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Abstract: The multiple-input multiple-output (MIMO) radar imaging technology has attracted many
scholars due to its many inherent advantages, such as avoiding complex motion compensation and
imaging a quickly maneuvering target, compared to inverse synthetic aperture radar (ISAR) imaging.
Although some imaging algorithms, such as the 2D fast iterative shrinkage thresholding algorithm
(2D-FISTA), can meet the demand for super-resolution, they are not directly suited to MIMO radar
imaging, for which the MIMO manifold needs to be considered. In this paper, based on the above
questions, we propose the MIMO radar imaging algorithm, utilizing the sparsity of the scattering
map in space and the MIMO array manifold, even achieving a good performance in the presence of
MIMO channel error. The sparse reconstruction algorithm is developed with the alternative direction
method of multipliers (ADMM) with the help of 2D-FISTA and the lp-norm. Then, two algorithms
are derived: one is the exact sparse recovery algorithm, and the other is the inexact sparse recovery
algorithm. Although the exact sparse recovery algorithm can converge to a more accurate precision
than the inexact algorithm, the latter can converge at a faster speed. Finally, the results on simulation
data validated the effectiveness of the algorithm.

Keywords: alternative direction method of multipliers (ADMM); multiple-input multiple-output
(MIMO) radar; lp-norm; low-rank matrix completion; Schatten p-norm

1. Introduction

The inverse synthetic aperture radar (ISAR) technology is an important method to
estimate the distribution of moving targets in space, which utilizes the signal bandwidth
and the coherent accumulation time to improve the range resolution and the cross-range
resolution [1–3]. Interferometric ISAR (InISAR) can achieve three-dimensional (3D) imaging
now, but complex image registration, motion compensation, and other algorithms need
to be considered seriously in practice [4]. Compared to the imaging technology based
on relative motion, real aperture radar imaging can achieve fast imaging, avoid complex
motion compensation, and image a quickly maneuvering target, but real radar imaging
achieves a high resolution by increasing the array aperture, which increases the hardware
complexity of the system [5].

Multiple-input multiple-output (MIMO) radar imaging is one of the real aperture
imaging methods. MIMO radar can achieve a higher degree of freedom by transmitting
several orthogonal waveforms, these being the time-division multiplexing (TDM) signal,
frequency-division multiplexing (FDM) signal, and code-division multiplexing (CDM)
signal [6–9]. It can also achieve a larger array aperture compared to the traditional phased
array radar (PAR). Especially, MIMO radar imaging can directly be used to image with
one snapshot to avoid the complex motion compensation compared to ISAR technology,
and it has attracted many scholars because of its inherent advantages with respect to
ISAR imaging technology. In this paper, we researched collocated MIMO radar imaging,
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improving the performance by the virtual array aperture technology according to the
equivalent phase center principle (PCA). Two-dimensional (2D) imaging with MIMO radar
has been studied by many researchers [10–12]. Recently, 3D MIMO imaging methods have
drawn the attention of many scholars [13–15]. One of the core questions is how to achieve
a better resolution along with the finite array elements in MIMO radar. As the number
of array elements increases, on the one hand, the resolution along with the cross-range
dimension can be improved, but on the other hand, the hardware cost and the calculation
amount of signal processing will simultaneously increase rapidly. The authors especially
point out that compressive sensing (CS) is utilized to achieve the super-resolution of both
cross-range dimensions with a finite number of array elements [15,16].

