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Abstract: Individual tree counting (ITC) is a popular topic in the remote sensing application field.
The number and planting density of trees are significant for estimating the yield and for futher
planing, etc. Although existing studies have already achieved great performance on tree detection
with satellite imagery, the quality is often negatively affected by clouds and heavy fog, which limits
the application of high-frequency inventory. Nowadays, with ultra high spatial resolution and
convenient usage, Unmanned Aerial Vehicles (UAVs) have become promising tools for obtaining
statistics from plantations. However, for large scale areas, a UAV cannot capture the whole region of
interest in one photo session. In this paper, a real-time orthophoto mosaicing-based tree counting
framework is proposed to detect trees using sequential aerial images, which is very effective for fast
detection of large areas. Firstly, to guarantee the speed and accuracy, a multi-planar assumption
constrained graph optimization algorithm is proposed to estimate the camera pose and generate
orthophoto mosaicing simultaneously. Secondly, to avoid time-consuming box or mask annotations,
a point supervised method is designed for tree counting task, which greatly speeds up the entire
workflow. We demonstrate the effectiveness of our method by performing extensive experiments on
oil-palm and acacia trees. To avoid the delay between data acquisition and processing, the proposed
framework algorithm is embedded into the UAV for completing tree counting tasks, which also
reduces the quantity of data transmission from the UAV system to the ground station. We evaluate
the proposed pipeline using sequential UAV images captured in Indonesia. The proposed pipeline
achieves an F1-score of 98.2% for acacia tree detection and 96.3% for oil-palm tree detection with
online orthophoto mosaicing generation.

Keywords: aerial images; tree counting; mosaicing orthophoto; point supervised; UAV

1. Introduction

Automatic tree detection and counting using high-resolution remote sensing images
has attracted the attention of a large number of researchers in recent decades. Information
about the shape, localization, and health of trees in plantation areas are essential for
intelligent agriculture to monitor the quality of tree growth. The image acquisition usually
comes from satellites and Unmanned Aerial Vehicles (UAVs). Due to the rapid development
of satellite and UAV technologies, abundant data have further promoted the development
of related tree detection and counting technologies.

In general, most existing methods of tree detection and counting are concentrated
on satellite images [1–5]. Firstly, the whole large scale remote sensing image is split into
hundreds of patches using the sliding window technique. Then classification or detection-
based methods are used to detect and localize the targets. Finally, the detection results
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from individual patches are fused into the whole remote sensing image. The satellite
technique is a powerful tool for monitoring tasks, including land cover change detection,
fire monitoring, urban construction, natural disaster monitoring, etc. Recently, UAVs have
become promising tools to obtain high quality images with low-cost, lightweight and high
frequency usage, which have potentials for various analysis and monitoring domains,
including environmental monitoring and analysis, precise and intelligent agriculture,
and disease detection [6]. However, what UAVs acquire with camera devices is a series of
image data, and sequence image detection could result in a lot of duplication, which is not
convenient and reduces detection efficiency and quality in large scale regions. Therefore,
aerial image mapping is a necessary task before image analysis.

In recent decades, aerial image stitching has been used in lots of situations, such
as agricultural plant protection, forest fire monitoring, forest tree counting, post-disaster
assessment and military investigations. Generally, there are two ways to realize aerial image
mosaicing tasks. One is offline mosaicing [7–9], where whole images of a target region
captured with unmanned aerial vehicles (UAVs) are processed and optimized together.
This approach requires integrated necessary information of captured images for image
mapping, which generally leads to accurate stitching results. The other is online mosaicing,
with real-time estimates [10–12]. It is necessary in some special application scenarios like
post-disaster rescue, military reconnaissance and tree asset statistics, which are situations
that place high demand on time efficiency. In general, the major differences between
online and offline mosaicing are camera pose estimation algorithms and the 3D point cloud
generation method. Structure from motion (SfM) [13,14] and simultaneous localization and
mapping (SLAM) [15–18] are two classic methods used to estimate the camera pose and
generate a point cloud. Simultaneous localization and mapping (SLAM) is the technique
to construct or update a map of an unknown environment while simultaneously keeping
track of an agent’s location within it. Structure from motion (SfM) is a photogrammetric
range imaging technique for estimating three-dimensional structures from two-dimensional
image sequences that may be coupled with local motion signals. After the camera pose and
point cloud are obtained with one of above-mentioned techniques, the captured images are
then projected to the correct position with homography transformation methods. Finally,
these discrete pictures are fused to form a whole mosaic. However, SfM methods [13,14,19,
20] are basic offline algorithms with expensive computation, which places high demand
on hardware requirements. Therefore, it is inconvenient to be deployed on edge devices.
By the way, long computations will reduce the overall work efficiency, potentially increases
the time cost, especially for large-scale planting statistics introduced in this paper. For most
SLAM methods [10], a bundle adjustment algorithm is used to estimate camera poses and
refine landmark positions; landmark positions are the key feature points jointly observed
with multiple images. Although the SLAM-based real-time system is faster than the SfM-
based mapping system, the step of bundle adjustment is still time-consuming for real-time
construction systems and the matching performance is poor under low overlap conditions.
To solve these problems, a multiplanar hypothesis-based pose optimization method is
proposed to estimate camera poses and generate mosaicing simultaneously. This could
accelerate the calculation speed and achieve robust stitching performance with sequential
low overlap images in the embedded devices.

For tree counting and detection tasks, most of the early works [21,22] focused on
feature representation design. Some good handcrafted features like Scale invariant feature
transform (SIFT) and histogram of oriented gradient (HOG) were firstly used to extract key
points. Then classifiers like support vector machine (SVM) [22,23], Random Forests [24], K-
Means [25] and extreme learning machine (ELM) were conducted to accomplish target trees
detection task using above-mentioned traditionally handcrafted features. Nevertheless,
the detection scenes are relatively simple; the trees are sparsely distributed and clearly
outlined with no canopy overlapping. Thus, the traditional handcrafted features-based
methods could conduct the task with good performance. However, these methods are not
end-to-end frameworks, and they consist of several separate algorithm steps that could
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bring extra unexpected noise or errors because of careless data transport between separate
algorithms. In addition, handcrafted feature engineering requires expensive computation
and efforts that depend on experts knowledge which is not easily obtained for various
intelligent tasks.

