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Abstract: Timely and accurate information on the spatial distribution of urban trees is critical for
sustainable urban development, management and planning. Compared with satellite-based remote
sensing, Unmanned Aerial Vehicle (UAV) remote sensing has a higher spatial and temporal resolution,
which provides a new method for the accurate identification of urban trees. In this study, we aim
to establish an efficient and practical method for urban tree identification by combining an object-
oriented approach and a random forest algorithm using UAV multispectral images. Firstly, the
image was segmented by a multi-scale segmentation algorithm based on the scale determined by the
Estimation of Scale Parameter 2 (ESP2) tool and visual discrimination. Secondly, spectral features,
index features, texture features and geometric features were combined to form schemes S1–S8, and
S9, consisting of features selected by the recursive feature elimination (RFE) method. Finally, the
classification of urban trees was performed based on the nine schemes using the random forest (RF),
support vector machine (SVM) and k-nearest neighbor (KNN) classifiers, respectively. The results
show that the RF classifier performs better than SVM and KNN, and the RF achieves the highest
accuracy in S9, with an overall accuracy (OA) of 91.89% and a Kappa coefficient (Kappa) of 0.91. This
study reveals that geometric features have a negative impact on classification, and the other three
types have a positive impact. The feature importance ranking map shows that spectral features are the
most important type of features, followed by index features, texture features and geometric features.
Most tree species have a high classification accuracy, but the accuracy of Camphor and Cinnamomum
Japonicum is much lower than that of other tree species, suggesting that the features selected in
this study cannot accurately distinguish these two tree species, so it is necessary to add features
such as height in the future to improve the accuracy. This study illustrates that the combination of
an object-oriented approach and the RF classifier based on UAV multispectral images provides an
efficient and powerful method for urban tree classification.

Keywords: multispectral image; Unmanned Aerial Vehicle (UAV); random forest; tree species
classification; object-oriented

1. Introduction

As an essential part of the city, urban trees provide many ecological, economic, and
social benefits to the people living and working in the cities [1–3]. With the deepening of
urbanization, the ecological benefits of urban trees have become prominent. However, the
ecological benefits of urban trees may vary significantly with different tree species, planting
structures and location environments [4]. Therefore, to optimize the management of urban
trees to maximize their ecological value, it is necessary to acquire accurate and timely
information about their species and distribution. Moreover, the information about their
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species and location also plays a vital role in running the ecological models and achieving
an accurate assessment of their ecological value [5]. Therefore, it is vital to explore the
means to accurately and timely identify the species and map the distribution of urban trees.

Traditionally, the collection of tree information has primarily relied on labor-intensive
field surveys, which are inefficient and costly. With the development of remote sensing
technology, satellite-based remote sensing has become a critical alternative for tree identifi-
cation, for it can attain images of a large area once [6]. However, it has the disadvantages
of an extended return period, low resolution, high price, and fixed orbit, which cannot
meet the requirements of tree monitoring [7]. The standard remote sensing platform has
gradually transformed into a small and lightweight Unmanned Aerial Vehicle (UAV) plat-
form. Since the flight height of the UAV, generally dozens to hundreds of meters above the
ground, is much lower than that of other aerial platforms, it can provide a higher spatial
resolution and effectively reduce the impact of clouds on the image quality [8]. Recently,
UAV technology has been used for various remote sensing applications such as agriculture,
hydrology, and ground deformation monitoring [9–11]. Moreover, the UAV is more flexible
and has a shorter return cycle, as it can fly according to the route set by the user. The UAV
can be equipped with sensors of different kinds, such as RGB, multispectral, hyperspectral
and LiDAR [8]. Although UAVs equipped with hyperspectral and LiDAR sensors can
provide more spectrum features or structural information, they also cost more, restricting
their promotion and application in various fields [12]. Similarly, UAVs equipped with RGB
sensors possess the characteristics of high temporal and spatial resolution and low cost [13].
Still, they are able to provide far less spectrum information than a hyperspectral sensor,
thus limiting their application in recognition of various targets, especially in vegetation
discrimination [14]. Otherwise, UAVs equipped with multispectral sensors can attain an
image with more spectrum features than possible with RGB, while also having a much
lower cost than that of hyperspectral sensors and LiDAR, thus representing a good balance
between price and image quality, which shows irreplaceable advantages in identification of
complex tree species and promising potential with respect to their promotion.