The 2D fast Fourier transform (2D-FFT) is commonly used to finish focusing along both
cross-range dimensions, but the imaging resolution is poor, especially under the limited
virtual aperture in MIMO radar. CS can recover a sparse signal from far fewer observed
samples, which has drawn many researchers’ attention during the last decade [17]. Many
sparse recovery algorithms have been derived, such as greedy iterative algorithms [18],
sparse Bayesian learning (SBL) [19], convex optimization algorithms, iterative thresholding
algorithms [20,21], etc. The threshold iteration algorithm is widely used in the field of
signal processing because of its fast convergence and sufficient theoretical guarantee.
The radar super-resolution imaging algorithm based on CS has been widely studied in
synthetic aperture radar (SAR) imaging [22], ISAR imaging [23,24], and MIMO radar
imaging [12,25,26] due to the sparsity of the imaging scene. However, it is essential for
these imaging algorithms to make the observed matrix and grid matrix vectorized [27],
which leads to the consequence that the dimension of the measurement matrix of CS is
tremendously large and the computational complexity increases sharply. The 2D fast
iterative shrinkage thresholding algorithm (2D-FISTA) and sequential smoothed L0 (SL0)
can quickly converge, and they can achieve super-resolution withoutthe computational
complexity of converting the 2D observed matrix and grid map into vectors [28–30]. We
utilized some prior conditions, the sparsity of scattering points in space and the MIMO
array manifold, to establish a new sparse imaging method in this paper. Besides, there is
limited research on MIMO radar imaging in the presence of outliers, and in practice, this
can be caused by radio interference, miscalibrated sensors, and other aspects of the MIMO
radar system [31–34].

In this paper, we research a MIMO radar super-resolution imaging method, consider-
ing the array manifold and the outliers. We firstly reformulated the question as minimizing
the l1-norm and lp-norm and subjecting themto the signal model. On the one hand, there
is a guarantee that the targets’ location in space can be obtained by the l1-norm; on the
other hand, the lp-norm is robust to outliers with 0 < p < 1. However, the lp-norm is a
non-convex question, and to solve this, a complex generalized iterated shrinkage algorithm
(CGISA) is developed to resist outliers in the snapshot matrix. To the best of our knowledge,
we are the first to consider sparse imaging exploiting the array manifold and outlier noise
in transreceivers in MIMO imaging. Comparisons with state-of-the-art algorithms show
that our methods are superior in terms of robustness and resolution, and the proposed
algorithm is validated on a public dataset.

This paper is organized as follows. Section 2 gives a brief introduction to the MIMO
imaging model, and a detailed description of the proposed sparse recovery algorithm is
given in Section 3. Section 4 gives the simulation experiments and the imaging result of
the ISAR simulated data. Finally, Section 5 presents the conclusion and introduces the
future work.

In this paper, we use the following notation. We use ‖ · ‖F, ‖ · ‖1 and ‖ · ‖p to denote
the Frobenius norm, the l1-norm, and the lp-norm of a matrix, respectively. The notations
(·)T , (·)H , and (·)−1 represent the transpose, the Hermitian transpose, and the inverse
operation, respectively. The symbols ∇ and tr(·) stand for the gradient and trace of a
matrix, respectively. Boldface lower-case and upper-case letters represent vectors and
matrices, respectively. K(·) and I(·) represent the real and imaginary parts of a complex
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number vector or matrix, respectively. max(a, b) indicates the maximum between a and b.
Finally, R and C are used to denote the set of real and complex numbers, respectively.

2. Methods
2.1. MIMO Imaging Model

Consider the MIMO radar with a 2D planar antenna array; an imaging model of it
is given in Figure 1, where there are M2

t transmitted elements and N2
r received elements.

The interval spaces between adjacent transmitters and receivers are Nrd and d, respectively.
The central frequency is fc, and the bandwidth is B. Suppose that M2 orthogonal mutu-
ally phase code modulation signals with the same center frequency and bandwidth are
transmitted, and the m-th transmitted signal can be expressed by

Sm(t) = Aϕm(t) exp(j2π fct) (1)

where ϕm(t) denotes the phase code function, A is the amplitude of the transmit signal, and
m ∈ {1, 2, · · · , M2}. Assume that there are K scatterers in the imaging scene and O is the
imaging center. The distance between the m-th transmitted element and the k-th scattering
points is Rk

m; the distance between the n-th received element and the k-th scattering points
is Rk

n; then, the radar echo can be shown as

Sn(t) =
K

∑
k=1

M2

∑
m=1

σk ϕm

(
t− τk

mn

)
exp

(
−j2π fcτk

mn

)
(n ∈ {1, 2, · · · , N2})

(2)

where σk is the backscattering coefficient and time delay τk
mn =

(
Rk

m + Rk
n

)
/c.

The transmit array

The receiver array

k
mR

k
nR

k

Figure 1. The MIMO radar 3D imaging model.

