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Abstract: Solar-induced chlorophyll fluorescence (SIF) has been recognized as a proxy of gross
primary production (GPP) across various terrestrial biomes. However, the effects of low temperature
on SIF and GPP among different plant function types (PFTs) have not yet been well-explored. To gain
a better understanding of the relationship between SIF and GPP, we investigated the variation in the
GPP/SIF ratio in response to low-temperature conditions using satellite and tower-based datasets.
Based on the TROPOMI SIF product and FLUXCOM GPP data, we found that the SIF and GPP
exhibited consistent seasonal and spatial patterns, while the GPP/SIF ratio differed for different
PFTs. The GPP/SIF ratio for forest types was generally higher than 10 gC·d−1·mw−1·nm·sr, whereas
the GPP/SIF ratio for grass and crop types was generally lower than 10 gC·d−1·mw−1·nm·sr. In
addition, there were noticeable differences in the seasonal pattern of the GPP/SIF ratio between
the selected samples that experienced low-temperature stress (below 10 ◦C, defined as group A)
and those that grew under relatively warm conditions (above 10 ◦C throughout the year, defined
as group B). The GPP/SIF ratio for group A generally exhibited a “hump-shaped” seasonal pattern,
and that for group B showed a slightly “bowl-shaped” seasonal pattern, which means it is important
to consider the effects of temperature on the SIF-GPP relationship. Through linear regression and
correlation analysis, we demonstrate that there was a positive correlation between the GPP/SIF ratio
and temperature for group A, with a wide temperature range including low-temperature conditions,
indicating that, in this case, temperature affected the SIF–GPP relationship; however, for group B—
with a temperature higher than 10 ◦C throughout the year—the GPP/SIF ratio was not consistently
affected by temperature. The response of GPP/SIF to low temperature stress was confirmed by tower-
based observations at a C3 cropland (C3CRO) site and a boreal evergreen needleleaf forest (BoENF)
site. Although the relationship between the GPP/SIF ratio and temperature differed among PFTs, the
GPP/SIF ratio decreased under low-temperature conditions for PFTs. Therefore, the GPP/SIF ratio
was not constant and was largely influenced by low temperature for different PFTs, thus highlighting
the importance of incorporating temperature into SIF-based GPP estimation.

Keywords: solar-induced chlorophyll fluorescence; gross primary production; low temperature;
plant function type; satellite remote sensing; tower-based observation

1. Introduction

Large uncertainties occur in the estimation of global terrestrial photosynthesis flux,
which is the largest component of the global carbon cycle [1,2]. Solar-induced chlorophyll
fluorescence (SIF) is directly related to the light reaction processes of photosynthesis [3],
and provides a new way to more accurately map gross primary production (GPP). A
large number of studies have found that SIF tracks GPP well at different temporal and
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spatial scales [4–7]; however, the SIF–GPP relationship is largely dependent upon the biome
and climate [8,9]. How the relationships between SIF and GPP with respect to different
plant functional types (PFTs) are influenced by various environmental conditions remains
under-explored.

As both SIF and GPP are driven by absorbed photosynthetically active radiation
(APAR), the light use efficiency (LUE) model has been successfully used to model the
relationship between SIF and GPP [10,11]. Indeed, a large number of studies have found
that the SIF presents a strong linear relationship with GPP at large temporal and spatial
scales [12–14]. However, it has been shown that SIF is more strongly related to APAR than
to photosynthesis [15,16], and the relationship between SIF and GPP is modulated by other
processes [17–19]. The energy absorbed by chlorophyll molecules can be dissipated through
photochemical quenching (PQ), non-photochemical quenching (NPQ), and SIF at the leaf
level [20]. SIF is directly related to the light reaction, whereas the potential mechanistic
link between SIF and the linear electron transfer rate needed for carboxylation processes
is the key point linking SIF to GPP [3,21]. The differences in carbon reaction between C3
and C4 species may result in the different slopes of SIF and GPP [7,22]. At the canopy
level, the canopy-observed SIF is only part of the total SIF emitted from the chlorophyll
molecules, due to scattering and reabsorption effects [18,23–25]. The canopy structure and
chlorophyll content also affect the SIF–GPP relationship in some aspects [26–30]. Therefore,
these interactions make the SIF–GPP relationship complex [2,31]. The responses of SIF and
GPP to varying environmental conditions across ecosystems remain unknown, resulting in
uncertainties in the estimation of global GPP based on SIF.