Traditional classification methods are mainly based on the pixel, utilizing only the
spectral features of various pixels [15]. Therefore, pixel-based classification methods are
prone to the salt-and-pepper phenomenon, that is, the same category will be classified
into different categories due to the considerable spectral variation. In contrast, object-
oriented methods, which use homogenous objects obtained through segmentation instead
of pixels as a classification unit, can make full use of other features [16], such as geometric
features, texture features, etc. However, this may lead to a high degree of data redundancy,
as the dimensions of the features used in object-oriented classification methods increase
significantly. The capacity of traditional algorithms is limited when dealing with high-
dimensional data, and therefore it is necessary to develop new algorithms. Random
forest (RF) is a new algorithm that integrates multiple trees based on the idea of ensemble
learning, and it can handle thousands of input variables without reduction and evaluate
the importance of input variables [6]. It is good at processing non-parametric and high-
dimensional data, and has a solid anti-overfitting ability and a high computational efficiency.
It has been widely used in biology, medicine, remote sensing, and other fields [17–19].

Because object-oriented methods and the RF algorithm have their own advantages
in data processing, many scholars have recently tried to combine them to perform image
classification in remote sensing. Jean et al. [20] developed a wetland inventory of the Conne
River watershed using an object-oriented method and RF with an overall accuracy (OA)
of 92% and a Kappa coefficient (Kappa) of 0.916. Comparing multiple classifiers, Wang
et al. [21] found that the method based on an object-oriented approach and the random
forest classifier attained a higher accuracy of 91.3% at the single tree scale. Although
some achievements have been made in studies based on object-oriented and random forest
methods, the current studies are primarily in wild regions where trees occur in large patches
and are generally spread over a large expanse to form a huge forest. However, the urban
environment is much more complex than wild regions, as trees are usually scattered around
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buildings and roads. The enormous environmental differences that make the methods
of tree classification suitable for wild areas not applicable to urban tree identification.
Moreover, most of the current research presenting satisfactory results is based on expensive
hyperspectral data, and fewer studies are based on UAV multispectral data.

In this study, we performed urban tree classification based on a method combining an
object-oriented approach and a random forest algorithm using UAV multi-spectral imagery.
The main objectives of this study were: (1) to compare the performance of RF and the
other two algorithms support vector machine (SVM) and k-nearest neighbor (KNN) under
various schemes; (2) to determine the importance of different features in the classification of
urban trees; and (3) to map the distribution of urban trees based on the optimal scheme for
every algorithm. It is expected that through the verification and analysis of the classification
method, a practical and efficient identification method of urban tree species can be obtained,
providing a reference for the monitoring, management, and protection of urban trees.

2. Materials and Methods
2.1. Study Area

The study area (119◦51′E, 26◦07′N) is located in the Mawei District, Fuzhou City,
Fujian Province, China (Figure 1). This area is characterized by a semi-tropical monsoon
climate with an annual sunshine duration of 1700~1980 h, an average annual temperature
of 18~26 °C and an annual rainfall of 900~2100 mm. The study area is very flat, with an
altitude of 9 m (ASL). The main tree species in the study area are Banyan, Eucalyptus, Willow,
Alstonia scholoris, Camphor, Cinnamomum Japonicum, and Palmae plants, which are typically
representative of urban trees in Fuzhou city.
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Figure 1. The RGB image of the study area.