The echo signal can be separated into M2 by a group of matched filter banks for signal
Sn(t), and then, the signal that the m-th transmitted element transmits and the n-th received
element can be denoted as
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Smn(t) =
K

∑
k=1

σk pm

(
t−
(

Rk
m + Rk

n

)
/c
)

× exp
(
−j2π

(
Rk

m + Rk
n

)
/λ
) (3)

where p(·) is the autocorrelation function of the m-th transmitted signal, c is the propagation
velocity of the electromagnetic wave in space, and λ = c/ fc is the wavelength of the
electromagnetic wave in space.

Suppose that target scattering points in the far field are considered. The approximation

conditions meet that Rk
m + Rk

n − Ro
m − Ro

n = 2 ~OK
T

n0, where Ro
m and Ro

n are the distance
between the m-th transmitted element and imaging center O and the distance between the
n-th received element and imaging center O, respectively. n0 is a unit vector between the
imaging geometry center and the array center, and it can be understood as the coordinate
originof the virtual array. Then, the radar echo can be updated as

Sn(t) ≈
K

∑
k=1

M2

∑
m=1

σk ϕm

(
t− 2qTn0/c

)
× exp

(
−j2π

(
Rk

m + Rk
n

)
/λ
) (4)

Based on the description in the paper [13,15], the radar echo can be rewritten as

ymn(t) =
K

∑
k=1

σk p
(

t− 2qTn0

c

)
exp

(
j2π∆R

λ

)
× exp

(
j4πd
λr

(axk + byk)

) (5)

where ∆R = T0O + R0O− T0Q− R0Q is a constant and q = ~OK. r is the distance from
the imaging center O to the reference virtual element. Assume that the signal of the k-th
scattering point location (xk, yk, zk) in space can be shown as

ymn(t) =
K

∑
k=1

δ(t− zk) exp
(

j4πdaxk
λr

)
exp

(
j4πdbyk

λr

)
(6)

where δ(t− zk) = σk p
(

t− 2zk
c

)
, a, b ∈ {1, 2, · · · , MN} is the row and column of the virtual

array, and r is the distance from the imaging center O to the reference virtual element.
The 2D-FFT is employed along the cross-range of the MIMO virtual array, and the

MIMO imaging model about two cross-range dimensions can be rewritten as

Y = AΣBT (7)

where A and B are the overcomplete Fourier matrix, which is related to the MIMO virtual
array manifold, Σ ∈ CP×Q is the 2D scattering coefficients map in space, and Y is the
snapshot matrix corresponding to the virtual array. A = [a1, a2, · · · , aP] ∈ CMt Nr×P, and
B =

[
b1, b2, · · · , bQ

]
∈ CMt Nr×Q, which are given by

ap =

[
0, exp

(
j
4πdxp

λr

)
, · · · , exp

(
j
4π(MtNr − 1)dxp

λr

)]T

bq =

[
0, exp

(
j
4πdyq

λr

)
, · · · , exp

(
j
4π(MtNr − 1)dyq

λr

)]T

.

(8)
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2.2. The Composite Optimization

Many signal processing approaches can be established as a composite optimization
model, which is given by

min
x

f (x) := g(x) + h(x) (9)

where g(x) is a convex, continuously differentiable function and h(x) is a convex, con-
tinuous, but not differentiable penalty function [20,35]. The FISTA algorithm is one of
the important methods to solve optimization, and the most notable feature of this algo-
rithm is the fast convergence speed. The FISAT algorithm is also used in low-rank matrix
completion (MC), sparse recovery, and other signal processing approaches [36].

2.3. The Proposed Imaging Method

In this subsection, we clarify the signal model in the presence of outliers and provide
the detailed pseudo-code of the two proposed algorithms.

