost-sensitive learning. In Learning from Imbalanced Data

Sets; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–78.
20. Domingos, P. Metacost: A general method for making classifiers cost-sensitive. In Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 155–164.
21. Sheng, V.S.; Ling, C.X. Thresholding for making classifiers cost-sensitive. In AAAI; AAAI Press: Boston, MA, USA, 2006;

Volume 6, pp. 476–481.
22. Lomax, S.; Vadera, S. A survey of cost-sensitive decision tree induction algorithms. ACM Comput. Surv. CSUR 2013, 45, 1–35.

[CrossRef]
23. Morik, K.; Brockhausen, P.; Joachims, T. Combining Statistical Learning with a Knowledge-Based Approach: A Case Study in

Intensive Care Monitoring. In ICML; ACM Press: Bled, Slovenia, 1999; pp. 268–277. [CrossRef]
24. More, A. Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv 2016,

arXiv:1608.06048.

http://www.ncbi.nlm.nih.gov/pubmed/24991942
http://doi.org/10.1109/TBDATA.2020.3019478
http://dx.doi.org/10.1145/2431211.2431215
http://dx.doi.org/10.5555/645528.657612

Remote Sens. 2022, 14, 4479 25 of 25

25. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [CrossRef]

26. Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling Tabular data using Conditional GAN. Adv. NIPS 2019,
659, 7335–7345.

27. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
28. Balasubramanian, M.; Schwartz, E.L. The isomap algorithm and topological stability. Science 2002, 295, 7. [CrossRef]
29. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
30. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
31. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the

24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.
32. Ma, Y.T. Deep Learning on Graphs; Cambridge University Press: Cambridge, UK, 2021.
33. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013,

arXiv:1312.6203.
34. Simonovsky, M.; Komodakis, N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3693–3702.
35. Monti, F.; Bronstein, M.M.; Bresson, X. Geometric matrix completion with recurrent multi-graph neural networks. arXiv 2017,

arXiv:1704.06803.
36. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv 2015, arXiv:1511.05493.
37. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of

the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1263–1272.
38. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering.

Adv. Neural Inf. Process. Syst. 2016, 29, 3844–3852.
39. Spitzer, F. Principles of Random Walk; Springer Science & Business Media: New York, NY, USA, 2013; Volume 34.
40. Shen, X.; Pan, S.; Liu, W.; Ong, Y.S.; Sun, Q.S. Discrete network embedding. In Proceedings of the 27th International Joint

Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3549–3555.
41. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In

Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887.
42. Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. Safe-level-smote: Safe-level-synthetic minority over-sampling technique

for handling the class imbalanced problem. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Bangkok, Thailand, 27–30 April 2009; pp. 475–482.

43. Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. DBSMOTE: Density-based synthetic minority over-sampling technique.
Appl. Intell. 2012, 36, 664–684. [CrossRef]

44. Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K.W. SMOTEBoost: Improving prediction of the minority class in boosting. In
Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-Dubrovnik, Croatia,
22–26 September 2003; pp. 107–119.

45. Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE
Trans. Syst. Man Cybern. Part A Syst. Hum. 2009, 40, 185–197. [CrossRef]

46. Liu, X.Y.; Wu, J.; Zhou, Z.H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B
Cybern. 2008, 39, 539–550.

47. Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn Imbalanced Data; University of California: Berkeley, CA, USA, 2004;
Volume 110, p. 24.

48. Fan, W.; Stolfo, S.J.; Zhang, J.; Chan, P.K. AdaCost: Misclassification cost-sensitive boosting. In ICML; Citeseer: Bled, Slovenia,
1999; Volume 99, pp. 97–105.

49. Wang, Z.; Ye, X.; Wang, C.; Cui, J.; Yu, P. Network embedding with completely-imbalanced labels. IEEE Trans. Knowl. Data Eng.
2020, 33, 3634–3647. [CrossRef]

50. Napierala, K.; Stefanowski, J. Types of minority class examples and their influence on learning classifiers from imbalanced data.
J. Intell. Inf. Syst. 2016, 46, 563–597. [CrossRef]

51. Liu, B.; Blekas, K.; Tsoumakas, G. Multi-label sampling based on local label imbalance. Pattern Recognit. 2022, 122, 108294.
[CrossRef]

52. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,
2, 559–572. [CrossRef]

53. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
54. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.
55. Wang, Z.; Yang, X.; Zhou, C. Geographic knowledge graph for remote sensing big data. J. Geo-Inf. Sci. 2021, 23, 13. [CrossRef]
56. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

http://dx.doi.org/10.5555/2969033.2969125
http://dx.doi.org/10.1126/science.295.5552.7a
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1007/s10489-011-0287-y
http://dx.doi.org/10.1109/TSMCA.2009.2029559
http://dx.doi.org/10.1109/TKDE.2020.2971490
http://dx.doi.org/10.1007/s10844-015-0368-1
http://dx.doi.org/10.1016/j.patcog.2021.108294
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1016/j.ins.2021.04.001

	Introduction
	Related Works
	Graph Representation Learning
	Imbalanced Learning
	Connections to Our Work

	Methodology
	System Overview
	Imbalance Measurement
	Node Generator
	Edge Generator
	Node Classifier
	Optimization Objective
	Training Algorithm

	Experimental Settings
	Datasets
	Analyzed Methods
	Evaluation Metrics
	Training Configurations

	Experimental Results
	Imbalanced Multi-Label Classification Performance
	Influence of Training Data
	Influence of Over-Sampling Rate
	Influence of Imbalance Ratio
	Parameter Tuning
	Validation of Key Procedures in Training SORAG
	Case Study: Performance of SORAG on a Geographic Knowledge Graph
	Synthetic Node Visualization

	Conclusions
	References

