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Abstract: A balanced dataset is generally beneficial to underwater acoustic target recognition. How-
ever, the imbalanced class distribution is always meted out in a real scene. To address this, a weighted
cross entropy loss function based on trigonometric function is proposed. Then, the proposed loss func-
tion is applied in a multi-scale residual convolutional neural network (named MR-CNN-A network)
embedded with an attention mechanism for the recognition task. Firstly, a multi-scale convolution
kernel is used to obtain multi-scale features. Then, an attention mechanism is used to fuse these
multi-scale feature maps. Furthermore, a cosx-function-weighted cross-entropy loss function is used
to deal with the class imbalance in underwater acoustic data. This function adjusts the loss ratio
of each sample by adjusting the loss interval of every mini-batch based on cosx term to achieve
a balanced total loss for each class. Two imbalanced underwater acoustic data sets, ShipsEar and
autonomous underwater vehicle (self-collected data) are used to evaluate the proposed network. The
experimental results show that the proposed network outperforms the support vector machine and a
simple convolutional neural network. Compared with the other three loss functions, the proposed
loss function achieves better stability and adaptability. The results strongly demonstrate the validity
of the proposed loss function and the network.

Keywords: underwater acoustic target recognition; imbalanced data; trigonometric loss; deep
learning; attention mechanism

1. Introduction

The underwater acoustic target recognition is an information processing technology
that uses the data obtained by passive or active sonar to distinguish the target type in these
data. Its key point is the target feature extraction. Underwater acoustic target recognition is
a challenging research direction on underwater acoustic signal processing, which serves as
a key technology in various marine applications, such as information acquisition, ocean
surveillance, ocean resource exploration, etc. [1,2].

The existing recognition methods consist of two main groups: Traditional recognition
methods and deep-learning-based methods. Traditional recognition methods are currently
used routinely. Its core lies in the hand-crafted feature extraction and classifier design [3–5].
For example, Su [3] adopted LOFAR spectrum, bi-spectrum, and other features to achieve
a better classification of underwater acoustic targets. However, the hand-crafted feature
extraction largely depends on the experience of the designer, so its scope of application
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is limited. In contrast, the deep-learning-based recognition method is data-driven, does
not rely on any prior information, and has good generalization. Compared with the
hand-crafted feature, the feature learned by deep network contains higher-order items and
achieves implicit relationships, which can better express the information of the target. As a
result, the deep-learning-based recognition method has become a hot research topic.

For deep learning method research, a balanced and large underwater acoustic dataset
is needed. However, the underwater acoustic dataset is often imbalanced, which is not
helpful for the research. In other words, the occurrence frequency of some classes in an
underwater acoustic dataset is high, while the occurrence frequency of some other classes
is low, which leads to the objective problem of imbalanced classification. Therefore, when
using deep learning methods for recognition, the recognition results tend to be skewed
toward the larger categories of targets.

At present, the application of deep learning in underwater acoustic target recognition
is not particularly extensive, especially the research on imbalanced targets is scarce [6–9].
Considering the complex marine environment, Li et al. [6] proposed a bi-Long Short-Term
Memory (bi-LSTM) network for underwater acoustic target recognition, which can learn
the temporal correlation of acoustic signals. Ferguson et al. [7] realized a Convolutional
Neural Network (CNN) on cepstrum data and achieved a high recognition rate. To address
the problem that line spectrum is not accurate enough for deep learning under low SNR,
Yang et al. [8] proposed an improved bicoherence spectrum and applied it to three deep
belief networks. The experimental results show that the proposed bicoherence spectrum
is more suitable for deep learning method than the traditional spectrum. Wu et al. [9]
converted signal into a time-frequency image (such as LOFAR) and entered it into CNN to
achieve feature extraction and classification of ships, which also achieved a high recognition
accuracy. All these works demonstrate that deep learning can be applied in underwater
acoustic target recognition tasks and can achieve noticeable progress.

The imbalance of datasets is a common problem in many fields, including speech and
computer vision [10–12]. Moreover, several attempts have already taken place in the field
of underwater acoustic target recognition.