Recently, because of the powerful capability of learning features, convolutional neural
networks (CNNs) [26] have achieved great success in various fields including computer
vision, natural language processing, medical diagnosis, and so forth [5,27–32]. Existing
works could be divided into detection-based, segmentation-based, and regression-based
methods. For detection-based supervised methods, researchers collect large amounts of
tree data for deep learning (DL) algorithms to learn meaningful features for tree counting or
other object detection task [1,5,33–38]. In [2,6,39–41], CNN framework and full supervised
Faster R-CNN [42] are designed for oil-palm trees or other fruit detection with bounding
box annotations. For segmentation-based supervised methods, some U-Net [43] and Fully
Convolutional Neural Networks (FCNs) [32]-based detection works [44,45] are used to
estimate the presence map of trees with remote sensing images, which generate the final
results with mask that contains contour and size of tree. However, the “box in, box out”
detection-based or “mask in, mask out” segmentation-based methods require lots of careful
annotations that are time-consuming and laborious because of irregular target shape and
complicated detection scenes. In order to alleviate the heavy annotation problem, the “point
in, point out” regression-based methods have attracted attention. In [46,47], the researchers
simultaneously predict the localization and number of persons with estimating the density
maps using point annotation information. However, these methods only predict the center
point while ignoring the size and contour of target objects. To fast count the trees with high
quality on UAVs, a weakly supervised deep learning-based tree counting framework is
proposed in this paper, which could avoid expensive bounding box or mask annotation
costs. Not only the accurate number of trees but also the mask of objects could be obtained;
the results are comparable to those of strongly supervised methods [42].

In summary, we propose an aerial orthophoto mosaicing-based tree counting frame-
work to realize fast completed automatic tree detection and counting in this paper. The tree
detection and counting task is completed with a planar restricted pose graph optimization-
based integrated real-time orthoimage generation and point-based supervised training
framework. Therefore, the proposed pipeline could be able to improve the accuracy and
speed of mosaicing and tree counting, and it is efficient and robust for board devices. The
main contributions are as follows:

1. A novel efficient tree detection and counting framework for UAVs : Compared
to the current tree counting pipeline, our method provides a real-time solution for
detection tasks with UAVs. High-quality mosaicing is efficiently generated with less
calculations; detection and counting task is completed with fast annotation, training
and inference analysis pipelines.

2. A multiplanar hypothesis-based online pose optimization: A multiplanar hypothesis-
based pose optimization method is proposed to estimate camera poses and generate
mosaicing simultaneously. The number of parameters about reprojection error is effec-
tively reduced; the method could accelerate the calculation speed and achieve robust
stitching performance with sequential low overlap images in the embedded devices.

3. Point-supervised-based attention detection framework: A point supervised method
could not only estimate the localization of trees but also generate a contour mask that
is comparable to full supervised methods. The supervised label information is easy to
be obtained, which could be effective for entire learning framework.

4. An embedded system with a proposed algorithm on UAVs: An embedded fully
automatic system is embedded into the UAV for completing integrated stitching
and tree counting tasks; the whole procedure requires no human intervention at
all. In addition, buildings or trees could have a greater negative impact on the
communication link between the UAV and a ground station; the embedded system
could ignore this negative effects and improve work efficiency.
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The remainder of this article is organized as follows. Section 2 briefly reviews the
related work. In Section 3, the two-stage vision framework is illustrated in detail. Experi-
mental results and discussions are presented in Section 4. Finally, we draw conclusions
about the proposed fast tree counting pipeline in Section 5.

2. Related Work
2.1. Image Mosaicing

In general, a global positioning method like SfM is the best choice for image mosaicing,
which is designed to reconstruct a digital model from abundant multi-view frames to
guarantee the stitching quality. In the past decades, many kinds of SfM methods like
incremental [13,14], hierarchical [48] and global [19,20] methods have been proposed to
reconstruct various scenes in detail. The general process of stitching with the above-
mentioned methods is pose optimization, 3D point cloud generation, ground control
point(GCP) identification and finally moscaicing all frames [49]. The procedure is time
consuming and costs several hours in real applications. In order to accelerate the procedure
of SfM-based methods, an efficient offline aerial frame stitching approach [9] with a planar
constrained strategy is adopted to optimize pose, which guarantees robust performance
and fast speed.

However, it is still not suitable for real-time and incremental application fields. Thus,
SLAM-based methods [11] are designed for image mosaicing with incremental stitching.
Map2Dfusion [10] obtains real-time position by synchronizing the global navigation satellite
system (GNSS) information and video streams, which overcomes global drift, and then
generates orthomosaic with weighted pyramid fusion. Lati et al. [50] introduced a fuzzy
clustering-based algorithm to remove outliers to improve optimization speed. In [51],
sparse bundle adjustment (BA) is designed to speed up the pose optimization in the SLAM
reconstruction procedure, but it does not easily guarantee reconstruction quality. Therefore,
these traditional SLAM-based algorithms could efficiently estimate poses and generate 3D
point cloud simultaneously, but they are still difficult to be deployed in embedded devices
to complete stitching tasks with processing low overlapping sequential images.

Considering that the flying height of UAVs is generally in the order of hundreds of
meters or even thousands of meters, it is recommended to assume the scene as multi-planar
in the tree counting task. Based on such assumptions, the algorithm could be faster to
compute and consume less computational effort.