Based on the above description, we exploited some prior conditions, such as the
sparsity of scattering points in space, to establish the 2D sparse recovery model, in order to
reduce the computational complexity and improve the effectiveness of sparse recovery. We
used the fast composite optimization algorithm and threshold iteration algorithm to obtain
the sparse location of scattering points. The signal model can be seen as

min
Σ
‖Σ‖0

s. t. Y = AΣBT
(10)

(10) is a non-convex optimization problem and an NP-hard problem. In [29], the authors
proposed that the above (10) can be relaxed to a convex optimization problem by the
l1-norm. When the impulsive signal is considered in MIMO virtual channels, the observed
snapshot matrix contains some outliers. In [37], the authors pointed out that the lp-norm is
robust to outliers, and thereby, the lp regularization terms can be added in (10) to minimize
the outliers’ error. (10) can be updated as

min
Σ

λ‖Σ‖1 + ‖E‖
p
p

s. t. E = Y−AΣBT
(11)

where λ is the regularization parameter and p ∈ (0, 1). The entries of E are expressed as

Ei,j =

{
ρi,je

jφi,j , (i, j) ∈ Ω
0, (i, j) /∈ Ω

(12)

where Ω denotes the entries of the outliers in the snapshot matrix and ρ and φ represent
the amplitude and phase of the outliers, respectively. ‖E‖p

p can be defined as

‖E‖p
p =

(
∑
i,j
|Ei,j|p

)1/p

(13)

The optimization problem in (11) can be solved with the help of the alternative direc-
tion method of multipliers (ADMM), and the augmented Lagrangian function associated
with Problem (11) is given by

L(Σ, E, R, µ) = λ‖Σ‖1 + ‖E‖
p
p +

µ

2
‖Y−AΣBT − E‖2

F

+
〈

R, Y−AΣBT − E
〉 (14)
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where R is the Lagrange constant and µ is a penalty coefficient. Then, the ADMM algorithm
is employed to estimate the optimal variable Σ, E, R, and µ alternately, until the convergence
criterion is satisfied. Every sub-optimization problem can be formulated as


Σk+1 = arg minΣ

{
L
(

Σ, Ek, Rk, µk
)}

Ek+1 = arg minE

{
L
(

Σk+1, E, Rk, µk
)}

Rk+1 = arg minR

{
L
(

Σk+1, Ek+1, R, µk
)}

µk+1 = ρµk

(15)

where ρ is a constant to ensure the penalty coefficient µ is increasing gradually. In the
next algorithmic step, we give a detailed introduction to updating every optimal variable
according to the ADMM algorithm.

Updating Σ

The updating of Σ can be written as

Σk+1 = arg min
Σ

λ‖Σ‖1 +
µ

2
‖Y−AΣBT − Ek‖2

F

+
〈

Rk, Y−AΣBT − Ek
〉 (16)

With some constant items omitted, the optimal variable Σk+1 can be updated as

Σk+1 = arg min
Σ

λ‖Σ‖1 +
µ

2
‖Y−AΣBT − Ek +

1
µ

Rk‖2
F (17)

Let Dk = Y− Ek + 1
µ1

Rk, and then, (17) can be shown in a more concise form (18).

Σk+1 = arg min
Σ

λ‖Σ‖1 +
µ

2
‖Dk −AΣBT‖2

F

= arg min
Σ

λ‖Σ‖1 +
µ

2
tr
{(

AΣBT −Dk
)H(

AΣBT −Dk
)} (18)

The classical problem of the nonsmooth convex optimization model can be solved by
FISTA [20]. According to the description of the composite optimization, let nonsmooth
function h(Σ) = λ‖Σ‖1 and smooth function g(Σ) = µ

2 ‖D− AΣBT‖2
F. The gradient of

g(Σ) can be written as (19).

∇g(Σ) = ∇Σ
µ1

2

{
tr
(

AΣBTB∗ΣHAH
)
− 2tr

(
AΣBH((Dk)H)

)}
=

µ

2

(
2AHAΣBTB∗ − 2ADkB∗

)
= µAH

(
AΣBT −Dk

)
B∗

(19)

To obtain the accurate target location, the temporary variable X is brought in, and the
relationship among Σ, X, and ∇ f (X) can be shown as

Σ = argmin
Σ

{
h(Σ) +

L
2

∥∥∥∥Σ−
(

X− 1
L
∇g(X)

)∥∥∥∥2

F

}
(20)

where L is the Lipschitz constant, enabling ∇ f (X) to meet the Lipschitz continuity. The
pseudo-code of this algorithm to obtain the sparse solution at the j-th iteration is shown in
Algorithm 1, The algorithm can converge quickly with O( 1

j2 ), and this was demonstrated
in [20]. The soft in Algorithm 1 is the soft thresholding function, which is defined as
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soft(X, η) = max
(

