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Abstract: A forest fire susceptibility map generated with the fire susceptibility model is the basis of
fire prevention resource allocation. A more reliable susceptibility map helps improve the effectiveness
of resource allocation. Thus, further improving the prediction accuracy is always the goal of fire
susceptibility modeling. This paper developed a forest fire susceptibility model based on an ensemble
learning method, namely light gradient boosting machine (LightGBM), to produce an accurate fire
susceptibility map. In the modeling, a subtropical national forest park in the Jiangsu province of
China was used as the case study area. We collected and selected eight variables from the fire
occurrence driving factors for modeling based on correlation analysis. These variables are from
topographic factors, climatic factors, human activity factors, and vegetation factors. For comparative
analysis, another two popular modeling methods, namely logistic regression (LR) and random forest
(RF) were also applied to construct the fire susceptibility models. The results show that temperature
was the main driving factor of fire in the area. In the produced fire susceptibility map, the extremely
high and high susceptibility areas that were classified by LR, RF, and LightGBM were 5.82%, 18.61%,
and 19%, respectively. The F1-score of the LightGBM model is higher than the LR and RF models.
The accuracy of the model of LightGBM, RF, and LR is 88.8%, 84.8%, and 82.6%, respectively. The
area under the curve (AUC) of them is 0.935, 0.918, and 0.868, respectively. The introduced ensemble
learning method shows better ability on performance evaluation metrics.

Keywords: machine learning; fire factors; prediction; fire susceptibility map

1. Introduction

Forests are essential for maintaining ecosystem balance. However, as one of the main
threats to forests, fires destroy the environment and cause huge economic losses. Although
the number of fires has shown a downward trend, the overall number is still high [1–3].
In order to reduce the loss caused by fire, various fire detection technologies, such as
fire patrol, satellite and ground sensing networks have been used [4,5]. More ambitious
researchers have tried to develop more practical and accurate fire models for mapping the
fire susceptibility zone of a local area [6,7].

Forest fire susceptibility presents the likelihood of a fire occurring in a particular
region, which is usually affected by different driving factors [8]. Analyzing and selecting
the driving factors that cause forest fires is necessary for determining fire susceptibility [9].
Currently, the topography, climate, human activity, and vegetation factors are the four
recognized categories in the susceptibility modeling [10,11].

Nowadays, developing fire models and mapping forest fire zones appear to be the
first choices in fire management [12,13]. In recent decades, some traditional methods,
such as expert-knowledge-based methods [14], multicriteria decision analysis [15], and
analytic hierarchy process [16] have been used in the development of fire models. However,
when the number of fire influencing factors is excessive, it needs to construct the large
judgment matrix with many elements, and the weight of fire influencing factors is difficult
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to determine in the expert-knowledge based model [13]. At the same time, it is difficult
to judge the importance of fire-influencing factors and even lead to rank reversal [13].
Sometimes, there are some inconsistencies in the analytical system process since the set of
criteria is not fixed ex ante, and the importance of each fire influencing factor is obtained
through a questionnaire survey of decision-makers. For these reasons, it is likely that
traditional methods are no longer appropriate for some cases involving uncertain situations
such as forest fires [17]. Thus, it is imperative that more reliable and effective techniques
are developed for modeling forest fires.

Machine learning can learn and efficiently derive the relative critical attribute of
different fire datasets [18] which is more reliable and faster than humans, especially when
different fires are involved [19]. Recently, machine learning methods such as support vector
machines [20], neural networks [21], kernel logistic regression benchmark classifiers [22,23],
and hybrid artificial method [24] are prevalent in the study of fire prediction models.

Among them, random forest (RF) and logistic regression (LR) models are classical
machine learning models that are effective in modeling forest fire susceptibility, which is
the reason for their widespread use [9,25,26]. However, for the case of a larger number of
decision trees in RF, the space and time involved in training are comparatively higher [27].
LR is not good at handling the problems of nonlinearity and data imbalance [28]. Although
it is difficult to determine which modeling method or technique should be used to construct
the fire susceptibility model in a selected region, providing high prediction accuracy is the
primary concern of such studies. Previous studies have indicated that machine learning
methods can provide accurate results in most cases [29].