2.2. Tree Counting

To achieve a high-quality tree counting task, over the past few decades, researchers
have explored lots of efficiency algorithms, which are mainly summarized into the following
two categories: the traditional image analysis-based algorithms and deep learning-based
methods. The first category includes image binarization, template matching, the local
maximum filter-based methods, maximum likelihood, support vector machine, extreme
learning machine, random forest, etc. In these traditional methods [21–25], feature engineer-
ing is essential which is a complex, time-consuming process that needs to be redesigned
whenever the problem or the dataset changes. Thus, feature engineering relies on expert
knowledge with lots of effort and the generalization is not enough for various tasks.

The second category is the powerful deep learning-based algorithm, which includes
convolutional neural network (CNN) classification, object detection, semantic segmentation
and regression methods. Some state-of-the-art CNN classification and object detection
models are as follows. Li et al. [2] train the convolutional neural network (CNN) to
predict the tree labels with collecting large amounts of annotated data. They split the
whole big image into hundreds of patches through the sliding window technique to
detect the target tree with AlexNet, VGG, and ResNet CNN architectures. They propose a
two-stage convolutional neural network [3] further improving crown detection accuracy.
With the development of deep learning detection architecture, lots of end-to-end object
detection-based methods like YOLO architecture [52], Faster R-CNN [53], and Mask R-
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CNN [54] have been designed for the tree counting task. Zheng et al. [6] propose a faster
R-CNN-based method called as Multi-class Oil-Palm Detection approach (MOPAD) to
accurately detect and monitor localization and growing status of trees. In order to better
apply the deep learning technology, Li et al. [4] propose the first Field Programmable Gate
Array (FPGA)-based real-time tree detection method for large-scale remote sensing images.
In addition, some segmentation models like U-Net [55,56], DeepLab v3+ [57]and FCN [58,59],
and other advanced models have been applied in tree detection task and achieve promising
results. Unlike object detection-based methods, these methods require more time-consuming
annotations, what’s more, some inaccurate labelling could bring wrong predictions because
of irregular target shape and complicated prediction background information.

From the above-mentioned deep learning frameworks [1,2,4–6,33,34,36–41,44,45], one
of the most significant advantages of using deep learning techniques is that a deep learning-
based method is an end to end framework, which does not require feature engineering and
learn discriminative features itself through training. However, existing tedious annotation
is inevitable; “point in, box or mask out” algorithms are proposed to speed up the deep
learning-based tree counting applications.

3. Methodology
3.1. Overview

The whole proposed system is an integrated vision framework named real-time
orthophoto mosaicing-based tree counting pipeline illustrated in Figure 1, which includes
“real-time stitching” and “fast tree counting” modules. In the stitching step, sequential
images with GNSS information are obtained through the UAV Software Development
Kit (SDK) and posted to the algorithm during flight mission. After the interesting region
of map detection, a fast detection algorithm is used to complete the tree counting task.
There are mainly two advantages: (1) we only use a series of image data captured to detect
trees, which will result in a lot of duplications because of overlap among images; this
is not convenient and reduces detection efficiency and quality in large scale regions. A
real-time stitching module could quickly reconstruct the region areas with high quality
for the next tree counting analysis, which could improve the detection performance with
a global perspective. (2) After the orthophoto mosaicing is generated, it is cut into tiles,
this data format is suitable for the next tree detection with parallel computation. Thus,
the calculation efficiency of the entire workflow is high, and it could be easily connected
to a geographic information system (GIS) for visualization or deployed into embedded
devices like UAVs.

Robust Matching Pose Recovery Images Fusion

SIFTGPU 
Keypoint

Robust 
Matching

Relative 
Homography 
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Absolute 
Rotation 

Averaging

Joint 
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Image 
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Figure 1. The algorithm presented in this paper is an integrated vision framework, which consists of
“real-time stitching” and “fast tree counting” modules. This framework could be easily applied into the
embedded system for UAVs; it makes the UAV support online georeferenced large-scale low-overlap
aerial images stitching and fast tree counting tasks, which could greatly improve work efficiency.

In the stitching procedure, when the algorithm receives real-time captured images,
it extracts the key-points and inserts them into a matching graph using appearance and
spatial-based faster neighbor query and matching algorithms. After the matching operation,
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the algorithm computes absolute rotation and translation by aligning the visual position
with the GNSS position. While in the optimization step, the error in the graph propagates
through homograph matrix. The propagation, which is-based on homograph matrix
is robust and efficiency, making it possible to handle tough sequences whose overlap
is less than 50%. Every frame with pose is delivered to stitching thread. In addition,
our orthomosaic is fused with weighted multi-band laplacian pyramid, which makes it
seamless and smoother. Considering the large-scale reconstruction and smooth rendering,
the algorithm balances memory and hard disk useage, using an Least Recently Used (LRU)
to manage multiple zoom level tiles, which ensures the invariance of the shape of the
object, as well as the correctness of the direction and mutual position, so it is often used
in navigation and aviation. A Level of Detail (LoD) algorithm is adopted to update the
multiple zoom level tiles, which could increase the efficiency of rendering with decreasing
the workload on graphics computation procedure.

In the detection procedure, in order to effectively predict the localization of trees for
large scale scenes, and avoid expensive bounding box or mask annotations, a weakly super-
vised attention method only with point annotations that could reduce human annotation
labor is introduced in this section. The proposed weakly semantic segmentation network
not only predicts the positions of trees but also obtains the outline of trees. The U-Net frame-
work is an encoder–decoder architecture consisting of contracting path and expanding path
designed to capture context and extract discriminative feature representations. Inspired
by this, a novel point-supervised attention network is proposed, which is pre-trained with
RestNet-50 with first four encoder layers to obtain the feature representation, which could
be further improved with spatial unit (SU) consisting of global average pooling (GAP) and
local average pooling (LAP) operations for the tree detection task. In the training step,
point supervised loss function consisting of point-loss and separate-loss terms, which are
used to guide the network to generate the mask of trees with point supervised information.
After the network is trained completely, the weights of the proposed network are fixed and
deployed in edge device like UAV for tree detection. For the convenience of deployment
and application, we train two sets of weights for acacia and oil-palm detection, respectively.
When we apply the pipeline for new tree species, several hundreds of annotated data are
needed to train the network and generate the new weights. In the inference step, firstly,
the orthophoto mosaicing is real-time-generated with sequential images captured in UAV;
secondly, the generated orthophoto mosaicing is cut into thousands of tiles and served
in the form of Hyper Text Transfer Protocol (HTTP). A well-trained network is used to
obtain the localization and number of instances for tree detection task with each tile from
interesting regions.