1− η

|X| , 0
)

X. (21)

Algorithm 1 Two-dimensional sparse solution of imaging results.
Input:Convergence accuracy ε; the maximum number of iterations K;
Dk = Yk − Ek + 1

µk Rk

Output: Σk+1 .
1: Initialization:
2: Initiate algorithm parameters X0 = 0; t0 = 0;
3: while (1) do
4: Fj+1 = Xj − 1

L∇g(Xj)

5: Σk
j+1 = soft(Fj+1, λ

L )

6: tj+1 =

√
1+4t2

j +1

2

7: Xj+1 = Σk
j+1 +

tj−1
tj+1

(
Σk

j+1 − Σk
j

)
8: if

∥∥∥Σk
j+1−Σk

j

∥∥∥2

F∥∥∥Σk
j+1

∥∥∥2

F

< ε or j ≥ K then

9: Σk+1 = Σk
j+1;

10: break;
11: end if
12: j = j + 1
13: end while

Updating E
The updating of E can be shown as

E = arg min
E
‖E‖p

p +
µ

2
‖Y−AΣk+1BT − E‖2

F

+
〈

Rk, Y−AΣk+1BT − E
〉

= arg min
E
‖E‖p

p +
µ

2
‖E− Y + AΣk+1BT − 1

µ
Rk‖2

F

(22)

Like (18), let Hk = Y−AΣk+1BT + 1
µ Rk, and then, (22) can be defined as

E = arg min
E
‖E‖p

p +
µ

2
‖E−Hk‖2

F (23)

This is a non-convex optimization question, but fortunately, the authors proposed a
generalized iterated shrinkage algorithm (GISA) for non-convex sparse coding algorithm
in the paper [38], which is used to solve the lp-norm optimization question. The method
is easily implemented and has a good performance. However, the GISA algorithm is
often used for real signals, and the radar data used for imaging are the complex signal.
In this article, taking into account the characteristics of radar data, the GISA algorithm
is separately performed on the real part and the imaginary part of the radar echo signal,
respectively. The concrete algorithmic processing of GISTA is shown in Algorithm 2.

Then, E is written as  Hk = Y−AΣk+1BT + 1
µ

k
Rk

Ek+1 = CGISA
(

Hk, µk, p, J
) (24)
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Empirically, we set J = 3, in order to balance the gap between the computational
complexity and the convergence precision.

Algorithm 2 Signal processing of CGISA.

Input signal: x ∈ CM×N , λ, p, J
Output signal: y ∈ CM×N .
1: Initialization:
2: x1 = R(x); x2 = I(x); y1 = zeros(M, N); y2 = zeros(M, N)

3: τp = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p

4: for i = 1 to J do
5: if |xi| < τp then
6: Ωi = find(|xi| ≤ τp); yi(Ωi) = 0;
7: else
8: k = 0, xk

i = |yi|
9: while (1) do

10: xk+1
i = |yi| − λp(xk

i )
p−1;

11: k = k + 1
12: if k ≥ J then
13: break;
14: end if
15: end while
16: end if
17: Ωi = find(|xi| > τp); yi(Ωi) = sgn(xk

i (Ωi))xk
i (Ωi)

18: end for

Updating Lagrange multiplier R and penalty coefficient µ
Lagrange multiplier R and Lagrange penalty parameter µ can be updated as follows:{

Rk+1 = Y−AΣk+1BT − Ek+1

µk+1 = ρµk (25)

The pseudo-code of the proposed super-resolution imaging algorithm is shown in
Algorithm 3, called the exact sparse recovery algorithm. It will consume much times,
and we extended the algorithm in Algorithm 3 to the algorithm in Algorithm 4, which
is dubbed the inexact sparse recovery algorithm. Compared to the exact sparse recovery
algorithm, the inexact algorithm reduces the iterative process of Σ. The algorithm was
omitted in the iterative process of Σ inside the algorithm, and thereby, it can reduce the
algorithm’s runtime.