In order to provide more options for developing more accurate forest fire predic-
tion, this paper proposed an ensemble learning method, namely light gradient boosting
machine (LightGBM), to model forest fire susceptibility. To the best of our knowledge,
there is currently no exploration of forest fire susceptibility modeling using this methodol-
ogy [30]. In order to validate its performance, the well-recognized RF and LR modeling
methods were also used for constructing the fire susceptibility model for the purpose of
comparative analysis. The introduced ensemble learning method shows a better ability
on performance evaluation metrics, such as classification accuracy and AUC. This paper
extends the application of LightGBM to the prediction of fire susceptibility.

2. Materials and Methods

The modeling of the introduced ensemble learning method is based on the real dataset
of subtropical national forest park areas from 2013 to 2017. For validation and comparative
analysis, the LR and RF were also applied to construct the models under the same modeling
characteristics. Figure 1 presents the general workflow from data input to obtain the fire
susceptibility map.

2.1. Study Area

A subtropical national forest park area, namely mountain Laoshan, was used as the
case study area, which is located in the Jiangsu province of China (Figure 2). This is an
evergreen and deciduous broad-leaved mixed forest. The region has a variety of ecological
resources. It starts from the eastern Pukou high-tech zone; the south is close to the Yangtze
River; the north is close to the Chu River; and the west end is located in Hexian County,
Anhui Province. It covers an area of approximately 80 km2 and ranges in altitude from
4.5 m to 414.7 m, where forests cover up to 80%. The Laoshan mountain range extends in
a southwest to northeast direction. The subtropical monsoon climate of Laoshan is very
mild and humid throughout the year, where annual precipitation reaches 1000 mm and the
average annual temperature is 15.3 ◦C.
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Figure 1. The general workflow shows the interaction from data input to the produced fire suscepti-
bility map.

Figure 2. The study area.

2.2. Fire-Influencing Factors

Topography is considered to be one of the essential fire factors, because topography
affects water flow and heat transfer in local areas, indirectly affects vegetation growth, as
well as limits human activities [31].

Altitude could result in different environmental conditions in terms of vegetation
growth, humidity, and temperature [32,33]. Consequently, the probability of the occurrence
of a fire may vary with altitude. In this area, altitude is not high enough to consider the
effects of atmospheric oxygen levels. The aspect of facing the sun means lower humidity,
and consequently, increases the dryness of combustible materials [34]. Fire spread is more
likely to spread uphill due to convection [35] and more heat transfer through conduction;
depending on slope steepness, there are more opportunities for direct flame contact with
fuels [36]. The Topographic Wetness Index (TWI) indicates the spatial distribution of
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soil moisture in watersheds [37]. The higher the TWI, the higher the soil moisture [38].
Consequently, this influences fire occurrence and spread. Slope, aspect, and altitude affect
water evaporation. Fires may travel quickly on upward slopes but slower in areas with
downward slopes [39].

Vegetation growth distribution, coverage, and the context of the vegetation canopy
could influence the fuel of the fire [40]. The vegetation distribution situation is reflected
using an index known as normalized difference vegetation index (NDVI) [41,42].

Climate not only affects forest fires but also changes the combustion conditions of
vegetation [43]. To consider the features of forest fires, climatic factors such as temperature
are also used [44,45]. The temperature affects the flammability of the vegetation. The
higher the temperature, the stronger the evaporation effect, the lower the water content
of the vegetation [46] and the lower the amount of heat needed to bring fuels to ignition
(pyrolysis) [47]. Thus, temperature (TMP) is correlated with the wetting and drying of
combustible materials, which to some extent reflects the fire proneness rate [48].