The solutions for imbalanced data fall into two main categories: Rebalancing on
the data level and rebalancing on the algorithm level. Rebalancing on data level means
changing the data distribution using over-sampling and under-sampling. The use of
over-sampling on the data with low distribution density and under-sampling on the data
with high distribution density makes the distribution of data to be balanced [13,14]. With
balanced data, the accuracy improvement is obvious. However, this data rebalancing
method has obvious drawbacks, such as under-sampling, which can discard potentially
useful data.

On the other hand, rebalancing on the algorithm level means adjusting the training or
reasoning algorithms to resist the effect of data imbalance with the same training dataset.
A typical way to rebalance on the algorithm level is to optimize the loss function with the
weight of each class according to the number of samples. For example, Huang et al. [15]
proposed a quintuple-based Large Margin Local Embedding-KNN (LMLE-KNN) algorithm
to enhance the edges between clusters and outside clusters so that local margin can be
easily enforced to reduce any local class imbalance. Huang et al. [16] proposed a new
Cluster-based Large Margin Local Embedding (CLMLE) method based on LMLE and an
in-cluster loss function in accordance with CLMLE to solve the imbalance. Another way
is to design a new loss function to resist the disequilibrium. Dong et al. [10] proposed
a loss function named Exponentially Weighted Cross-Entropy Loss (EWCEL) to solve
the imbalance in the underwater acoustic target recognition task. EWCEL is achieved by
adding an exponential weight influence factor to the standard cross entropy loss. The
recognition accuracy achieved by EWCEL is higher than Focal Loss [12] in the underwa-
ter acoustic dataset with imbalanced targets and communication signals. Li et al. [17]
considered the imbalance problem from the perspective of gradient. Therefore, a new
gradient harmonizing mechanism (GHM) was proposed, and two loss functions, GHM-C
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and GHM-R equilibrium gradient flows were designed for classification and optimization.
Lin et al. [12] added a factor to the original cross-entropy loss to reduce the loss of easily
classified samples, while it pays more attention to difficult and misclassified samples. After
that, a higher recognition accuracy with the help of the new loss function is obtained.

To address the imbalance and poor robustness, two strategies are proposed to learn
distinguishing features. On the one side, the attention mechanism is used to fuse the
learned multi-scale features. The fusion module based on the attention mechanism is used
to highlight the dominant features to suppress high-intensity noise. On the other side, a
trigonometric cos(x) function weighted cross entropy loss function (CFWCEL) is designed
to deal with imbalanced data. Finally, a multi-scale residual-convolutional neural network
with an embedded attention mechanism (named MR-CNN-A) and CFWCEL is proposed
for target recognition. CFWCEL adds an impact factor to the standard cross entropy loss
according to the predicted probability of each sample. Different from EWCEL [10] and
Focal Loss [12], the CFWCEL decreases faster for negative examples and more gently for
positive examples. It is conducive to the convergence of imbalanced data.

The rest of this paper is organized as follows. Section 2 introduces the underwater
acoustic target recognition system based on MR-CNN-A. The results of the recognition
experiments and the imbalanced experiments are introduced and discussed in Section 3.
Finally, the conclusion is presented in Section 4.

2. Materials and Methods

Figure 1 shows the proposed whole recognition system framework. All the data used
in this paper are acquired by a passive sonar. After obtaining the acoustic data, several
features are obtained, like Mel-Frequency Cepstral Coefficients (MFCC) [18–20], which
have a natural anti-low frequency noise performance and can suppress underwater acoustic
noise to highlight the target information. Then, the MR-CNN-A network is used to realize
the extraction and fusion of a multi-scale feature using a multi-scale network and attention
mechanism. After that, the CFWCEL is used to realize the insensitivity to imbalanced data.
Finally, the fully connected layer with softmax is used as the classifier layer to obtain the
predicted category label.
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Figure 1. The recognition system framework.

As shown in Figure 1, the whole recognition framework involves MFCC feature
extraction, deep-network-based feature learning, and loss function optimization. The three
parts are described in detail in the following parts.

2.1. Feature Preparing

After the signal acquisition, we should prepare several features used as the input of
the deep network. In this part, we introduce three different features, like Mel-Frequency
Cepstral Coefficients (MFCC) [18–20], Hilbert-Huang Transform (HHT) [21], and Detection
of Envelope Modulation On Noise (DEMON) [22].