2.2. UAV Image Acquisition and Preprocessing

The aerial photography was performed using a DJI UAV (DJI Technology Co., Ltd.,
Shenzhen, China) on 11 June 2021. To avoid the influence of shadows, we chose a period
with sufficient light and cloud for aerial photography, and the data were acquired during
the time from 10:00 am to 15:30 pm. The UAV was equipped with five multispectral camera
lenses (blue: 450 ± 16 nm, green: 560 ± 16 nm, red: 650 ± 16 nm, red edge: 730 ± 16 nm,
near-infrared: 840± 26 nm), each of which had a resolution of 2 million (1600× 1300) pixels.
The route planning was completed using DJI Pro (DJI Technology Co., Ltd., Shenzhen,
China) with a flight altitude of 60 m, a heading overlap of 70%, and a side overlap of 65%.
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A total of 6846 images were acquired, of which each position contained 1 RGB image and
5 single-band images, and the spatial resolution of each image was about 0.01 m. The
software DJI Terra 2.3.3 (DJI Technology Co., Ltd., Shenzhen, China) was used to construct
an image mosaic, the ENVI5.3 was used for stacking of single-band images and image
cropping, and an orthophoto image with a spatial resolution of about 0.01 m was produced.
The true color image of the study area is shown in Figure 1.

2.3. Research Methods

In this study, a method for urban tree classification using an object-based approach
and machine learning algorithms based on UAV multispectral images is proposed. The
classification process mainly consists of the following four steps (Figure 2): (1) segmen-
tation, which includes segmentation scale selection and image segmentation; (2) feature
combination, in which 9 schemes have been designed, where S1–S8 were designed based
on feature combination, and S9 contains all the preferred features; (3) classification imple-
mentation, in which the RF, KNN and SVM classifier are used to classify the tree species;
(4) accuracy evaluation, in which the OA, Kappa and F1-Score are selected to evaluate the
classification accuracy; and (5) random forest classification result analysis.
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2.3.1. Image Segmentation

Recently, the object-oriented approach has been increasingly applied to remote sensing
image classification. Segmentation is the first step in object-oriented classification, and the
results directly influence the classification accuracy. Three main parameters must be set:
scale, shape, and compactness. If the scale is too large, it will lead to incomplete image
segmentation, resulting in multiple categories within one object. If the scale parameter is
too small, the image segmentation will over-segment and increase classification difficulty.
In this study, the ESP2 tool combined with visual identification was used to confirm the
optimal scale and all image segmentation processes were done in eCognition Developer
9.0 software (Trimble Germany GmbH, Munich, Germany). The quantitative evaluation
indicators of the ESP2 is local variance (LV) and rates of change of LV. When the value of
the change rate of LV reaches its maximum, the segmentation scale corresponding to this
point is a relatively optimal segmentation scale. Images were segmented on eCognition
using alternate scales obtained by the ESP2 tool, and the final scale was determined by
visually comparing the segmentation effects.

2.3.2. Object Features

a. Spectrum features (SPEC) include the average or standard deviation of the five bands
(blue, green, red, red edge and near-infrared), the maximum difference, and overall
brightness value, amounting to 12 in total.

b. Index features (INDE) include RGR, VARI, SIPI, SR, TVI, NDGI, NDVI, NDWI, CIWI,
MSWI, DVI, RVI, amounting to 12 in total (Table 1).

Table 1. The formula of index features.

Index Features Formula Reference

CIWI NDVI + RE [22]
DVI NIR − RE [23]

NDVI (NIR − R)/(NIR + R) [24]
NDGI (NIR − G)/(NIR + G) [25]
NDWI (G − NIR)/(G + NIR) [26]
RGR R/G [27]
SR NIR/RE [28]

SIPI (NIR − B)/(NIR + B) [29]
VIopt 1.45 × (NIR × NIR + 1)/(RE + 0.45) [30]
TVI 60 × (NIR − G)/100 × (NIR + G) [31]

VARI (G − R)/(G + R) [32]
GOSAVI (1 + 0.16) × (NIR − G)/(NIR + G + 0.16) [33]

c. Texture features (GLCM) include mean (GLCM_Mean_All), standard deviation
(GLCM_SD_All), entropy GLCM_Ent_All), homogeneity (GLCM_Homo_All),
contrast (GLCM_Con_All), dissimilarity (GLCM_Diss_All), angular second
moment (GLCM_Ang_All) and correlation of Gray-level co-occurrence matrix
(GLCM_Corre_All), amounting to 8 in total (Table 2).