Along the road or near human settlements, careless human activity, such as the
cigarette ends dropped, may trigger accidental fires [49]. Therefore, fire factors should take
into account human activity factors, such as the distance to roads (DTR), and distance to
populated areas (DTP) [15,31,50].

The fire factors that we collected and used in this research are shown in Table 1. The
dataset is comprised of NDVI, TWI, TMP, altitude, aspect, slope, DTR, and DTP. There,
altitude, slope, aspect, TWI, DTR, and DTP are derived from DEM data. The climate
dataset of the fire season can be obtained from the geospatial data cloud. The TMP and
NDVI are extracted from Landsat-8 satellite data of fire season between 2013 and 2017.
We use the temperature inversion method to extract the TMP, and the TMP used in the
modeling is averaged. NDVI is calculated using the formula: NDVI = (NIR − R)/(NIR + R)
based on near-infrared reflectance (NIR) and red reflectance (R). The spatial distribution of
fires was derived from the moderate resolution imaging spectrometer (MODIS). A total
of 454 historical fire points recorded during the period 2013–2017 were extracted and
randomly divided into two parts for modeling. Among them, 318 (70%) fire points were for
training the model. The others were for validating. The spatial distribution of the factors in
the area is demonstrated in Figure 3. The resolution of all the elements is 30 × 30 m.

(a) (b)

(c) (d)
Figure 3. Cont.
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(e) (f)

(g) (h)
Figure 3. The spatial distribution of fire-influencing factors: (a) slope; (b) aspect; (c) altitude; (d) TWI;
(e) NDVI; (f) TMP; (g) distance to roads; and (h) distance to populated areas.

Table 1. Classification of the forest fire influencing factors.

Clusters Factors Description
Data Range

Min Max

Topographic factors

Slope(◦) Slope = arctan(elevation difference/horizontal distance). 0.00 36.12
Aspect(◦) The direction of the projection of slope normals on the horizontal. 0.00 360.00
TWI TWI is related to catchment areas and surrounding slope gradient. −8.05 5.30
Altitude(m) The vertical distance above sea level at a location on the ground. 4.50 414.70

Vegetation factors NDVI NDVI = (NIR − R)/(NIR + R). −0.09 0.55
Climatic factors TMP(◦C) Average temperature for the time period. 21.16 47.18

Human activity factors DTR(m) The distance to the nearest roads. 0.00 3482.33
DTP(m) The distance to the nearest populated areas. 400.00 5000.00

2.3. LightGBM-Based Modeling

While the scale of forest fire data collected has become more extensive, traversing
all the sample data with traditional adaptive boosting models (such as XGBoost, pGBRT,
etc.) is increasingly facing challenges in terms of efficiency. LightGBM is a newly adaptive
boosting model [51] that is a distributed and effective method of tackling the challenges that
need to be considered in traditional adaptive boosting models, including small memory,
computational complexities, and time. It can address classification or regression tasks with
the constructed decision tree based on the gradient boosting framework. The main steps of
the modeling are as follows:

• Gradient-based one-side sampling (GOSS). Firstly, the first a × 100% of the samples
sorted by the absolute values of the gradients in descending order are large gradient
samples, and the last (1 − a) × 100% are called small-gradient samples, where a is the
scale threshold. The small gradient samples are randomly sampled with a sampling
ratio of b × 100% to obtain the smaller sample dataset;

• Split data horizontally, and different workers own part of the data. Then, the number
of features is decreased using the exclusive feature bundling (EFB) algorithm;
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• Using the histogram algorithm to decrease the time complexity of traversing the
sample. Discretize the continuous floating point feature values into K integers, and
construct a histogram of width K. K integers are used as an index to accumulate
statistics in the histogram when traversing the data. After accumulating statistics in
the histogram once, the discretized values of the histogram are traversed to search the
optimal splitting point;

• Voting parallelism. Filter the local optimal features based on voting and then merge
them into the global optimal features;

• Build a local histogram for selected features on each work; then, build the global his-
togram for selected features and calculate the global optimal partition (global aggregate);

• Train the model and set the parameter max_depth to 7 to prevent overfitting. Then,
the value of AUC is used as an evaluation metric and the optimal model is obtained
by 5-fold cross-validation.