MFCC can be simply understood as an energy-based feature that processes the original
acoustic signal approximately as the convolution of a function. Mel is a frequency scale



Remote Sens. 2022, 14, 4103 4 of 15

unit of tones, namely Mel frequency, which represents a nonlinear feature of human ears.
Moreover, MFCC can be obtained by changing the time domain to the frequency domain
and carrying out nonlinear transformation to realize deconvolution. The realization process
of MFCC is not elaborated, which can be referred to in references [18–20].

HHT is a new time-frequency analysis method that adaptively separates time-frequency
signals of different scales by Empirical Mode Decomposition (EMD) [21]. It is no longer lim-
ited by the basis function of previous signal analysis methods, and it is a practical tool for
processing non-stationary signals, such as water acoustic signals. HHT is mainly composed
of EMD and Hilbert Spectrum Analysis (HSA). EMD is adaptively driven by data. It uses
signal local pole distribution characteristics to extract characteristic wave functions, which
is a set of decomposition functions—Intrinsic Mode Function (IMF) components. IMF can
introduce the components of different frequency scales. In other words, it is possible to
adaptively separate the fluctuations or trends of different scales in the signal and then
obtain a group of quantities that characterize the time-frequency distribution of the entire
signal. This feature has better recognizability.

Modulation-spectrum-based DEMON is a traditional spectrum, which shows a clear
physical meaning [22]. Moreover, DEMON represents the structure of a ship propeller.
DEMON is obtained from the modulation phenomenon of ship radiated noise when the
propeller rotates at different speeds in water. In other words, the amplitude of radiated
noise fluctuates with the change of acquisition time, therefore, the modulation envelope
can be extracted from the time waveform of ship radiated noise. Generally, there are
three demodulation methods, square low pass filter demodulation, absolute low pass filter
demodulation, and Hilbert filter demodulation. The square low-pass filter demodulation
method is used in our experiments.

2.2. MR-CNN-A Network
2.2.1. Attention Mechanism Based Multi-Scale Feature Fusion

Generally speaking, smaller-scale samples pay more attention to the overall outline,
while higher-scale samples pay more attention to the details of the target. With the fusion
of different scales of samples, more details of the target can be obtained. Consequently,
a multi-scale feature learning and fusion block are used in the proposed network. To
obtain the multi-scale feature, several convolutional kernels with different sizes are used as
the different scalers in which the size of convolutional kernel represents the scale size in
different channels. After feature extraction in each channel, an attention mechanism is used
to fuse the features in different channels. Figure 2 provides the attention-mechanism-based
feature fusion framework. Attention-mechanism-based feature fusion always makes CNN
intelligent enough to recognize important objects from a messy background and complex
scenes. In other words, the fusion can greatly improve its anti-noise ability for the target
recognition task. Attention-mechanism-based feature fusion can be simply understood
as a feature selector, which enhances good features and suppresses redundant features
(i.e., noise) [23–25]. The core idea of attentional mechanisms is to find the correlations
between different data. According to the correlations, a re-weighted feature is obtained
from the input feature.

As depicted in Figure 2, the input feature learned from the front network is described
as xi. After obtaining xi, a normal two-layer down-sampling block is firstly applied to
update the learned feature. Then, two different processes are applied to the updated
feature. In this processing step, a further down sampling layer is used to learn the global
information xai and a convolutional layer is used to learn the informative feature x1i. Then,
an updated feature x̃i is obtained after x1i with other convolutional layers. After that, xai
and x1i are transformed into the same dimension and added together. Following that, a
sigmoid layer is added to normalize the output to [0, 1]. Then the feature weight ai is
obtained, which is used to further highlight the informative characteristics and suppress
the noise. Finally, the feature x̃i is multiplied by the weight ai to obtain the final selected
feature xi+1, which is also used as the input for the next layer. For multi-scale feature fusion,
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the N feature with N scales are concatenated together, and the concatenated feature is used
as the input of the following fully connected layer.

Remote Sens. 2022, 14, 4103 5 of 16 
 

 

update the learned feature. Then, two different processes are applied to the updated fea-

ture. In this processing step, a further down sampling layer is used to learn the global 

information aix  and a convolutional layer is used to learn the informative feature 1ix . 