Table 2. Formula and description of GLCM features.

Feature Type Formula Parametric Descriptions

Mean
quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)× i Degree of texture regularity

Standard deviation
√

quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)× (i−Mean) Deviation between pixel gray value and mean
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Table 2. Cont.

Feature Type Formula Parametric Descriptions

Entropy
quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)× ln p(i, j)
Measures the degree of the disorder among

pixels in the image

Homogeneity
quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)× 1
1+(i+j)2

Texture uniformity

Contrast
quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)× (i− j)2
Measures the contrast based on the local gray

level variation

Dissimilarity
quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)× |i− j| Texture contrast

Angular second moment
quantk

∑
i = 0

quantk

∑
j = 0

p(i, j)2
Measures the uniformity or energy of the gray

level distribution of the image

Correlation
quantk

∑
i = 0

quantk

∑
j = 0

(i−Mean)×(j−Mean)×p(i, j)2

Variance

Measures the linear dependency of gray levels
of neighboring pixels

Note: here, i, j are the rank coordinates of the element in the image, p(i, j) is the gray joint probability matrix, and
quantk is the order of gray-level co-occurrence matrix.

d. Geometric features (GEOM) include area, length/width, length, width, border length
(Border_length), shape index (Shape_index), density, main direction (Main_direction),
asymmetry, roundness, boundary index (Border_index), number of pixels (No_pix),
compactness, volume, ellipse fitting, rectangle fitting (Rect_Fit), maximum ellipse
radius (Rad_largest_ellipse), minimum ellipse radius (Rad_smallest_ellipse), amount-
ing to 18 in total.

2.3.3. Sub-Feature Sets Construction for Different Schemes

To understand the effects of different features on the classification result, nine kinds of
feature subsets were built to form nine different classification schemes in this study (Table 3).
S1 contains only spectral features, while S2 (SPEC + GLCM) and S3 (SPEC + INDE) add tex-
ture features and index features based on spectral features, respectively. S4 (SPEC + GEOM)
contains spectral features and geometric features, while S5 (SPEC + GLCM + INDE) and
S6 (SPEC + GLCM + GEOM) add index features and geometric features based on S2,
respectively. S7 (SPEC + INDE + GEOM) adds geometric features based on S3, S8 (All)
includes all feature types and S9 (All_RFE) includes features selected by the recursive
feature elimination (RFE) method [34].

Table 3. The feature subsets of various schemes.

ID of
Schemes Feature Subsets SPEC GLCM INDE GEOM Total

Features

S1 SPEC 12 12
S2 SPEC + GLCM 12 8 20
S3 SPEC + INDE 12 12 24
S4 SPEC + GEOM 12 18 30
S5 SPEC + GLCM + INDE 12 8 12 32
S6 SPEC + GLCM + GEOM 12 8 18 38
S7 SPEC + INDE + GEOM 12 12 18 42
S8 All 12 8 12 18 50
S9 All_RFE 12 6 12 30

Note: All_RFE consists of features optimized by the RFE method, including GLCM_SD_All, GLCM_Corre_All,
GLCM_Con_All, GLCM_Homo_All, GLCM_Diss_All, GLCM_Mean_All, all spectral features, and index features.
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2.3.4. Training and Verification Samples

According to the approximate area of different categories in the image, the sampling
number of twelve categories was determined (Table 4). The total number for different
categories ranged from 60 to 150. To ensure that the proportion of each category in the
training dataset is consistent with that in the verification dataset, the stratified sampling
method was used to construct the training and the verification dataset. Random sampling
was adopted for each category at a ratio of 6:4 (Table 4), among which the training sample
(60%) was used to build the classification model, and the verification sample (40%) was
used to verify the classification accuracy.