We integrated the spatiotemporal information of fire occurrence driving factors,
namely topographic factors, climatic factors, human activity factors, and vegetation factors
in the LightGBM model, and then developed a LightGBM-based fire susceptibility model
in this study. The model performance and spatial prediction ability are obtained by the
training and validation of the collected historical fire data. The decision tree is constructed
based on the gradient boosting framework. Firstly, it reduces the amount of data and
features based on GOSS and EFB algorithms. Secondly, the optimal partition is derived
through the voting mechanism. Then, the value of AUC is used as an evaluation metric
and the optimal model is obtained by k-fold cross validation. The model diagram is shown
in Figure 4.

Feature evaluation

using scatter matrix and 

Spearman’s rank correla

tion coefficient

Training set

GIS database

(eight fire influencing factors)

GOSS

K-fold cross-validation

max_depth = 7

Best_AUC

value_auc

Final training model

Satisfied

Validation set

(1) - Preparation

(2) - Training phase

Forest fire 

prediction result

(4) - Forest fire susceptibility map             

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Local optimal 

features

Local optimal  

features

Local optimal  

features

Global optimal 

features

Global optimal 

features

Global optimal 

features

Worker 1

Worker 2
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Voting parallelism
Local histogram for 

selected features
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selected features
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(3) - Quality measurement

(F1-score, AUC, ACC)

EFB

Figure 4. LightGBM model diagram.
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3. Results
3.1. Variable Correlation Analysis

It is necessary to analyze the distribution of each feature (attribute, dimension) and
the relationship between them when modeling. Figure 5 shows the correlation between
the variables with a scatter plot matrix. It can be seen that altitude is negatively correlated
with both temperature and TWI. This is consistent with the general knowledge that the
higher the altitude, the lower the average temperature and humidity. There is a positive
correlation between altitude and NDVI. Because within a specific height range, the higher
the altitude, the less human activities, and the more lush the vegetation. The south-
facing slopes can influence vegetation type and density as well as soil moisture, as it is
warmer and drier [52,53]. However, in this area, the altitude is not high enough, and the
difference in warm and dryness between the north- and south-facing aspects is not obvious.
Consequently, the vegetation type and density difference are not obvious, and there is no
significant correlation between aspect and NDVI. This is consistent with the equation of
TWI calculation where the larger the slope, the smaller the TWI.

Figure 5. Scatter plot of forest fire influencing factors.

It is necessary to calculate the value of the correlation coefficient before the modeling,
so that we know how strong the relationship is between the independent and dependent
variables. Spearman’s rank correlation coefficient is using to analyze the correlation of
eight forest fire-influencing factors with fire points [54]. The formula for calculating the
value of the correlation coefficient between the variables is shown in Equation (1) [55]:

ρ =
1
n ∑n

i=1(R(xi)− R(x)) · (R(yi)− R(y))√
( 1

n ∑n
i=1(R(xi)− R(x))2) · ( 1

n ∑n
i=1(R(yi)− R(y))2)

(1)

where R(xi) and R(yi) are the digits of x and y, respectively; R(x) and R(y) denote the
mean rank.

The outcomes of Spearman’s rank correlation coefficient are given in Table 2. When
the P-value is below 0.05, it indicates that there are correlations between the variables. It
can be seen that the P values of the eight influencing variables are all less than 0.01 (Table 2),
indicating that they are related and thus there is no need to exclude any factors in this
analysis. Among them, the highest relationship is TMP (0.486), followed by NDVI (0.370),
altitude (0.331), and slope (0.298). Aspect (0.044), DTR (0.045), and DTP (0.008) have weaker
predictive power. The out of bag (oob) error is the number of wrongly classifying the oob
sample. The minimum oob error implies the smallest prediction error rate for out-of-bag
samples. The importance of variables is derived from the minimum oob error (Figure 6).
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It can be seen that TMP has a more significant effect on fire ignition than others. The
importance rankings of the forest fire-influencing factors are shown in Figure 6.