Then, an updated feature ix  is obtained after 1ix  with other convolutional layers. After 

that, aix  and 1ix  are transformed into the same dimension and added together. Follow-

ing that, a sigmoid layer is added to normalize the output to [0,1]. Then the feature weight 

ia  is obtained, which is used to further highlight the informative characteristics and sup-

press the noise. Finally, the feature ix  is multiplied by the weight ia  to obtain the final 

selected feature 1ix + , which is also used as the input for the next layer. For multi-scale 

feature fusion, the N feature with N scales are concatenated together, and the concatenated 

feature is used as the input of the following fully connected layer. 

 

Figure 2. Schematic diagram of attention-mechanism-based feature fusion block. 

2.2.2. Residual Learning Block 

Residual learning was firstly proposed by He et al. [26] to address the problems of 

gradient vanishing and explosion. The schematic diagram of its network module is given 

in Figure 3. As the figure shows, the input feature is set as ix  and the output feature is 

set as 1ix + , which is also the input of next layer. ( )f x  is the layer function without resid-

ual learning operation with two convolutional layers and one relu-nonlinear activation 

layer. The skip connection on the right side is called shortcut cross-layer connection, 

which is performed as an extra feature learning operation using a convolutional layer with 

1 1  kernel size. ( )g x  represents the shortcut cross-layer function. Finally, the output 

ix

Down Sampling

Down Sampling Convolution

Convolution

Convolution

Convolution

Down Sampling

Convolution

Global Average

Pooling

Global Average

Pooling

1ix

aix

1ai ix x+

Sigmoid

ia
i ia x

ix

Feature weight

extraction channel

CNN feature

extraction channel

Attentional mechanism

Operating area

1ix +

Figure 2. Schematic diagram of attention-mechanism-based feature fusion block.

2.2.2. Residual Learning Block

Residual learning was firstly proposed by He et al. [26] to address the problems of
gradient vanishing and explosion. The schematic diagram of its network module is given
in Figure 3. As the figure shows, the input feature is set as xi and the output feature is set
as xi+1, which is also the input of next layer. f (x) is the layer function without residual
learning operation with two convolutional layers and one relu-nonlinear activation layer.
The skip connection on the right side is called shortcut cross-layer connection, which
is performed as an extra feature learning operation using a convolutional layer with
1 × 1 kernel size. g(x) represents the shortcut cross-layer function. Finally, the output
feature can be obtained as xi+1 = f (xi) + g(xi). With shortcut cross-layer connection, the
block can be used to learn more information of the target and improve the recognition
accuracy. In view of this, we add a residual learning module to each convolution layer to
improve the feature learning ability.
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2.2.3. Function-Weighted Cross-Entropy Loss Function

As can be seen from Figure 1, the network model framework can be generally divided
into front-end network and back-end loss function. To deal with the data imbalance, cos x-
function-weighted cross-entropy loss function is proposed here. Suppose the probability
that a given sample belongs to class B is Pb, the sample is easy to classify when Pb ≥ 0.5,
while it is difficult to classify when Pb < 0.5. The cross-entropy loss obtains a small loss
value on the easily classified classes, and the model benefits little. However, in reality,
there are often more easy categories and fewer hard categories. As a result, these small loss
values would overwhelm the hard categories in the recognition part. However, the hard
samples are often important samples for special tasks. Therefore, in the new loss function
CFWCEL, the hard samples obtained much more attention by increasing their loss weight.
In detail, the loss of the easily classified samples is smaller and declines faster, and the loss
of the hard classified samples declines slowly to learn more category information. The
CFWCEL is defined as:

CFWCEL = − cosr(a × Pb) log(Pb) (1)

where Pb is the prediction probability of a given sample and 0 ≤ Pb ≤ 1. − log(Pb) is
the standard cross-entropy loss and 0 ≤ cosr(a × Pb) ≤ 1 is the added weighted factor to
readjust the weight of cross entropy loss. In detail, r is the regulator of cos(x), which takes
odd and even numbers greater than 0. a is the hyperparameter, which can be any value in
general. In particular, when a is 0, the CFWCEL turns out to be the standard cross-entropy
loss. The optimal values of r and a are mutually influenced. The two parameters need to be
adjusted in combination when evaluating the accuracy. It can be found that cosr(a × Pb) is
a periodic function, whose period is adjusted by adjusting the values of r and a.