The effects of environmental conditions on the relationship between SIF and GPP have
become a state-of-the-art topic. As SIF emitted from photosystem II (PS II) is directly linked
to the photosynthetic activity, it is strongly affected by environmental conditions [7,32].
The proportion of energy allocated to each energy-dissipated pathway will vary under
different environmental conditions [33,34]. In addition, the differences in light and carbon
reactions in response to changing environmental conditions will also affect the SIF–GPP
relationship [35,36]. A large number of studies have reported that SIF and GPP respond
differently to light intensity [21,37,38] at both leaf and canopy levels, where the ratio of
GPP to SIF decreased with increasing light intensity. Although SIF can partly track the
down-regulation of GPP under drought conditions [39,40], drought stress also affects the
SIF–GPP relationship [41,42]. The incongruity of light and carbon reactions and the complex
energy distribution under stress conditions may contribute to the different sensitivities of
SIF and GPP in response to drought stress [3,21].

Recent studies have begun to explore the responses of SIF and GPP to
temperature [40,43]. Song et al. [44] found that satellite SIF allowed for early detection
of the response of winter wheat to heat stress, and could provide a larger physiology-
related stress response than APAR and traditional vegetation indices (e.g., the enhanced
vegetation index; EVI) during heatwave events. Kimm et al. [45] quantified the effects of
high-temperature stress on canopy photosynthesis and demonstrated that SIF responded
sensitively to the physiological down-regulation of GPP based on a high-temperature exper-
iment in a soybean field. Kim et al. [46] explored the relationship between SIF and GPP in a
temperate evergreen needleleaf forest during the fall transition, and they found that LUE
reached saturation at high air temperatures, whereas the chlorophyll fluorescence yield (φF)
did not saturate. In addition, Magney et al. [9] reported that both SIF and GPP in a boreal
evergreen needle forest (BoENF) tracked with each other in a consistent, dynamic fashion in
response to low temperature. Furthermore, they pointed out that, compared to traditional
vegetation-index-based methods, SIF—being directly related to needle physiology—has the
unique ability to capture GPP seasonality. It should be pointed out that the photochemistry
quantum efficiency of PS II is not significantly affected by temperature at low light intensity,
and that the temperature has a direct effect on the kinetics of enzymes involved in carbon
reactions [47]. Therefore, different light, moisture, or temperature conditions likely affect
the SIF–GPP relationship to some degree [3].
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Temperature has large effect on photosynthesis, and the effects of temperature on
photosynthetic activities vary with the plant species [35,48]. The response of photosynthesis
to low-growth-temperature conditions depends largely on the original distribution of the
species [49]. Plants can be classified as species adapted to cold environmental conditions
and species adapted to warm conditions (e.g., tropical or sub-tropical conditions). Some
studies have reported that there is a striking difference between those two groups, con-
sidering the effect of low temperature on photoinhibition [50,51]. However, to date, the
influence of low temperature on the SIF–GPP relationship for different PFTs has not been
well-explored [9,21,52].

Launched on 13 October 2017, the TROPOspheric Monitoring Instrument (TROPOMI)
on board the Copernicus Sentinel-5 Precursor satellite (S5P) is the first of the atmospheric
composition Sentinels, which has relatively fine temporal and spatial resolution [25,53].
Due to its relatively fine resolution and its ability to take more spatially continuous mea-
surements than other SIF-related satellites, the SIF retrieved from TROPOMI has been
widely used to explore the seasonal variations in GPP, enhancing its ability to detect en-
vironmental stresses [14,54]. Tower-based continuous observations also provide reliable
data for the study of diurnal and seasonal changes in SIF, as well as its relationship with
GPP under various environmental conditions [7,9,55–57]. Therefore, continuous reliable
satellite and tower-based data were considered to support our study regarding the effects
of temperature on the SIF–GPP relationship for different PFTs.