Table 4. Training and validation samples.

Category Total Samples Training Samples Validation Samples

Alstonia scholaris 90 54 36
Banyan 150 90 60

Camphor 80 48 32
Eucalyptus 110 60 40

Willow 90 54 36
Cinnamomum japonicum 90 54 36

Palmae plants 80 48 32
Shrub 140 84 56
Lawn 160 96 64

Building 150 90 60
Road 150 90 50
Water 60 36 24

2.3.5. Classifier

RF is a non-parametric learning method whose classification results are determined
by multiple decision trees. Compared with other classifiers, RF has the advantages of being
less prone to overfitting and reducing the impact of outliers, leading to higher accuracy of
the classification in many studies. There are two important parameters for the RF classifier:
the number of decision trees (ntree) and the number of features contained in each decision
tree (mtry). Firstly, the number of decision trees was set as 1000, and the mtry was traversed
from 0 to 50 with an interval of 1 to determine the optimal mtry based on the out-of-bag
(OOB) error rate. Then, the number of features was set to the optimal value, and the ntree
was traversed from 0 to 1000 with an interval of 1, and the number of decision trees with
the smallest out-of-bag error was the optimal value. The importance of the features in each
classification scheme was determined based on the mean decrease in accuracy.

SVM is a generalized linear classifier that performs binary classification on data
according to the supervised learning method, and its decision boundary is the maximum
margin hyperplane that solves the learning sample [34]. KNN is a non-parametric method
that assumes that elements of similar classes are close to each other. The distance of the
unknown object from the k nearest neighbors can be measured. If most of the k nearest
samples near the unknown sample belong to a certain category, the unknown sample
would also be classified as the category [35].

The RF, SVM and KNN algorithms were performed by the randomForest, e1071 and
kknn packages of R programming language, respectively.

2.3.6. Accuracy Evaluation

To evaluate the classification accuracy of the model, the OA [36], Kappa [36] and
F1-Score [37] are chosen which could be calculated based on the confusion matrix. The
OA is a ratio representing the number of correctly classified samples to the total number,
which is between 0 and 1. The closer the ratio is to 1, the higher the classification accuracy.
The Kappa measures the consistency between the true category and the predicted one
by the model. The higher the Kappa, the higher the classification accuracy. The F1-Score
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comprehensively considers the recall rate and the precision rate, and the recall rate is high,
indicating that the model is more inclined to regard a sample as a positive sample. A high
precision rate means that the model is more cautious in predicting. F1-Score is a weighted
average evaluation index, with a value range of [0, 1]. The closer the value is to 1, the
higher the accuracy. The calculation formula is as follows, respectively.

OA(%) =
∑n

i=1 Pii

N
× 100 (1)

Kappa =
N ∑n

i=1 Pii −∑n
i=1(Pi+ × P+i)

N2 −∑n
i=1(Pi+ × P+i)

(2)

UA(%) =
Pii
Pi+
× 100 (3)

PA(%) =
Pii
P+i
× 100 (4)

F1 =
2·UA·PA
UA + PA

(5)

In the formula, n is the total number of classes, N is the total number of validation
samples, Pii is the number of correctly classified samples in the i-th row and i-th column
of the confusion matrix, Pi+ and P+i are the total number of samples in the i-th row and
i-th column.

Since the result of each run of the RF would have a slight difference, after determining
the optimal values of the number of features and the number of decision trees, each model
was run 2000 times before its accuracy is evaluated.