3.2. Real Time Generating Orthophoto Mosaicing

The traditional SLAM methods proposed optimize poses that are-based on GNSS
and multiplanar hypothesis, which ensures robustness under low overlap. Like SLAM
system-based on feature points, we choose SIFT for its stability. For efficiency, the OpenGL
Shading Language (GLSL)-based SIFT algorithm is used to extract the feature points of the
image, and GLSL requires a GPU that has large memory and supports dynamic branching
to accelerate the computation of SIFT description. The RootSIFT algorithm [60] is adopted
to generate the descriptors to further improve the matching quality and enhance the
robustness. After calculating the pose, we project the photo onto a two-dimensional map
according to the optimized plane, and adopt LoD for smooth rendering.

3.2.1. Keypoint Detection and Matching

Considering that SIFT algorithm contains a large number of independent pixel wise
processes, the GLSL accelerated SIFT is performed to improve the computing speed and
platform independency. That is to say, the algorithm has the potential to be deployed
in embedded or mobile terminals. The matching process adopts the RootSIFT method to
normalize the descriptor and calculate the square root to measure the distance between two
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SIFT feature points. Some studies have proven that this method is better than the method of
directly using Euclidean distance to measure similarity.

3.2.2. Online Planar Restricted Pose Recovery

In Figure 2, unlike the general full-scene plane assumption, our proposed method
adopts the multiplanar assumption, that is, each image captured is assumed to be flat.
The general full-scene plane assumption could result in larger estimation bias. This mul-
tiplanar assumption processing method weakens the shortcoming of full-scene plane
assumption and improves the generalizability of the method for aerial image stitching.

Full scene 
plane assumption

Multiplanar hypothesis

Figure 2. Blue curve represents the real terrain, green line represents the full-scene plane assumption,
and orange lines represent multiplanar assumption.

When the overlap is low, the traditional PnP-based pose tracking cannot work properly,
due to the lack of common view; tracking is equivalent to the initialization. To accurately es-
timate camera poses, we first decouple and estimate the rotation and translation separately,
adopting rotation and translation averaging algorithm [61]. Then the GNSS information
is fused in the rotation averaging procedure to make the system more stable. Unlike the
general bundle adjustment algorithm, the graph optimization procedure depends on the
homograph propagation and does not need triangulation, and reprojection errors are not
constructed with map points, which accelerate the mapping speed and improve the robust-
ness of system. For image i, the camera poses and height will be composed of a seven-DOF
parameter, Ti = (Ri, ti, hi), Ri, ti and hi are the rotation, translation matrix and flight height
for image i, respectively. The submap S is obtained according to the matches and geodetic
position. The optimization function is as follows:

T̂ = arg min ∑
i,j∈S

∑
m

ξm(Ti, Tj) + ∑
i∈S

τ(Ti, gi) (1)

where τ(Ti, gi) = ti− gi is the GNSS prior factor, which is an error loss used to optimize the
camera pose with considering the GNSS information. gi is the local cartesian coordinates
computed from the GNSS information for each frame, while ξm(Ti, Tj) is the reprojection
error of match m(ui, uj) between frames i and j, it is defined as:

a = Ri · Proj−1(ui) (2)

p = ti +
(hi + hj)/2− tz

i
αz a (3)

ξm(Ti, Tj) = Proj(R−1
j · (p− tj))− uj (4)

Here, a is the unit vector represents the view direction of keypoint ui and p is the
3D coordinates of the keypoint. hi, hj are the local ground height estimation of image i, j.
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Proj is denoted as the pinhole projection in camera coordinates, and Proj−1 is the inverse
projection in the plane where z = 1:

u = Proj(p) =
(

x ∗ fx

z
+ cx,

y ∗ fy

z
+ cy

)T

(5)

p̂ = Proj−1(u) =
(

x− cx

fx
,

y− cy

fy
, 1
)T

(6)

The Ceres Solver library (http://ceres-solver.org, accessed on 1 March 2022) is a large
scale non-linear optimization library that is used to deal with the graph optimization
problem in the proposed pipeline.

3.2.3. Georeferenced Images Fusion with Tiling and LoD

After the camera pose estimation, the original images are reprojected onto the digital
orthophoto map (DOM). Due to the overlapping of captured sequential images, the adap-
tive weighted multiband algorithm [10] is adopted to fuse the images. The generated
mosaicing consists of several level pyramid tiles with LoD, which could increase the effi-
ciency of rendering with decreasing the graphics workload for visualization. In addition,
a thread-safe LRU technique is used to cache the segmented image tiles to decrease memory
cost and a thread pool is used to process the tiles in parallel for further speed acceleration.

3.3. Weakly Supervised Attention Counting Tree Network

After orthophoto generation, we cut the oil-palm and acacia orthophoto into thousands
of tiles, and split the collected tile images into training and testing sets. In the following
experiment part, the training dataset consists of 2880 images of acacia and 2280 images of
oil-palm, and the test dataset consists of 1920 images of acacia and 1520 images of oil-palm
that are used to test the proposed method’s effectiveness. The training set is labeled with
labelme toolbox [62] by point annotation. Then the labelled data is fed into a weakly
supervised attention counting tree network to learn the feature representation of target tree.
The network consists of attention-based tree feature extractor and point supervised loss
function described as follows.