Figure 4 shows the CFWCEL results with different r and a. We can see that when
r = 1 and a = 5π/8, 6π/8, the result of CFWCEL appears negative and its monotonicity
changes. A similar result is obtained with r = 3 and a = 5π/8, 6π/8. When r = 2, due to
the duality of even-order function, the negative results do not appear, but the monotonicity
still changes. As a result, the value of a should satisfy that a ≤ π/2. Among a ≤ π/2,
CFWCEL decreases fastest when a = π/2. Consequently, in our experiments a is set to π/2.

Figure 5 shows the CFWCEL results with different r under a = π/2. It can be seen that
the CFWCEL decreases fast as r increases. However, when r ≥ 3 and Pb ≥ 0.8, CFWCEL
decreases too fast and almost turns to 0. Such characteristic makes CFWCEL unable to
distinguish target information in extremely unbalanced data, which is not conducive to
the target recognition task. To avoid this situation, r is set to 2. Finally, CFWCEL is set to
CFWCEL = − cos2(π/2 × Pb) log(Pb) in our paper.

Figure 6 illustrates the comparison results between CFWCEL and other loss functions
in terms of absolute and relative loss value. In the comparison, the loss functions are set as
following:

Cross − Entropy Loss : CEL = − log(Pb)
Focal Loss : FL = −(1 − Pb)

γ log(Pb) γ = 1 or 2
Exponentially Weighted Cross − Entropy Loss : EWCEL = − exp(−β × Pb) log(Pb) β = 1 or 2
CFWCEL : CFWCEL = − cos2(π/2 × Pb) log(Pb)

Figure 6a shows the absolute value of each loss function, while Figure 6b displays the
value of each loss function relative to CEL. We can see that CFWCEL obtains the largest
absolute gradient at Pb = 0.5, which is exactly the boundary between the easy samples and
the hard samples. It means that CFWCEL is more sensitive to the difference between easy
samples and hard samples. Actually, CFWCEL pays more attention to the samples which
are difficult to separate and can better adjust their weights. It can also be seen that this
difference between easy samples and hard samples is obviously larger than EWCEL [10]
and Focal Loss [12], so CFWCEL is more suitable for an imbalanced dataset.
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2.2.4. The Whole Network

With the attention-mechanism-based multi-scale feature fusion and residual learning
block, a multi-scale residual-convolutional neural network with embedded attention mech-
anism (MR-CNN-A) is proposed for underwater target recognition, as shown in Figure 7.
MR-CNN-A is designed under a three-layer convolutional neural network (marked as
Simple-CNN model) [9,27], which is a common model for underwater acoustic target
recognition. In MR-CNN-A, the backbone feature extraction network consists of three
convolution layers with three convolution kernels of different sizes (like 3 × 3, 5 × 5 and
7 × 7, respectively). These kernels ensure the extraction of multi-scale features. For each
convolutional module, a residual learning block is added. After the backbone feature
extraction network, the attention-mechanism-based feature fusion module is followed
to fuse the obtained features. Then, a fully connected layer with a nonlinear activation
function is added to the network. Finally, a fully connected layer with softmax is used as a
classifier. ReLu nonlinear activation function layer is used in each convolutional operation
except the last fully connected layer. ReLu plays an important role in decision-making and
speeds up the learning process. It should be noted that the loss function adopted in the
experiments in this paper is somewhat different and is explained in the following part.
It is obvious that this model can theoretically realize noise resistance and achieve high
robustness classification.
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3. Results and Discussions

In this paper, two underwater acoustic data sets are used to verify this method:
ShipsEar [28] and Autonomous Underwater Vehicle (AUV) noise data.

ShipsEar [28]: It contains 11 kinds of ship audio data collected by a passive sonar in the
underwater environment, including 90 audio messages, such as ocean liner, pilot ship and
underwater background noise. Each message is divided into five categories according to its
size: Tiny class A (fishing boats, trawlers, mussel boats, tugboats and dredgers), Average
category B (motor boats, pilot boats and sailing vessels), Large category C (passenger ferry),
Larger category D (Ocean Liners and Ro-Ro Ships), and class E (background noise).