Remote Sens. 2022, 14, 4120 9 of 17

Algorithm 3 The exact sparse algorithm.
Input: Y, A, and B
Output: Σ.
1: Initialization:
2: Initiate some parameters, Σ0 = X0 = 0P×Q, R0 = 0P×Q, L > 0,

ε = 1× 10−6, λ > 0, µ0 > 0 ρ > 0, and the maximum iteration K.
3: while (1) do
4: Update Σk+1 using Algorithm 1 until it converges
5: Update Ek+1 with (24)
6: Update Rk+1 and µ with (25), respectively

7: if

∥∥∥Σk
j+1−Σk

j

∥∥∥2

F∥∥∥Σk
j+1

∥∥∥2

F

< ε or j ≥ K then

8: Σk+1 = Σk
j+1;

9: break;
10: end if
11: k = k + 1
12: end while
13: Σ = Σk

Algorithm 4 The inexact sparse algorithm.
Input: Y, A, and B
Output: Σ.
1: Initialization:
2: Initiate some parameters, Σ0 = X0 = 0P×Q, R0 = 0P×Q, L > 0,

ε = 1× 10−6, λ > 0, µ0 > 0 ρ > 0, and the maximum iteration K.
3: while (1) do
4: Update Dk = Yk − Ek + 1

µk Rk

5: Update Fk = Xk − 1
L∇ f

(
Xk
)

6: Update Σk+1 = soft
(

Fk, λ
L

)
7: Update tk+1 =

√
1+4tk2

+1
2

8: Update Xk+1 = Xk + tk−1
tk+1

(
Σk+1 − Xk

)
9: Update Ek+1 with (24)

10: Update Rk+1 and µ with (25), respectively

11: if

∥∥∥Σk
j+1−Σk

j

∥∥∥2

F∥∥∥Σk
j+1

∥∥∥2

F

< ε or j ≥ K then

12: Σk+1 = Σk
j+1; break;

13: end if
14: k = k + 1
15: end while
16: Σ = Σk

3. Results

In this section, we perform a detailed simulation of MIMO radar imaging, present the
imaging result, and analyze the difference between the algorithm we propose and the other
existing algorithms.

4. Simulation Experiments

We used the phase-coded signal as the transmitted signal, and the number of trans-
mitted arrays was 2× 2, while the number of the received arrays was 20× 20. The carrier
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frequency of the radar was 12 GHz; the bandwidth was 500 MHz; the sampling frequency
was 1 GHz. The simulation parameters of the MIMO radar can be seen in Table 1.

Table 1. MIMO radar simulation parameters.

Parameters Symbol Value

Center frequency fc 12 GHz
Bandwidth B 500 MHz

Sampling frequency fs 1 GHz
The number of transmitters Mt ×Mt 2× 2

The number of receivers Nr × Nr 20× 20

Suppose that the location coordinate of the center of the scatterers is O(4000, 3000, 5000).
The targets’ locations in the Cartesian coordinate system with respect to O are (6, 0, 5),
(4, 0, 4), (0, 0, 0), (−3,−3, 1), (−3, 3, 1), (−6,−7,−1), (−6, 7,−1), (−4, 0,−3), (−8, 3,−6),
(−6, 0,−6), and (−8,−3,−6). The target distribution in space and the top view of the
target distribution are shown as Figure 2a,b, respectively.

(a)

-10 -5 0 5 10

cross range

-10

-5

0

5

10

c
ro

s
s
 r

a
n
g
e

Top view of the target model

(b)

Figure 2. (a) is the space distribution of the target scattering points; (b) is the distribution along the
cross-range.

Here, we made the assumption that the signal can be separated by the matched filter
for convenience. We extracted the observed snapshot matrix from the virtual array in the
MIMO radar, which contains impulsive signals caused by the array channels. Assume
that the target location in space Σ recovered by the algorithms can be denoted by Σ́. Two
parameters were defined to evaluate the performance of the proposed algorithm. One is
the normal mean-squared error (NMSE) to measure the performance of the algorithms with
its definition as follows:

NMSE =

∥∥Σ− Σ̂
∥∥2

F

‖Σ‖2
F

(26)

where Σ and Σ̂ are the original sparse signal and the reconstructed sparse signal, re-
spectively. The other is the correlation (Corr) coefficient used to evaluate the imaging
performance and to measure the influence of false targets on the imaging quality. The
mathematical expression of the Corr can be defined as follows:

Corr
(
Σ, Σ̂

)
=

〈
vec(Σ), vec

(
Σ̂
)〉

‖Σ‖F‖Σ̂‖F
(27)

where vec(Σ) and vec(Σ̂) denote the vector form of Σ and Σ̂, respectively.
All experiments were performed with MATLAB and run on a computer with an

Inter(R) Core(TM) i7-8565U at @1.80 GHz, 1.99 GHz, and RAM 16 GB.
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In this section, the inexact recovery algorithm was chosen to validate the algorithms’
performance, and the difference between the exact recovery algorithm and the inexact
recovery algorithm is discussed in the next section. The impulsive signal is generated
based on (12), for which ρ > 0 and φ are randomly produced. MIMO imaging results
with these recovery algorithms along the cross-range are shown in Figure 3, in which the
signal-to-noise ratio (SNR) is 10 dB and the percentage of outliers in the array is about 33%.
Moreover, in order to ensure the algorithms’ convergence, we set L =

∥∥AAH
∥∥2

F

∥∥BTB∗
∥∥2

F,
the algorithm parameters P = Q = 201, the regularization constant λ = 0.5, and
p = 0.1, 0.3, 0.5, 0.7, 0.9. The snapshot matrix Y contains some impulsive signals, which
makes the the imaging results very poor when the traditional imaging algorithms are used,
such as 2D-FFT, 2D-FISTA, and 2D-SL0. What we can see in Figure 3 is that there is dense
background noise for 2D-FFT, 2D-FISTA, and 2D-SL0; however, the algorithm we propose
can well inhibit the background noise and outliers. The concrete imaging indicator of
Figure 3 can be seen in Table 2, which shows that the proposed algorithm is obviously
superior to the other algorithms.
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Figure 3. MIMO imaging results with 2D-FFT, 2D-FISTA, 2D-SL0, and the proposed algorithm with
p = 0.1, p = 0.3, p = 0.5, p = 0.7, and p = 0.9.

Table 2. Imaging performance.

Algorithm 2D-FFT 2D-FISTA 2D-SL0 p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

NMSE 4.048 2.0923 2.4894 0.4836 0.5100 0.5443 0.5629 0.8544
Corr 0.0450 0.1868 0.1703 0.8177 0.8025 0.7827 0.7788 0.6771

Both Figures 4 and 5 illustrate the variation curve of the SNR with the NMSE and Corr,
respectively, where the performance of the proposed algorithm is obviously better than the
2D-FFT, 2D-FISTA, and 2D-SL0 algorithms, especially under low SNRs. Meanwhile, the
NMSE gradually decreases and the Corr ascends for all algorithms contained in Figure 4
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and Figure 5, respectively, with the increase of the SNR. The result implies that the algo-
rithm is more robust compared to the other algorithms. In our algorithm, we added the
augmented Lagrange multiplier and lp penalty function to inhibit the outliers and improve
the robustness of the algorithm.

Next, the influence of the percentage of outliers in the array on imaging performance
was studied, and we set the percentage from 10% to 60%. Their relationship can be seen in
Figures 6 and 7, which show that our algorithm is more robust than 2D-FISTA, 2D-SL0, and
2D-FISTA. The results also imply that the proposed algorithm is more robust to outliers.
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Figure 4. The relationship between the SNR and NMSE.
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Figure 5. The relationship between the SNR and Corr.
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Figure 6. The relationship between the percentage of outliers and the NMSE.
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Figure 7. The relationship between the percentage of outliers and the Corr.

Public Dataset Experiment

Finally, we used a public dataset, the Boeing-727 dataset, to validate the performance
of the proposed algorithm, which demonstrated that the dataset is consistent with the
signal model for MIMO imaging. Suppose that every point in the radar echo matrix can
be seen as the snapshot of the MIMO virtual array. The dataset is generated by an X-band
(9.0 GHz) stepped frequency radar. The radar parameters are shown in the Table 3.