3. Results
3.1. Image Segmentation in eCognition

The estimation results of the scales using the ESP2 tool are shown in Figure 3. Six
peak values, including 115, 125, 142, 188, 275 and 285, were selected as alternatives to the
optimal scales. By examining the segmentation results based on those scales (Figure 4), it
can be seen that the urban trees were over-segmented at scales from 115 to 188, while they
were segmented well at scales of 275 and 285. Carefully comparing the segmentation effects
based on the two scales (275 and 285), we finally chose 275 as the optimal segmentation scale.
The shape index and compactness were set to 0.1 and 0.5 after comprehensively considering
the topography of the study area and the distribution of the objects to be classified.
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3.2. RF Parameter Tuning

The results of RF parameter tuning showed that, when the decision tree was set to
1000, the OOB error rates of different schemes showed a similar trend of first decreasing
and then fluctuating as the number of features increased (Figure 5). When the OOB error
rate of each scheme reached the lowest value, its corresponding number of selected features
was the optimal value. Based on the optimal number of features, the OOB error rates of all
schemes showed a similar trend, decreasing first and then fluctuating within a small range,
as the number of decision trees increased. The best combination of the number of features
and decision trees for S1, S2, S3, S4, S5, S6, S7, S8 and S9 were (2, 747), (7, 154), (6, 985),
(9, 612), (14, 546), (12, 885), (15, 294), (30, 176), and (16, 770), respectively.

3.3. Accuracy Assessment

The classification results indicate that RF has a higher OA and Kappa than SVM and
KNN in every scheme (Figure 6). In S9, with the highest accuracy among all schemes, the
OA of RF is 4.67 and 4.49 percentage points higher than that of SVM and KNN, respectively.
Therefore, it can be seen that the RF algorithm performs better at urban tree identification
than the other two.

The best result for the RF was achieved in S9, with an OA of 91.89% and a Kappa
of 0.91, and S8 also achieved high accuracy, with an OA of 91.15% and a Kappa of 0.90.
However, the accuracy of S8 using all features was lower than that of S9 using only the
preferred feature set. It can be seen that feature optimization using the RFE method is
conducive to improving accuracy. Analyzing the changes in accuracy, it can be found that
different feature sets have different effects on accuracy. Adding index features and texture
features based on S2 and S3, the OA increased by 5.4% and 2.5%, respectively. However,
by introducing geometric features based on S2 and S3, the OA was decreased by 0.6% and
0.1%, respectively, which shows that index and texture features have a positive impact on
OA, while geometric features have a negative impact on OA.
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As shown in Figure 7, the classification accuracy of each category varies significantly.
It can be seen that the accuracy for tree species is slightly lower than that for non-tree
species. The accuracy for most tree species is larger than 90%, while the accuracy for
Cinnamomum japonicum and Camphor is lower than other tree species. The accuracy for
Camphor is mostly less than 80%, which is far lower than that for other tree species, and
the accuracy for Cinnamomum japonicum is even lower than 70% in S1 and S4. It is worth
noting that the addition of geometric features leads to a significant decrease in the accuracy
of almost all categories, which shows that geometric features play a negative role in urban
tree classification.
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3.4. Feature Importance

The feature importance results show that different feature types play different roles in
urban tree classification (Figure 8). The importance of spectral features and index features
is more similar. Still, it can be observed that when the scheme has both spectral features
and index features among the top 20 important features, the number of spectral features
is always slightly greater than that of index features, which means that spectral features
are relatively more important. Texture features are less important than spectral and index
features, because there are no more than five texture features in the top 20 most important
ones in S5, S6, S8 and S9, and the ranking of texture features is lower than spectral and
index features, as well. The geometric features are the least important features among the
four selected, for neither S8 nor S9 have geometric features in the top 20. Therefore, among
the four types of feature, the spectral features are the most important ones, followed by the
index features, texture features, and geometric features.
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Although SD_G (SPEC) ranked first in some schemes (S1, S3, S4 and S5), it is evident
that the GLCM_SD_All (GLCM) is the most important feature for discriminating tree
species, for GLCM_SD_All has a higher ranking when there are both spectral features
and texture features in the scheme. Mean_SR (INDE), Mean_B (SPEC), GLCM_Corre_All
(GLCM), SD_RE (SPEC) and Max_diff (SPEC) also rank higher in the top 20 important
features. Generally, each feature in the spectral feature set shows a similar ranking in
different schemes. Mean_SR, an index feature combined with the near-infrared band and
the red-edge band, ranks first among all the index features, which means that both the near-
infrared band and the red-edge band play a significant role in tree species identification.