3.3.1. Attention Based Tree Feature Extractor Network

In the attention-based tree feature extractor network (ATFENet), the U-net similar
CNN architecture, ResNet-50 is adopted as the network backbone to complete the feature
extractor procedure. The contracting path and expanding path are combined through
skip-connections [43] to capture abundant context and learn to extract discriminative
feature representations for localization task. The size of input original images and output
prediction mask are both N×W×H. Thus, The output array is a pixel-by-pixel semantic
mask predicted with 1×1 convolution and softmax function in the last layer of network to
determine which pixel is target tree or not.

Inspired by the human visual perception system, attention mechanism constructs the
dependent relationships between the input and target information, has been tried in many
intelligence-related tasks, like scene parsing, sentences translation and so forth [63]. An
attention mechanism could quickly extract important features from the sparse data, while a
self-attention mechanism is an improvement of attention mechanism, which reduces the
dependence on external information and could better capture the internal correlation of
data or features. Therefore, we design an attention-based tree feature extractor network,
which captures the rich global and local relationships to effectively model tree detection-
related feature relationships. Concretely, we introduce a spatial unit (SU) that consists of
global average pooling (GAP) and local average pooling (LAP) operations, which could
exploit the global and local spatial channel-wise interdependencies to simultaneously
obtain large-size and small-size properties. The global average pooling (GAP) operation
is performed on the encode’s output feature map to exploit the information with a global

http://ceres-solver.org
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perspective in the first branch. The local average pooling (LAP) with a kernel size n× n
of and a stride of 1 is performed to exploit the informativeness with a local perspective,
which computes the average values of sub region whose size is n× n and traverses the
feature map with a sliding window step size of 1. A point-wise convolution with a kernel
size of 1× 1 is adopted to exploit the channel-wise interdependencies. Through the above
operations, the spatial features are fully exploited to quality-boost the basic feature maps
for the tree detection task.

3.3.2. Point Supervised Loss Function

The point supervised loss function consists of two terms, which are point level loss
and separate loss. Point level loss is a semantic segmentation method designed by Bear-
man et al. [64], and is used to predict each pixel class according to the point annotations.
The separate loss could predict the tree mask and split the masks into individual tree
according to the point annotations. The proposed point supervised loss function could be
written as below:

Lall = Lp + Ls (7)

Point level loss term. Because we provide point supervised information for training,
labels of the pixels corresponding to the supervised points are tree classes, and the other
pixel labels are 0. The point annotation labels are used to optimize the cross-entropy
function of the model. I∫ denotes the pixels of the image and Gi is the class label of pixel
i. The sic is the score of pixel i belonging to class c, and the softmax function at pixel i is
Sic = exp(sic)/ ∑N

k=1 exp(sik). The point level loss is defined as follows:

Lp(P, S) = − ∑
iεI∫

Pi ∗ log(SiGi )− ∑
iεI∫

(1− Pi) ∗ log(1− SiGi ) (8)

where, the S is the output of softmax function, P denotes the tree ground truth label, where
N (N ≥ 0) is the class number of target trees, Pi is 1, 2, ..., n (1 ≤ n ≤ N) correspondingly.

Separate loss term. The point level loss could determine which pixel belongs to a
tree class or background. However, the inference model could encounter a condition that
two or more trees in one mask area, which decrease the performance of tree detection and
counting tasks. Therefore, a separate loss term is designed to divide the mask containing
many target objects into individual trees according to the annotations. The watershed
algorithm [65] is used to generate individual object blob from the whole tree blobs. The L is
denoted as the set of pixels representing the boundaries generated with watershed method.

Ls(S, L) = −∑
iεL

λilog(Si0)− ∑
iεM f p

log(Si0) (9)

This term guarantees the tree masks only contain single target tree. In the formula,
Si0 is the background probability at pixel i, λi is the number point annotations ground
truth in each image, M f p is the pixels regarded as the tree with training model but there is
not any ground-truth point annotation in the pixels. The predictions located in M f p are
considered as false positives or unlabelled predictions. For example, the wrong predicted
masks shown in Figure 10c are typical false positives, and the second part of this loss could
guide this loss term results reduce less false positive tree predictions so as to improve the
detection precision.

3.4. Application with Fast Orthophoto Mosaicing and Tree Counting

We design the interface and software development kit (SDK) to embed the integrated
tree counting pipeline into fixed wing drones. Nvidia Jetson Xavier NX could ad super
computation performance in small devices. The powerful accelerated computing ability is
enough to run deep learning-based neural networks in parallel for various AI application
systems. Thus, we insert the integrated vision framework into the Jetson Xavier NX device
with using a drone interface obtaining camera images and drone status parameters. When
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the region of plantation needs to be investigated, a way-point mission is automatically
generated with flight height and the overlap rate of captured sequential images. The aerial
orthophoto displayed in real time is incrementally updated with processing sequential
data.Then a well trained tree counting neural network is used to detect interesting trees
with generated orthophoto mosaicing.

This fully automatic integrated perception and analysis system requires no human
intervention at all. There are mainly two advantages for UAV-related applications: on
one hand, image mosaicing quality depends on the captured images quality, the real-
time-embedded system on UAVs could guarantee the quality of data captured with a
camera and ignore the negative impacts of communication links, which is suitable for
drone operations in large-scale and complex areas. On the other hand, fully autonomous
operation greatly improves work efficiency, which greatly reduces time, money and labor
costs. Thus, the proposed embedded integrated stitching and tree counting pipeline
improves the intelligence of the entire process and greatly reduces costs on the premise of
ensuring quality.

4. Experiments

In this experimental section, we focus on the integrated two-stage vision framework
with qualitative and quantitative analyses. First, we compare our real time generated
mosaicing to the state-of-the-art software Pix4DMapper for evaluating the effectiveness of
stitching aerial images algorithm. Second, we create the oil-palm and acacia datasets ob-
tained from fixed-wing UAVs and compare the proposed weakly supervised tree counting
algorithm with other state-of-the-art methods. The experimental hardware configuration
is as follows: Intel i7-9750H central processing unit (CPU), 32G random-access memory
(RAM), and Nvidia GeForce RTX 2060.