Table 2. The relationship between the independent variables and dependent variables.

Factors Spearman’s Rank
Correlation Coefficient p Values

Altitude 0.331 <0.01
Aspect 0.044 <0.01

TWI 0.195 <0.01
TMP 0.486 <0.01
Slope 0.298 <0.01
NDVI 0.370 <0.01
DTR 0.045 <0.01
DTP 0.008 <0.01

Figure 6. The importance of forest fire-influencing factors.

3.2. Performance Comparative Analysis

Table 3 shows the performance of three models in training and validation stages. The
F1-score (Equation (2)) of the LightGBM model is higher than LR and RF models. This
indicates that the discrepancy between LightGBM predicted data and validation data is
small. With the training dataset, the classification accuracy (ACC) of the RF, LR, and
LightGBM is 82.61%, 84.81%, and 88.83%, respectively. In contrast, their accuracy is 75.12%,
76.52%, 81.81% in the validation dataset. Under the same conditions, LightGBM model is
more accurate.

F1-score =
2 · precision · recall
precision + recall

(2)

where precision represents the number of fires correctly detected divided by the total
number of fires detected by the model; recall represents the number of fires correctly
detected by the model divided by the actual number of fires, that is, the detection rate; and
the F1-score represents the harmonic mean between precision and recall [56].

The receiver operating characteristic (ROC) curve is shown in Figure 7. The area under
curve (AUC) of the LightGBM model is the 0.935. The AUC of the RF and LR model is
0.918 and 0.868, respectively. The LightGBM model shows the potential ability to predict
the forest fire susceptibility. This also indicates that ensemble learning is more suitable
than non-ensemble learning when developing applications such as forest fire analysis in
this area.
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Table 3. Performance of the three models.

Stage Evaluation
Metrics RF LR LightGBM

Training F1-score 0.76 0.68 0.85
ACC(%) 82.61 84.81 88.83

Validation F1-score 0.63 0.61 0.78
ACC(%) 75.12 76.52 81.81

Figure 7. The ROC curves of the three models.

Figure 8 shows the generated fire susceptibility maps of the three models, where the
fire susceptibility are classified into five levels: extremely low, low, moderate, high, and
extremely high. The proportion of the area of different fire susceptibility levels over the
total area with three models are counted, respectively, where the percentages of extremely
high and high susceptibility levels that were classified by LR, RF, and LightGBM, could be
derived, which were 5.82%, 18.61%, and 19%, respectively. The areas predicted as high fire
susceptibility by RF and LightGBM are larger than that predicted by LR under the same
factor conditions. Overall, the maps generated by the three models are similar under the
same modeling factors and conditions (Figure 8). In addition, areas of high susceptibility
are gathered in the surrounding area, partly concentrated at the junction of the two sidehills
at the lower left.
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(a) (b)

(c)
Figure 8. Forest fire susceptibility maps. (a) LR; (b) RF; and (c) LightGBM.

4. Discussions
4.1. Fire-Influencing Factors and Fire Susceptibility Prediction

A forest fire susceptibility map plays an important role in fire susceptibility man-
agement and fire resource allocation [57]. The results show that natural factors, such as
topography, vegetation, etc., are fire-influencing factors. Human activity is also strongly
associated with fire occurrence. Based on topographic factors, climatic factors, vegetation
factors, and human activity factors, this paper proposes the LightGBM-based model-
ing method. The reasons for recommending the LightGBM model can be summarized
as follows:

• Faster model training efficiency [58] and lower memory usage [59];
• Support single-computer multi-threading, multi-computer parallel computing, and

GPU training [51]; capable of handling large-scale data [60];
• Many machine learning algorithms do not directly support category features, the

LightGBM model does [60].