3.5. Classification Map of the Study Area

The classification map of the study area of each classifier (RF, SVM and KNN) based on
the best scheme shows that the RF classifier performs better than the other two (Figure 9).
Generally, the RF could accurately identify most of the tree species. It can be seen from
the enlarged image that the RF algorithm was able to accurately recognize Willow, while
there was a higher rate of misclassification for the other two classifiers, especially for
SVM. In terms of non-tree species recognition, RF also had the highest accuracy. RF
was able to identify most buildings and roads, while SVM and KNN failed to make a
complete identification for the building and also misclassified many roads as belonging to
the grass category. From the classification prediction map, it can be seen that RF was able
to identify both tree species and non-tree species with higher accuracy than the SVM and
KNN algorithms.
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4. Discussion

Our study indicated that the RF classifier performed better than SVM and KNN
in the tree classification. This is consistent with many research results indicating that
RF has higher accuracy than SVM and KNN [34,35]. The RF classifier provides its final
classification result by means of a vote from its multiple decision trees. Therefore, it can
process high-dimensional data directly and could be less affected by noise [36]. The SVM
seeks the optimal classification surface in the case of linear separability. It was initially
proposed to solve the binary classification problem, but there are some limitations when
applied to multi-category classification [38]. The KNN is a simple and easy-to-implement
classification algorithm that mainly performs classification on the basis of the similarity
between training samples and test samples [39]. However, if the objects to be classified in
the study area are complex, it is prone to misclassification and omission. Therefore, the RF
classifier, with a strong anti-overfitting and strong generation ability, is a suitable option
for tree species identification, and it can still give stable results even with more complex
datasets. In addition to SVM and KNN, artificial neural network (ANN) is also a hotspot
algorithm for land-use/land-cover mapping, yet many studies indicate that RF has a higher
accuracy than ANN [40].

The accuracy of each scheme for the RF classifier varies greatly, and S9 achieved the
best classification results among all nine schemes. A possible reason for this is that S9 has
the preferred feature set through the recursive feature elimination method, which not only
retains the important features for classification, but also eliminates feature redundancy,
improving model performance. It can be found that the introduction of geometric features
leads to a decrease in accuracy in the various schemes, which means that the geometric
features have a negative effect on classification accuracy. Geometric features, including
width, area, length, and other information, not only provide useful information for tree
species identification, but also lead to feature redundancy due to the increase in the number
of features, resulting in reduced accuracy [39,41]. The segmentation scale is an important
factor affecting accuracy for object-oriented classification [42]. Although ESP2 was selected
to assist in determining the optimal segmentation scale in this study, the ESP2 could only
provide several alternatives for optimal scales, and the final optimal scale still needs to
be determined through visual discrimination, which cannot be completely objective or
automated. In the follow-up research, it is necessary to explore the method of automatic
determination of segmentation parameters to further increase accuracy and the level
of automation.

The F1-Score was calculated to evaluate the ability of the RF classifier to identify every
tree species. The results indicated that the Camphor and Cinnamomum japonicum had a lower
F1-Score than other tree species, and the latter even had an F1-Score lower than 70% in
S1 and S4. This may have occurred because Camphor and Cinnamomum japonicum both
belong to the same family (Lauraceae), and possess similar leaf shape, tree-crown shape,
and spectral characteristics. Therefore, the use of the spectral, index, texture and geometric
features in the current study had little effect on distinguishing them accurately. However,
the tree species have different heights, with the first one ranging from 12 to 17 m and the
second one reaching 30 m, so the separability between them may be significantly increased
with the inclusion of height features. Conversely, Alstonia scholaris, Banyan, Eucalyptus
and Palmae plants have high F1-Score values. This may be because these four types of
tree species have more obvious characteristics with respect to leaf shape and crown shape,
and can be easily visually recognized and are difficult to mistakenly classify as other tree
species. The non-tree categories all have higher F1-Scores, especially the water and lawn,
with an F1-Score of close to 1.0 in every scheme. The F1-Score of roads and buildings are
relatively lower, which may be accounted for by the fact that their shapes are rather similar
and prone to causing misclassification.