4.1. Results of Generating Orthophoto Mosaicing and DOM Quality Comparison
4.1.1. Comparision Experiments

To evaluate the applicability of the proposed method to tree counting task, we collect
hundreds of oil-palm sequential images from fixed-wing UAVs. Our algorithm could
process the acacia and oil-palm sequential data to generate mosaicing in real-time. The
overlapping rate between images is key for the quality of the stitching task. In order to
guarantee the overlapping rate, the criteria to consider for a new frame to be added to
the mosaic is related to the parameters of flight speed is V (m/s), flight height is h (m),
horizontal field of view (FOV) is θ, the overlapping rate is α, the interval of taking pictures
is t (s), from the Figure 3, the above-mentioned parameters meet the formula 10.

V <
(1− α) ∗ 2h ∗ tan(θ/2)

t
(10)

For collected oil-palm dataset, the flight height is 430 m, UAV speed is 26 m/s, ground
sampling distance (GSD) of the images is 8 cm, the overlapping rate is 90%, the focal
length is 5297 pixels, principal point x is 2928 pixels, the principal point y is 1683 pixels.
For collected acacia dataset, the flight height is 255 m, UAV speed is 24 m/s, ground
sampling distance (GSD) of the images is 3cm, the overlapping rate is 80%, the focal length
is 8359 pixels, principal point x is 2979 pixels, the principal point y is 1979 pixels.

The typical overview results of acacia and oil-palm datasets are shown in Figures 4 and 5
with some detailed screenshots. From the figures, we could find that the stitching procedure
could be able to generate live mosaicing with high quality, which is comparable to, and
even better than, that of the offline processing commercial software Pix4DMapper.

The multi-planar assumption is used in the constrained graph optimization step for
the stitching pipeline, and all images are fused and stitched with an adaptive weighted
multiband rendering algorithm and homography projection with no triangulation oper-
ation. Therefore, the lines in the sequential images could be kept straight easily with
the proposed method. By contrast, the orthophoto map obtained from Pix4DMapper are
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usually constructed with a 3D triangulation operation, which easily result in deformation
or blur of results, as demonstrated in Figure 5. The blue bounding box of Pix4DMapper
shows the blur condition. By the way, the stitching procedure of Pix4DMapper consists of
aerial triangulation, point cloud densification, mesh generation, mapping and orthophoto
generation, this offline method could often achieve great results in the case of abundant
image data. However, when the overlap rate of the images is low, there are two problems
that cannot be ignored. On the one hand, the lack of GNSS position information makes it
difficult for the algorithm to jointly locate the adjacent orbits for the positioning process.
On the other hand, smaller side overlapping rate leads to more errors in densification.
The combination of the two aspects will result in poor mosaicing. our proposed algorithm
combines GNSS information to optimize the pose, and removes redundant degrees of
freedom-based on the plane assumption, resulting in high positioning robustness in the
stitching procedure.

�

�

��

2ℎ ∗ ��� �
2

�

1 − ��
2ℎ∗����

2
 > �, then

� <
(1 − �) ∗ 2ℎ ∗ ��� �

2
�

ℎ

V (m/s): the flight speed;
t (s) : the interval of taking pictures;
h (m): flight height;
�: horizontal field of view (FOV);
�: the overlapping rate.

Figure 3. The relationship among the following significant parameters: flight speed is V (m/s), flight
height is h (m), horizontal field of view (FOV) is θ, the overlapping rate is α, the interval of taking
pictures is t (s). In order to guarantee the overlapping rate, the above-mentioned parameters should
meet the equation shown in the figure.

(a) Proposed Method (b) Pix4DMapper

Figure 4. Mosaic results of the proposed method on acacia dataset. Some screenshots are highlighted
to demonstrate the mosaic details. Our stitching quality is generally high compared with the offline
results of state-of-the-art commercial software Pix4DMapper.
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(a) Proposed Method (b) Pix4DMapper

Figure 5. Orthophoto results of the proposed stitching method on the oil-palm dataset. The results
show that the quality of live mosaicing is comparable to that of Pix4DMapper. Some details even
show that the output live mosaic looks better than offline-based commercial construction software
Pix4DMapper. The blue bounding box of Pix4DMapper shows the blur condition, which is not shown
in proposed method.

In addition, our method could handle low overlapping rate conditions, but
Pix4DMapper could not deal with them. The images are collected with an overlapping
rate of 30% for stitching comparision experiments between the proposed method and
Pix4DMapper. From the Figure 6, we could find that the proposed method is able to recon-
struct the entire region whereas Pix4DMapper can only reconstruct about 1/4 of region.
However, the 30% of overlapping rate is still challenging for our proposed methods, some
little misaligned parts could be found in the left result of figure.

(a) Proposed Method (b) Pix4DMapper

Figure 6. Images with low overlapping rate (30%) are collected for stitching comparision experiments
between the proposed method (a) and Pix4DMapper (b).

4.1.2. Computation Performance Analysis

Efficiency is one of our primary concerns in our fast tree counting system. The pro-
posed stitching method is compared with Pix4DMapper to validate the computational
performance. From the Table 1, our method is much faster than Pix4DMapper with the
same number and resolution images. Furthermore, compared to the offline-based method,
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the proposed real-time construction system even costs less hardware resources that con-
taining graphics processing unit (GPU) and random-access memory (RAM). Especially for
oil-palm sequential images, the number of which is 189 and the area is about 2.666 square
kilometers, the time cost for stitching task is just 2min19s using our proposed method,
which is about 1/40 of that using offline-based Pix4DMapper. The multi-planar assumption
and improved optimization method play a vital role for the stitching task.

Table 1. Time usage and peak source usage statistics for processing sequential aerial images dataset.
The results show that our algorithm is much faster than other commercial software Pix4DMapper
with less hardware resources usage.