In different environments, the fire-influencing factors and the corresponding weights
of each factor are different [61]. Therefore, it is very difficult to design a fire susceptibility
prediction model with universal applicability [62]. Previous studies have shown that
although fire susceptibility prediction models are not universally applicable, the feature
importance evaluation method of fire-influencing factors is widely applicable [63]. This
paper evaluates the importance of fire influencing factors and applies LightGBM to fire
susceptibility prediction.

Based on the study area, four categories of fire influencing factors were selected and
extracted from public data: topography (altitude, slope, aspect, and TWI), vegetation
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(NDVI), climate (TMP), and human activity (DTP, DTR). These fire-influencing factors are
widely used in current fire susceptibility predictions and are considered to be effective
factors [11,64].

This paper models fire-influencing factors using the LightGBM method, which is
a new adaptive boosting model [51]. We integrated the spatiotemporal information of
fire and fire occurrence driving factors into the LightGBM model, and then developed a
LightGBM-based fire susceptibility model. This model addresses classification tasks with
the constructed decision tree based on the gradient boosting framework. The comparative
analysis results indicate that ensemble learning performs better than non-ensemble learning
in developing applications, such as forest fire analysis.

4.2. The Influence of Factors on the Fire Susceptibility Model

Topographic factors are often used in fire susceptibility prediction models [22]. TWI,
altitude, aspect, and slope were used as topography-related fire influencing factors in this
paper. The correlation coefficient of altitude is 0.331, which is the third of all factors. In
higher altitudes, the soil moisture and temperature are lower. Although soil moisture is
lower at higher altitudes due to the downward movement of water, the lower temperatures
result in a higher amount of heat needed to bring fuels to ignition. In higher altitudes, less
human activity also makes human-made fires less likely. In the study area, the slope is
small, so there is little variation in soil moisture. Thus, the high altitude area has lower
temperature and less human activity [65], which makes the high altitude area of the region
significantly less susceptible to fire occurrence than the low-altitude area [66].

From the extracted fire points, we can see that the vast majority of fires in the region
are located in low-slope areas, which have gentler topography [67]. When a fire occurs, it
can spread in all directions without obvious directionality. As can be seen in Table 2, slope
has an obvious impact on the occurrence of fire with a correlation coefficient of 0.298.

The correlation coefficient of TWI is 0.195. The likelihood of fire occurrence is low
in areas with a high moisture content [68]. In areas with less surface water, the moisture
content of surface vegetation is low. Consequently, it increases the likelihood of fire
occurrence [69]. The aspect also affects the likelihood of fire occurrence. The sunny areas
will have a higher temperature than the shaded areas, thus increasing the likelihood of fire
occurrence [70]. As the majority of the study area is oriented north–south, with relatively
small areas facing the sun, aspect has less influence on fires with a correlation coefficient
of 0.044.

Factors, such as TWI, aspect, and altitude directly or indirectly affect the temperature.
High temperature can rapidly evaporate the moisture content of surface vegetation, and
even cause droughts in this region [71], so that the likelihood of fire occurrence increases [72].
The historical fire events show that the vast majority of fires occur in the summer and
autumn [73,74]. In this paper, the subtropical monsoon climate makes the climate of
Laoshan very mild and the average temperature is 15.3 ◦C throughout the year. Examining
Figure 3, it can be seen that there is a large number of areas with a temperature exceeding
25 ◦C. This means that the region is generally hot and prone to fires. The correlation
coefficient of temperature is up to 0.486, which corresponds to the actual situation in
this region.