Remote Sens. 2022, 14, 4103 10 of 15

AUV dataset: The Autonomous Underwater Vehicle (AUV) noise data are collected
in a lake by our designed passive sonar. They are collected by a passive sonar-fiber
hydrophone with a sampling frequency of 50 kHz. The AUV speed is set to 3 knots or
5 knots. The depth of AUV is set to 0, 5, 10 m, respectively. The data are labeled to two
categories: Surface and underwater.

In the experiments, MR-CNN-A without CFWCEL is valued with a single feature first.
Then, MR-CNN-A with CFWCEL is valued. The software platform for the experiments in
this paper is TensorFlow. The hardware platform is a desktop computer with 16 G mem-
ory and GTX1080 graphics card. The support vector machine (SVM) multi-classification
is trained using multi-class error-correcting output code (ECOC) model [29] through bi-
nary learners with standard linear classification. The evaluation standard is the target
recognition accuracy.

3.1. Comparison of Feature Extraction Methods

The adaptation performance of MFCC, DEMON, and HHT features are analyzed firstly.
In this experiment, to exclude the influence of data imbalance, the 90 pieces of data in

ShipsEar are simply split, and each category retains 266 samples with a total sample number
of 1330. In AUV dataset, the same simple processing is performed as above, keeping the
total number of samples at 1462 and the number of each category at 731. Moreover, 20% of
the data is used for testing, and 80% of the data is used for training in the two datasets. The
recognition class in ShipsEar is set to 5, while the recognition class in AUV is set to 2. The
training learning rate is 0.001 and the number of epochs is set to 100. Moreover, the loss
function is set as cross-entropy loss.

For ShipsEar dataset, the dimension of MFCC used here is (98, 12), where 98 represents
the number of frames and 12 represents the dimension of MFCC feature eigenvalue. The
dimension of DEMON used here is (60, 50) and the dimension of HHT is (16, 350). For
AUV dataset, the dimension of MFCC, DEMON, and HHT is changed to (93, 12), (60, 50),
and (14, 350), respectively. Table 1 shows the recognition experiment results.

Table 1. Recognition results from different feature extraction methods.

Method Dataset Feature Accuracy/%

SVM [29]

ShipsEar
MFCC(98, 12) 81.58%

DEMON(60, 50) 86.06%
HHT(16, 350) 80.08%

AUV
MFCC(93, 12) 81.16%

DEMON(60, 50) 84.86%
HHT(14, 350) 53.08%

Simple-CNN [9,27]

ShipsEar
MFCC(98, 12) 96.24%

DEMON(60, 50) 30.08%
HHT(16, 350) 23.14%

AUV
MFCC(93, 12) 92.12%

DEMON(60, 50) 54.61%
HHT(14, 350) 49.15%

As seen from Table 1, DEMON with SVM [29] obtains the best recognition results
on the two datasets among the three features, 86.06% on the ShipsEar and 84.86% on
the AUV dataset. At the same time, when the Simple-CNN model [9,27] is used as the
classifier, MFCC with Simple-CNN model achieves the best recognition results, 96.24% on
the ShipsEar and 92.12% on the AUV dataset. It means that DEMON is suitable for SVM,
and MFCC is suitable for the CNN model. As a result, the MFCC is used as the input of
our proposed network MR-CNN-A.
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3.2. Comparison of Classification Methods

To verify the superiority of MR-CNN-A, the experiments with only MFCC feature are
performed. For the network, MFCC is set as the only input of MR-CNN-A, and the loss
function is set as cross-entropy loss. The setting of the dataset and feature extraction is the
same as Section 3.1.

3.2.1. Experimental Results with Different Methods

The experimental results of different methods with MFCC on the two datasets are
shown in Table 2.

Table 2. Experimental results with MFCC.

Dataset Method Accuracy/%

ShipsEar
SVM [29] 81.58

Simple-CNN [9,27] 96.24
MR-CNN-A 98.87

AUV
SVM [29] 81.16

Simple-CNN [9,27] 92.12
MR-CNN-A 98.26

On the ShipsEar dataset, both MR-CNN-A and Simple-CNN models [9,27] obtain a
higher recognition rate (96.24%, 98.87% respectively) than the traditional SVM (81.58%) [29],
with a greater improvement than 15%. These results verify the superiority of the deep
learning method. Compared with Simple-CNN, MR-CNN-A also achieves an improvement
of 2.63%. A similar result is obtained on the AUV dataset. On the AUV dataset, MR-CNN-A
makes a 17.1% improvement over SVM and a 6.14% improvement over Simple-CNN. It
demonstrates that MR-CNN-A gains much more robust features.