Sequence Images Resolution Dataset Size
Time Cost Peak Source Usage

Ours Pix4DMapper Ours Pix4DMapper

acacia 8 6000 × 4000 162 MB 12 s 4 min 20 s 100%CPU, 57%GPU, 53%RAM 100%CPU, 72%GPU, 74%RAM
oil-palm 189 6000 × 3376 1.8 GB 2 min 19 s 94 min 24 s 100%CPU, 67%GPU, 70%RAM 100%CPU, 80%GPU, 92%RAM

4.1.3. Discussion of the Potential Uncertainties

There are some potential uncertainties of the proposed method which need to be
discussed. The yellow box of Figure 7 shows that the proposed stitching algorithm could
deal with the slight light changes conditions. The SIFT descriptor is invariant to image
rotation and scale changes, and has strong adaptability to 3D viewing angle changes and
illumination changes. The RootSIFT algorithm [60] is adopted to generate the descriptors
to further improve the matching quality and enhance the robustness of the stitching
procedure. However, low overlapping rate (30%) and fast-changing conditions will increase
the difficulty of the matching algorithm, which easily leads to bad stitching results like
misalignment phenomenon shown in blue box of Figure 7.

Figure 7. Discussion about the influence of fast-changing light condition and low overlapping rate
for our proposed stitching method. The yellow box shows the stitching result in slight light changes
condition. And the blue box displays the misalignment stitching result in low overlapping rate and
fast-changing condition.

4.2. Results of Point Supervised Tree Detection
4.2.1. Evaluation Metric

In the following detection experiments, mean absolute error (MAE) [66], root mean
squared error (RMSE) [41], true positive rate (TPR), precision and F1 are adopted as the
evaluation metrics to validate the effectiveness of the proposed pipeline. They are defined
as follows:

MAE =
1
N

N

∑
i=1
|ei| (11)
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RMSE =

√√√√ 1
N

N

∑
i=1
|ei|2 (12)

where ei = Ĉi − Ci, Ci and Ĉi are ground truth number and predicted number in the i-th
image, respectively. N is the number of tiles.

TPR =
TP

TP + FN
(13)

Prec =
TP

TP + FP
(14)

F1 =
2TP

2TP + FP + FN
(15)

where the true positives (TP) means the true predicted tree number, false negatives (FN)
represents the missing detected tree number, false positives (FP) is the false predicted tree
number.

4.2.2. Merged Distance Parameter Setting

After generating the orthophoto mosaicing with sequential aerial images, the large
scale orthophoto mosaicing is split into hundreds of tiles with a length and width of
256 pixels, which is effective for analysis with the http protocol and parallel computation.
As shown in Figure 8, the tree in boundary would be detected in tile 1 and 2, respectively;
the duplicate statistics for the boundary between the tiles will lead to inaccuracy counting
statistics. If the center point distance between two adjacent tree masks is less than the preset
merged distance, two points or more points would be fused into one point. Therefore, the
merged distance dα is used to filter the duplicate statistics to further correct the counting
results. To evaluate the results, if the ground-truth point is among the mask regions,
the predicted mask is regarded as the truth positive (TP). It could be seen that the dα is
significant to the experimental results. Thus, several pre-experiments are conducted to
obtain the proper value for parameter dα. According to the collected aerial images, we
define the dα range from 20 to 60, through several detection validation experiments, we
compute precision, recall, and F1 on acacia and oil-palm confused dataset under different
merged distances dα. From Figure 9, we could find that, 40 of dα is the best parameter
choice, which is used for the following experiments.

Tile 1 Tile 2

The tree is detected
 in the tile 1

The tree is also 
detected in the tile 2

Tile 2
The center point of 
the detected mask

center point distance

center point
 distance

< merged 
distance

The unit is pixel

The unit is pixel

Tile 1

Tile 1 Tile 2Tile 2Tile 1
256 pixel

256 
pixel

Figure 8. The description of the merged distance. If the center point distance between two adjacent
tree masks is less than the preset merged distance, two points or more points in the boundaries from
neighbouring tiles would be fused into one point.
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Figure 9. Precision, Recall, and F1 score under different dα over acacia and oil-palm confused dataset.
We could find that, 40 of dα is the best parameter choice for the following experiments.

4.2.3. Comparision Experiments

For the tree counting task, the proposed framework is compared with MCNN [67], HA-
CCN [68] and CAN [69], which completes tree counting task with generating density map
using the regression strategy. Table 2 shows that our results achieve the best performance
compared with above-mentioned methods. Good performance comes from two points:
firstly, these three methods directly give the predicted number with probability density
map without considering the individual’s localization. Secondly, after aerial stitching for
large scale areas, the mosaicing image is further split into hundreds of separated tiles.
If detection results of the single tile has several biases compared with ground truth by
using above mentioned MCNN [67], HA-CCN [68], and CAN [69] algorithms, bigger
biases will be generated for the whole map. By the way, we could find that the counting
performance of oil palm is better than that of acacia in Table 2. The main reason may come
from different properties of these two type trees. Carefully review the Figures 4 and 5, it is
obvious that bigger acacia trees are easily entangled with each other but this situation is
not serious for oil-palm tree, which undoubtedly increases the difficulty of acacia detection
with probability density map methods.

Table 2. The tree counting performance compared with MCNN, HA-CCN, and CAN on acacia and
oil-palm datasets.

Methods
Acacia Oil-Palm

MAE RMSE MAE RMSE

MCNN [67] 12.32 52.06 4.48 5.53
HA-CCN [68] 4.12 18.42 3.67 4.81

CAN [69] 3.35 12.06 2.49 4.12
Ours 2.135 3.274 2.068 3.159

In order to validate the effectiveness of the proposed framework in the localization
task, we conduct the comparison experiments with full supervised methods ike Faster
R-CNN [42] and FPN [70] methods, and some weakly supervised methods from image
level annotations, like WSDDN [71], PCL [72], and C-MIL [73]. The results are displayed
in Table 3, it could be seen that the proposed point supervised detection framework is
comparable to the strongly supervised detection methods and better than image level
weakly supervised algorithms. These weakly methods WSDDN [71], PCL [72], and C-
MIL [73] estimate the target tree localization with the feature response maps without
considering the aggregation of adjacent neighboring features. In addition, our method
only cost one-tenth memory compared with Faster R-CNN detection pipeline in training
and validation procedures, which is a lightweight framework beneficial to be deployed in
hardware devices with low calculation power.
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Table 3. The tree localization performance compared with Faster R-CNN, FPN, WSDDN, PCL,
and C-MIL on acacia and oil-palm datasets.