This study shows that the most important features are spectral features, followed by
index features, while texture features and geometric features play a relatively minor role,
especially geometric features. In this study, texture and geometric features are added based
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on spectral and index features to increase the amount of object information and obtain
higher classification accuracy. However, the results show that the S8 based on all features
has a lower accuracy than the preferred S9 based on partial features. Sothe et al. [43] also
found a similar phenomenon whereby they attained the highest classification accuracy
when using only a portion of the features (only 36), with an accuracy that was 1.7% higher
than when using all features, indicating that more features does not always lead to higher
accuracy. Other studies have shown that when a small number of features are used, the
introduction of new features significantly increases the separability of categories, and when
the number of features reaches a certain number, adding features will not lead to substantial
improvement in the separability of categories [41]. After reaching the saturation point,
adding features will usually lead to data redundancy, thus reducing model efficiency and
affecting its performance. The RF classifier can build a preferred feature set through the
feature importance to reduce computational cost and improve computational efficiency [44].
By analyzing the feature importance ranking map, it can be found that the NIR band and RE
band play an important role in classifying urban trees, Abdollahnejad et al. [45] also found
that the red-edge band is very important for tree species identification. This is because the
reflectivity of plants increases sharply in the near-infrared band, and a reflection peak is
formed at the red edge. Therefore, plants are sensitive to the NIR and RE bands, so the
addition of these two bands is of great help to the identification of tree species.

5. Conclusions

In this study, we proposed a method for urban tree classification combining an object-
oriented approach and a random forest algorithm based on UAV multi-spectral imagery.
The results showed that the RF classifier performed better than the other two machine
learning algorithms (SVM and KNN) in every scheme. The RF classifier achieved the
highest accuracy when using the preferred feature set (S9), with an OA of 91.89% and
a Kappa of 0.91. Different features have different effects on the classification results.
Geometric features have a negative impact on the classification accuracy, while the other
three types of features have a positive impact. Among these three types of features, spectral
features have the greatest impact on classification accuracy, followed by index features and
texture features. As for the specific features, GLCM_SD_All (GLCM), Mean_SR (INDE),
Mean_B (SPEC), GLCM_Corre_All (GLCM), SD_RE (SPEC), and Max_diff (SPEC) rank
higher in the top 20 most important features. Mean_SR is an index feature combined with
the near-infrared band and the red-edge band, so both the near-infrared band and the red-
edge band play a significant role in tree species identification. Most tree species achieved
high accuracy, but Camphor and Cinnamomum japonicum are highly similar in appearance
and spectral characteristics, and the selected features in this experiment were not able
to accurately distinguish between them, resulting in a much lower accuracy than that
obtained for other tree species. In future research, features such as height could be added
to assist in identifying urban trees with similar appearances. The current study verified the
effectiveness of the urban tree classification method based on UAV multispectral imagery
and random forest classifier, providing a new technique for tree monitoring, management
and protection in the city.
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Abbreviations
The following acronyms are used in this manuscript:

UAV unmanned aerial vehicle
ESP2 estimation of scale parameter 2
RFE recursive feature elimination
RF random forest
SVM support vector machine
KNN k-nearest neighbor
OA overall accuracy
Kappa kappa coefficient
SPEC spectrum features
INDE index features
GLCM texture features
GEOM geometric features
OOB out-of-bag
ANN artificial neural network
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