Using the results on ShipsEar as a baseline for comparison, the recognition accuracy
of Simple-CNN on AUV dataset decreases by 4.12%, while the recognition performance of
MR-CNN-A on AUV dataset only decreases by 0.61%. That means the feature extracted by
MR-CNN-A is more discriminating and stable than the feature extracted by the Simple-
CNN model. It is indirectly verified that the designed attentional-mechanism-based fusion
module acts as a feature selector to suppress noise. The fusion module rebalances the feature
weight, thus improving the recognition performance. The addition of residual learning also
proves that it can greatly reduce the training error and enhance recognition accuracy.

3.2.2. Experimental Results with Different Noise Levels

In order to further verify the robustness of MR-CNN-A, the above recognition experi-
ments were re-conducted with different gaussian noise levels on the ShipsEar dataset. The
noise level is described using the Signal to Noise Ratio (SNR). In the experiments, white
gaussian noise with specified power is added to the original audio data.

The experimental results under different SNR are given in Table 3. It can be seen that
MR-CNN-A is significantly superior to the Simple-CNN model [9,27] and SVM [29] in the
case of low SNR level. Among all the noise level, MR-CNN-A all achieves the best result.
Especially when SNR is −10 dB, MR-CNN-A also achieves the best result with an accuracy
of 88.36%. When SNR = −1 dB, −2 dB, −3 dB, compared with Simple-CNN, MR-CNN-A
achieves an improvement of more than 10%. Moreover, as the noise level increases, the
recognition results obtained by MR-CNN-A decline more slowly than Simple-CNN and
SVM. This also verifies that the attention-based-fusion block has a high tolerance to noise,
which can extract features with high robustness under the condition of low SNR.
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Table 3. Experimental results on ShipsEar under different SNR.

Dataset SNR/dB MR-CNN-A Simple-CNN [9,27] SVM [29]

ShipsEar

~ 98.87% 96.24% 81.58%

5 98.50% 92.10% 78.96%

3 97.50% 91.35% 78.20%

1 96.36% 90.98% 77.82%

0 95.50% 86.84% 75.20%

−1 95.12% 78.57% 72.06%

−3 93.62% 76.69% 70.30%

−5 91.74% 73.80% 69.50%

−10 88.36% 72.56% 64.30%

3.3. Experiments with Different Imbalanced Data
3.3.1. Data Imbalance Definition

Before the experiments, we first give the definition of data imbalance. As shown in
Equation (2), the data imbalance is measured as the degree of imbalance DI using the
standard deviation of given samples, where n represents the total number of categories and
pi represents the sample proportion of class i in whole samples. 1/n represents the average
proportion of all categories, then DI measured the distance from the mean value.

DI =

√
n

∑
i
(pi −

1
n
)

2
(2)

From Equation (2), we can see that DI satisfies the following three properties:
(1) In general, 0 ≤ DI ≤ 1.
(2) When the data are balanced with pi =

1
n , i = 1, 2, · · · , n, DI = 0.

(3) The value of DI has nothing to do with the order of pi, i = 1, 2, · · · , n. That
means, when the proportions of different types are exchanged with each other, DI remains
unchanged, DI

(
[· · · , pi, · · · , pj, · · · ]

)
= DI

(
[· · · , pj, · · · , pi, · · · ]

)
.

For example, assuming that there are five types of targets, accounting for 10%, 20%,
30%, 30% and 10% of the total 3000 samples, respectively, then DI = 0.2. In particular,
considering (0, 0, 0, 100%, 0), DI = 0.8944. Therefore, for the five categories, the highest
value of disequilibrium degree DI is 0.8944.