Methods Annotation
Acacia Oil-Palm

TPR Prec F1 TPR Prec F1

Faster R-CNN [42] boundingbox 0.972 0.978 0.975 0.965 0.942 0.953
FPN [70] boundingbox 0.974 0.976 0.976 0.979 0.988 0.984

WSDDN [71] image level 0.702 0.776 0.715 0.736 0.758 0.9750
PCL [72] image level 0.751 0.785 0.773 0.747 0.764 0.759

C-MIL [73] image level 0.826 0.879 0.868 0.847 0.864 0.858
Ours point level 0.979 0.985 0.982 0.974 0.952 0.963

4.2.4. Ablation Study

In this section, we explore the positive effects of each part of loss function in the
proposed method on the acacia and oil-palm datasets. Firstly, we just use the point-loss
term Lp to train the tree counting network, but the framework regards the whole image
as one tree mask in Figure 10b because of unbalanced and limited point supervision
information. Thus, the TPR, Precision and F1 score are very low in Table 4.

(a) Original Image (b) ATFENet+ℒ� (d) ATFENet+ℒ� +ℒ�
(c) ATFENet+ℒ� +
�X Gy yX G �� ℒ�

Figure 10. The qualitative results of tree counting network trained with different terms of the
proposed loss function. (a) Test images selected from acacia and oil-palm dataset. (b) Inference results
just using point loss. (c) Prediction results improved with point loss and the first term of separate
loss. (d) The performance both using point loss and separate loss.
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Therefore, the separate-loss term is introduced to encourage the network model to split
the whole image into individual tree masks according to the point labels. The visualizations
in Figure 10c,d show the effectiveness of this loss term. In addition, Figure 10d shows the
second part of separate-loss term penalize the false positives; from the Table 4, it could
be see that the proposed methods achieves good performance compared to bounding
box supervised methods and other weakly supervised methods on the above-mentioned
evaluation metrics.

Table 4. Ablation study of the proposed algorithm for tree localization performance.

Methods
Acacia Oil-Palm

TPR Prec F1 TPR Prec F1

ATFENet +Lp 0.062 0.147 0.087 0.075 0.141 0.098
ATFENet + Lp + Ls 0.979 0.985 0.982 0.974 0.952 0.963

4.2.5. Time Statistics

Random annotations and center click annotations. In order to evaluate the robust-
ness of our “point in” methods and further speed up labelling, we conduct experiments
with center click and random click point annotations. The random click Figure 11 is de-
signed to obtain the point annotations that have different offsets away from the center
points within the tree silhouette. From the experimental results in Table 5, we could find
that the performance of random click annotations is comparable to that of center click
annotations, but random click could help reduce great human labor compared with center
click annotations and other full supervised annotations. In fact, the point supervised loss
function could aggregate the connected image pixels into a complete mask for tree instance,
and separate the connected trees with predicted mask. Therefore, the labelling time is
greatly accelerated while guaranteeing the prediction accuracy.

Random click on acacia Random click on oil palm

Figure 11. The examples of random annotations on acacia and oil-palm datasets.

Table 5. The influence about tree counting performance with different annotations. Center-click and
random-click annotations are conducted on acacia and oil-palm dataset.

Methods
Acacia Oil-Palm

TPR Prec F1 TPR Prec F1

Center-click 0.979 0.985 0.982 0.974 0.952 0.963
Random-click 0.971 0.978 0.974 0.966 0.947 0.956

Time statistics with different annotation ways. We also consider the labeling time
under different annotation ways including point, bounding box, and mask annotation in
Figure 12 with labelme toolbox [62]. The annotation time cost for nearly 300 acacia trees is
shown in Table 6; it is obvious that point annotation way is extremely efficient in practical
applications. And the inference time of the proposed method is ten times faster than Faster
R-CNN, and the speed could reach 21fps.
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Table 6. The annotation time cost under different annotation ways including point, bounding box,
and mask annotation.

Sequence Number of Trees
Time Cost

Mask Annotation Bounding Box Point Annotation

acacia nearly 300 45 min 47 s 18 min 7 s 8 min 56 s

Point Annotation Bounding Box Annotation Mask Annotation

Figure 12. The annotation visualization with different annotation ways including point, bounding
box, and mask annotation with the labelme toolbox.

5. Conclusions

In order to realize fast tree detection task for UAVs, we present a novel integrated
vision stitching and detection framework with high efficiency and robustness. Firstly,
the orthophoto mosaicing is online and real-time generated with sequential aerial images,
a multiplanar hypothesis-based pose optimization method is proposed to estimate camera
poses. The number of parameters about reprojection error is effectively reduced; the method
could accelerate the calculation speed and achieve robust stitching performance with
sequential low overlap images in the embedded devices. Secondly, the point supervised
method can estimate the localization of trees and generate contour mask that is comparable
to fully supervised methods. The supervised label information is easy to be obtained, which
could be effective for an entire learning framework. The whole time usage by the two-
stage integrated vision stitching and detection framework is much faster than traditional
methods which use offline stitching method and supervised learning detection pipeline.
We evaluate the proposed pipeline using sequential UAV images captured in Indonesia;
the proposed pipeline achieves an F1-score of 98.2% for acacia tree detection and 96.3% for
oil-palm tree detection with online orthophoto mosaicing generation. Furthermore, this
two-stage vision pipeline is easily deployed into drones and the whole procedure requires
no human intervention at all.
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