In this study, the influences of low temperature on the SIF–GPP relationship were
assessed using both satellite and tower-based observations. We investigated the relationship
between the GPP/SIF ratio and temperature for different PFTs in order to address the
following specific issues: (1) What are the differences in the SIF–GPP relationship under
different growth temperature conditions? (2) How do these relationships vary between
PFTs? and (3) What is the potential influence of low temperatures on the GPP/SIF ratio?

2. Materials and Methods
2.1. TROPOMI SIF

The single payload of TROPOMI mounted on the Sentinel 5 Precursor (S-5P) satellite
has a near-polar, sun-synchronous orbit. TROPOMI SIF has a repeat cycle of 16 days in
the nadir direction, and its equatorial overpass time is ~13:30 local time [54], similar to
that of OCO-2. Compared to OCO-2, the wider swath (~2600 km) and higher number of
observations per second of TROPOMI make it feasible to generate near-daily gridded SIF
products at relatively fine temporal and spatial resolution [25]. Recently, TROPOMI SIF has
successfully been retrieved using a data-driven approach based on principal component
analysis in the atmospheric windows of 735–758 nm and 743–758 nm for the far-red SIF [53].

In this study, we used the ungirded TROPOMI far-red SIF (743–758 nm) from Febru-
ary 2018 to December 2020 (https://s5p-troposif.noveltis.fr/data-access/, assessed on
1 December 2021). In order to eliminate the influences of different solar illumination geom-
etry on the SIF magnitude, by applying a day-length correction factor, the instantaneous
TROPOMI SIF was converted to a daily average [58]. In addition, SIF observations with a
cloud fraction higher than 0.2, view zenith angle (VZA) over 15◦, and solar zenith angle
(SZA) larger than 70◦ were excluded in order to reduce the effects of clouds and the ob-
servational geometry [19,59,60]. Finally, the filtered SIFs were averaged at 0.25◦ × 0.25◦

spatial resolution and 8-day temporal resolution (Figure 1b).

2.2. FLUXCOM GPP

Based on machine learning, the CO2 flux measurements from the FLUXNET eddy
covariance towers, merged with remote sensing and meteorological data, have success-
fully been used to produce global gridded carbon flux data (FLUXCOM GPP) [61]. The
FLUXCOM GPP includes two datasets: (1) one at 0.0833◦ resolution, using Moderate Reso-
lution Imaging Spectroradiometer (MODIS) remote sensing data (abbreviated as RS); and
(2) another at 0.5◦ resolution, using remote sensing and meteorological data (abbreviated as

https://s5p-troposif.noveltis.fr/data-access/
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RS + METEO) [62,63]. The dataset is available at ftp://ftp.bgc-jena.mpg.de/pub/outgoing/
FluxCom (assessed on 1 December 2021). In this study, we used the FLUXCOM GPP global
product (RS_V006) at a temporal resolution of 8 days and a spatial resolution of 0.0833◦,
the good performance of which for carbon fluxes has been revealed by cross-validation [64].
To match the SIF dataset, we obtained the FLUXCOM (RS_V006) GPP from February 2018
to December 2020 and resampled it to 0.25◦ × 0.25◦ (Figure 1a).
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2.3. ERA5 Re-Analysis Dataset

Using the laws of physics to combine model data with observations from across the
world, the European Centre for Medium-Range Weather Forecasts (ECMWF) generates
a global complete and consistent re-analysis dataset. In this study, we used the fifth
generation of the European Re-analysis dataset (ERA5), which has been proven to be
relatively reliable for the analysis of land changes [65,66]. ERA5 provides hourly estimates
at a spatial resolution of 0.25 degrees for a large number of land-surface quantities.