In this experiment, we chose the number of transmitted frequencies and the num-
ber of weeps as 64 and 256, respectively, and the algorithm parameters were p = 0.1,
λ = 0.4, SNR = 10 dB, and P = 1024, Q = 256. The radar imaging result can be seen in
Figures 8 and 9, whose percentage of outliers were set as 12% and 39%, respectively. Our
algorithm can well inhibit background noise and outliers compared to the existing algorithms.

Figure 8. Imaging result with the percentage of outliers being 12%.
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Table 3. The parameters of the step radar.

Parameters Value

Center frequency 9 GHz
Bandwidth 150 MHz

Sampling points 64
Pulse number 256

SNR 10 dB

Figure 9. Imaging result with the the percentage of outliers being 39%.

5. Discussion
5.1. Algorithm Convergence Analysis

To evaluate the converge of both algorithms, the experiment conditions were p = 0.5,
L = 1× 106, λ = 0.5, and SNR = 10 dB. In Figure 10, although the exact algorithm can
converge to a more concise result compared to the inexact algorithm, it can converge at
a higher speed. The runtime and convergence error of both algorithms are presented in
Table 4.

In Table 4, the result shows that the exact algorithm will speed up the time until
the convergence condition is met, and the inexact recovery algorithm reduces the time
complexity at the expense of the convergence accuracy.

Table 4. Runtime and convergence error of both algorithms.

Algorithm Items p = 0.1 p = 0.3 p = 0.5 p = 0.7

Exact recovery
Time (s) 179.1385 179.1395 179.1375 179.1363

Error 0.0032 0.0041 0.0042 0.0042

Inexact recovery
Time (s) 3.3559 3.342 3.341 3.358

Error 0.0088 0.0088 0.0086 0.0088
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Figure 10. Convergence error curve of both algorithms.

5.2. Algorithm Complexity Analysis

On the one hand, we successfully recovered the uniform snapshot matrix from the
contaminated snapshot matrix by the array outliers. On the other hand, the two algorithms,
the exact recovery algorithm and the inexact recovery algorithm, were proposed to present
the sparse imaging result, and Σ reflected the sparse position of the scattering points in
space. In addition, the proposed algorithm was dominant in computational complexity.

Assume that the size of a contaminated snapshot matrix is M× N, and the Fourier
matrices are M× P and N ×Q. Generally, the computational complexity of SVD is around
O(NM2) +O(M3). The proposed algorithm in this paper was divided into three steps,
and the computational complexity of every step can be seen below:

(1) Updating Σ: O(P2M) +O(P2Q) +O(Q2N);
(2) Updating E: O(MPQ) +O(MNQ) +O(JPQ);
(3) Updating R: O(MPQ) +O(MNQ).

For the exact recovery algorithm, the inner algorithm in Table 1 converges when it
iterates K times. Thereby, the exact recovery algorithm will speed up the time more than
the inexact recovery algorithm.

6. Conclusions

For MIMO radar 3D imaging, we achieved super-resolution imaging along the cross-
range. The algorithm we proposed does not convert the grid matrix into the larger matrix
and the observed matrix into the 1D vector and is more robust to noise than the existing
algorithms, 2D-FISTA and 2D-SL0. We proposed two sparse recovery algorithms, the exact
recovery algorithm and the inexact recovery algorithm, to inhibit the impact of outliers
on the imaging performance. The simulation experiments and public dataset experiment
validated the effectiveness of the algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO multiple-input multiple-output
PAR phased array radar
ADMM alternative direction method of multipliers
ISAR inverse synthetic aperture radar
SAR synthetic aperture radar
MC matrix completion
InISAR interferometric ISAR
FDM frequency-division multiplexing
TDM time-division multiplexing
CDM code-division multiplexing
PCA phase center principle
BP back projection
FRI finite rate of innovation
SVT singular-value thresholding
SBL sparse Bayesian learning
GISA generalized iterated shrinkage algorithm
CGISA complex generalized iterated shrinkage algorithm
SL0 smoothed L0
ALM augmented Lagrange multiplier method
SNR signal-to-noise ratio
CS compressive sensing
FFT fast Fourier transform
FISTA fast iterative shrinkage thresholding algorithm
SVD singular-value decomposition
IALM inexact augmented Lagrange multiplier
RAM random access memory
NMSE normal mean-squared error
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