Vegetation is considered the provider of fuel for fire occurrence and spread [75,76].
Vegetation is widespread, and types of them varied in different areas. Different vegetation
distribution, vegetation type and vegetation moisture content also imply the different
likelihood of fire occurrence [77–79]. Although such vegetation parameters are helpful in
performing more accurate modeling, NDVI is widely considered an effective index [80]. In
this area, the vegetation is densely distributed. Moreover, the higher temperature makes
the moisture content of the vegetation relatively lower, making the relatively drier area
more fire-prone. As a result, the derived correlation coefficient of 0.370 of the vegetation
factor is reasonable.
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In areas close to roads, large numbers of vehicles, pedestrians, accidents, littered
cigarette butts, etc., can start a fire [17,81]. However, areas near popular locations for
people to gather also have the likelihood of fire occurrence [82]. In this area, the impact of
human activity along roads on fires higher than that in people gather area. As a result, the
correlation coefficients of DTR are larger than DTP.

4.3. Results and Application Analysis

Forest fire prediction plays an integral role in forest management [83]. Developing a high
accurate fire prediction model is challenging [84]. As seen in Table 3 and Figure 7, LightGBM
obtained a classification accuracy of 88.83% on the training set and 81.81% on the validation
set with an AUC of 0.935. The LightGBM proposed in this paper is better in forest fire
prediction modeling compared to LR and RF. In this paper, the dataset is randomly divided
into training and validation sets in the ratio of 7:3, which is the way widely used in related
works [84–87]. In future work, we would consider other ways of dividing the dataset (a
ratio of 8:2).

For forest fire managers, such an accurate model is helpful in the timely detection
of fires. The fire patrol can start a new route with the fire susceptibility map, thereby
decreasing the time to patrol and probably saving in cost during the patrol, especially
if there is a heavy task in the area. Recently, we have witnessed a growing interest in
wireless sensor networks [88]. With the susceptibility map, a cost-effective means of
deploying sensor nodes can be provided, where the different densities of fire sensor nodes
are deployed according to the fire susceptibility level.

In the meantime, the timely detection of fires is a priority. Although increasing human
patrol is currently an effective method of detecting fire in time, with the advancement
of technology, drones become an increasingly practical tool [89]. Drones are expected to
replace human patrol in the future in a cost-effective way. The fire susceptibility map
provides a reference for planning drone paths, meanwhile, reducing human costs and
increasing efficiency.

5. Conclusions

Forest fire prevention is a long-term process that requires unremitting efforts in the de-
velopment of reliable fire susceptibility prediction methods so as to provide accurate results
for fire managers. The main contributions of this paper can be summarized as follows:

• We developed a forest fire susceptibility model based on an ensemble learning method
to produce an accurate fire susceptibility map for Nanjing Laoshan National For-
est Park;

• The correlation coefficient between fire-influencing factors are calculated based on
Spearman correlation, to determine whether there are correlations between the factors
in the study area;

• The result of the importance ranking of forest fire-influencing factors indicates that
TMP and NDVI are two significant factors, which can be used as a reference for fire
management department;

• The introduced ensemble learning method shows a better ability on performance
evaluation metrics, such as classification accuracy and AUC. To validate its perfor-
mance, we applied another two widely used modeling methods to establish the forest
fire susceptibility models for comparative analysis. The accuracy of LightGBM in
training data and validation data are 88.83% and 81.81%, respectively. The results are
higher than LR and RF. The result of the AUC also reveals that LightGBM has better
performance. These show that the introduced ensemble learning method is better than
the compared methods in terms of the accuracy and AUC value. This paper extends
the application of LightGBM to the prediction of fire susceptibility.

Overall, the maps generated by the three models are similar under the same modeling
conditions. The likelihood of fire occurrence over a perimeter and the junction of the two
sidehills in the area is worrisome. This should be of great concern when making wildfire
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prevention strategies across this area. Moreover, local fire management officials can use fire
susceptibility maps to reasonably allocate firefighting resources and facilities (such as fire
towers and patrols paths).
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