The surface temperature of air at 2 m (Ta), measured in kelvin (K), can be converted to
degrees Celsius (◦C) by subtracting 273.15 [67]. The daily mean Ta (in ◦C) was obtained
by averaging the temperature over 24 h. Similarly, we obtained the daily mean dewpoint
temperature (Tdew; in ◦C). The vapor pressure deficit (VPD; in kPa) can be calculated by
converting Ta and Tdew to the vapor pressure [68]. We used the VPD for the indication
of drought conditions. The accumulated solar shortwave radiation (J·m−2) reaching a
horizontal plane at the surface of the earth should be divided by the accumulation period,
expressed in seconds, and then multiplied by 0.46 to obtain the daily averaged PAR
(W·m−2) [69]. The PAR, measured in units of energy (W·m−2), was then converted to units
of matter (umol·m−2·s−1). Similarly, we averaged the climate environmental variables over
8 days to obtain a dataset with 8-day temporal resolution (Figure 2b).

Table 1. The number of the selected homogeneous samples for each PFT. A and B represent the
different groups. The horizonal bar indicates no samples.

Abbreviation Full Name
Number of Pixels

Group A Group B

TrEBF Tropical evergreen broadleaf forest — 3848
TrDBF Tropical deciduous broadleaf forest — 993
TeENF Temperate evergreen needleleaf forest 321 —
TeEBF Temperate evergreen broadleaf forest — 348
TeDBF Temperate deciduous broadleaf forest 660 —
BoENF Boreal evergreen needleleaf forest 620 —
BoDBF Boreal deciduous broadleaf forest 826 —
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Table 1. Cont.

Abbreviation Full Name
Number of Pixels

Group A Group B

BoDNF Boreal deciduous needleleaf forest 515 —
TeC3GRA Temperate C3 grass 3348 134
TrC3GRA Tropical C3 grass — 879
BoC3GRA Boreal C3 grass 7125 —

C4GRA C4 grass 133 1055
C3CRO C3 crops 404 1644
C4CRO C4 crops — 199
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2.4. PFTs Map and Selection of Homogeneous Samples

To better understand the response of the GPP/SIF ratio to temperature under different
PFTs, we used a vegetation map including 14 vegetated PFTs (Figure 2a). The vegeta-
tion map was produced by the European Space Agency (ESA) Climate Change Initiative
(CCI) Land-Cover (LC) products, Land-Use Harmonization (LUH2), and an additional
partitioning C3/C4 vegetation map using the cross-walking approach [70,71].

The selection of homogeneous samples was performed on the CCI PFTs map, with a
spatial resolution of 0.25◦ × 0.25◦ for each PFT. To ensure sufficient PFT homogeneity and
sufficient temporal sampling of the pixels, the selected samples had to satisfy prescribed
selection criteria. The clustering approach was used to select samples for each PFT, referring
the study of Bacour et al. [8]. Only pixels with (1) a fraction of dominant PFT over 50%
(Figure 2a), (2) distribution in the North Hemisphere, and (3) at least eight TROPOMI SIF
observations for the year 2020 were selected. The reason why only samples distributed
in the Northern Hemisphere were selected was to avoid the seasonal pattern differences
between the Northern and Southern Hemispheres; additionally, the samples distributed in
the Northern Hemisphere contained most vegetation types.

In addition, as some PFTs were distributed in regions with different temperature con-
ditions, some of the selected samples of each PFT experienced low-temperature conditions,
while others grew in relatively warm conditions. Some studies have reported that most
photosynthetic activities are limited at temperatures below the “biological zero”, which
is defined as the minimum development temperature and is generally recognized to be
in the range of 5–10 ◦C, depending on the species and climate [72–74]. In this study, we
recognized temperatures below 10 ◦C as low-temperature conditions. Therefore, the se-
lected samples of each PFT were further classified into two groups: one group experienced
low-temperature conditions (below 10 ◦C) and had more than 8 observations below 10 ◦C
in the year 2020 (defined as group A) (Figure 3a); the other group grew under temperatures
above 10 ◦C throughout the year 2020 (defined as group B) (Figure 3b). Finally, the spatial
distribution of groups A and B for each PFT can be seen in Figure 3. The number of selected
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homogeneous samples for each PFT can be found in Table 1; it should be noted that not all
PFTs belonged to both group A and B.
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Figure 3. Locations of the selected homogeneous samples for group A (a) and group B (b) of
each PFT in the Northern Hemisphere. Niwot Ridge (green star) and XTS (yellow star) were the
two tower-based observation sites considered.