3.3.2. Parameter Selection in CFWCEL

In this part, we verify the influence of parameter a of CFWCEL in the imbalanced
data experiments. With the same degree of DI and different value of a, the recognition
performance of MR-CNN-A is tested, and Figure 8 presents the results. The dataset is
extracted from ShipsEar with a setting of DI and the total number of samples is 1500 with
80% for training and 20% for testing. The other setting of the network is the same as the
setting in Section 3.1. Two cases are used to verify the performance of CFWCEL, that are
DI ≈ 0.14(ABCDE : 0.1, 0.2, 0.3, 0.2, 0.2) and DI ≈ 0.53(ABCDE : 0.1, 0.1, 0.67, 0.1, 0.03).
Meanwhile, a is set to 0,π/8,π/4, 3π/8,π/2, 5π/8, 3π/4, 7π/8.

It can be seen from Figure 8 that when a = 0 (which means CFWCEL turns to be cross
entropy loss), the greater the DI is, the lower recognition performance is obtained. When a
is π/2, the best recognition result is obtained in each DI situation. As a result, a is set to
π/2 in our imbalanced data experiments.
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3.3.3. Imbalanced Data Experiments

In this part, the performance of CFWCEL is tested under different DI and a comparison
with other loss function is also applied. The network and the dataset parameters are the
same as the parameters in Section 3.3.2. There are 1500 samples with five classes (A, B, C,
D, E) in the dataset and 1000 samples for training while 500 samples for tests. The DI is
changed by changing the distribution of each class sample in the training data part, while
the DI in test data part is set to 0. The details of 10 types of DI setting are displayed in
Table 4.

Table 4. The data distribution of each used dataset and its DI.

DI of Train Data Train Samples Distribution Test Samples Distribution

0 0.2, 0.2, 0.2, 0.2, 0.2

0.2, 0.2, 0.2, 0.2, 0.2

0.1414 0.2, 0.2, 0.3, 0.1, 0.2

0.2449 0.1, 0.2, 0.4, 0.1, 0.2

0.3464 0.1, 0.2, 0.5, 0.1, 0.1

0.4472 0.1, 0.1, 0.6, 0.1, 0.1

0.5612 0.1, 0.1, 0.7, 0.05, 0.05

0.6708 0.05, 0.05, 0.8, 0.05, 0.05

0.7272 0.025, 0.025, 0.85, 0.05, 0.05

0.7826 0.025, 0.025, 0.9, 0.025, 0.025

0.8721 0.005, 0.005, 0.98, 0.005, 0.005

Figure 9 shows the recognition accuracy of four loss functions, like cross-entropy
loss, CFWCEL (r = 2, a = π/2), Focal Loss (γ = 2) [12] and EWCEL (β = 1) [10]. From
Figure 9, it can be observed that no matter what kind of loss function is used, the recognition
performance always decreases when DI increases. The realization of the anti-imbalance
loss function can only suppress the occurrence of this decrease and improve the recognition
rate relatively. It can also be seen that when DI ≤ 0.56, the results of CFWCEL, EWCEL,
and Focal Loss are almost the same, and all of them are higher than 90%. When DI > 0.56,
CFWCEL shows a clear superiority among the four loss functions. In detail, the recognition
accuracy of CFWCEL is higher than the other functions by about 1–3.5%. These results
effectively verify the effectiveness of CFWCEL. When DI increases, CFWCEL prompts
MR-CNN-A to pay more attention to hard samples.
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4. Conclusions

To address the low feature expressiveness and poor robustness caused by data im-
balance, a multi-scale feature fusion residual convolutional neural network (MR-CNN-A)
and a trigonometric weighted cross-entropy loss function (CFWCEL) are proposed. Firstly,
MFCC is used to suppress the low-frequency feature of underwater acoustic objects. Sec-
ondly, the attention module is used to rebalance the weight of each feature dimension
to achieve robust multi-scale feature extraction. Then, CFWCEL is used to realize imbal-
anced data feature learning. MR-CNN-A takes sufficient advantage of the input feature
(MFCC) through multi-scale attention-operations-based feature fusion, and searches for
useful features of imbalanced data adaptively through the use of CFWCEL. Experimental
results and analyses on the open source ShipsEar dataset and self-collected AUV dataset
show that MR-CNN-A achieves the best results among other methods, like SVM [29] and
Simple-CNN model [9,27]. It is worth noting that MR-CNN-A shows good stability against
gaussian noise and data imbalance. In future research, MR-CNN-A and CFWCEL will be
generalized and verified on other different datasets.
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