2.5. Tower-Based Observations

The relationship between GPP/SIF and temperature was also examined using tower-
based observations of two overwintering plants, including winter wheat (C3CRO) and
boreal evergreen needleleaf forest (BoENF).

The tower-based observations of winter wheat were conducted at the Xiao Tangshan
Farm (XTS, 40.18◦N, 116.44◦E; Figure 3a) in north Beijing, China [7]. The canopy SIF and
GPP measurements at the XTS site covered the period from September 2020 to June 2021.
The dataset of a subalpine conifer forest at Niwot Ridge (40.03◦N, 105.55◦W) covered the
period from 21 June 2017 to 29 June 2018 (Table 2). Therefore, both the XTS and Niwot Ridge
sites experienced low-temperature conditions during the over-wintering period. Similar
to the SIF retrieval method used by Magney et al. [9], SIF retrievals at XTS were also con-
ducted using the differential optical absorption spectroscopy (DOAS) method at the far-red
band. The fluxes of GPP and ecosystem respiration (Re) were partitioned from net ecosys-
tem exchange (NEE) based on night-time partitioning algorithms (Reichstein et al., 2005).
For more details about the spectrometric instrument used, please refer to the studies of
Du et al. [75] and Grossman et al. [76].

Table 2. Details of the observation sites. The maximum and minimum temperatures of XTS and
Niwot Ridge sites were obtained over the respective observation period.

Site Name Latitude Longitude PFT Maximum
Temperature

Minimum
Temperature

Retrieval
Method

XTS 40.18◦N 116.44◦E C3CRO 29.52 ◦C −11.21 ◦C DOAS
Niwot Ridge 40.03◦N 105.55◦W BoENF 19.34 ◦C −15.88 ◦C DOAS

2.6. Data Analysis

Negative SIF values were excluded from the analysis, as well as the SIF values greater
than 1.5 W·m−2·nm−1·sr−1. Measurements outside the range µ ± 3σ (where µ and σ are
the mean and standard deviation, respectively) were also not considered. The filtered data
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were classified into 14 PFTs, and each PFT was grouped into subset A or subset B, based on
the selection criteria described in Section 2.4. Linear regression analysis was conducted to
explore the relationship between SIF and GPP in response to temperature. In addition, in
order to remove the potential influence of other environmental variables (e.g., PAR and
VPD), we conducted partial correlation analysis to study the influence of temperature
conditions on the GPP/SIF ratio.

3. Results
3.1. Seasonal Patterns of SIF and GPP across PFTs

From Figure 1, we can see that the spatial variation in SIF was consistent with that of
GPP, indicating that SIF has the ability to track GPP at the global scale. In addition, the
seasonal patterns of SIF and GPP for different PFTs are important for our understanding of
the responses of SIF and GPP to temperature.

It can be seen that SIF had a similar seasonal pattern to GPP for each PFT in the
Northern Hemisphere (Figure 4). Although SIF tracked the GPP well for different PFTs, the
seasonal patterns of SIF and GPP were largely influenced by environmental conditions. For
tropical regions, although TrEBF, TrDBF, and TrC3GRA grew under relatively comfortable
temperature conditions (Figure 5), SIF and GPP of TrEBF did not exhibit an obvious seasonal
change, compared to that of TrDBF and TrC3GRA. The seasonal variations in SIF and GPP
for TrDBF and TrC3GRA may have been largely influenced by the VPD, which varied with
the change from dry to wet seasons (Figure 5). Compared to TeENF and TeDBF, SIF and
GPP for TeEBF did not show a more intense seasonal pattern, as air temperature and PAR
for TeEBF did not significantly change during the growing period (Figure 5). For Boreal
regions, BoENF, BoDBF, BoDNF, and BoC3GRA generally experienced low-temperature
stress (less than 10 ◦C; Table 1). We can see that the magnitude of SIF and GPP for BoENF,
BoDBF, BoDNF, and BoC3GRA decreased when the temperature decreased during the
over-wintering period. As different PFTs have different growth temperature conditions, the
seasonal variations in SIF and GPP for different PFTs responded differently to temperature.
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Figure 5. Seasonal patterns of air temperature (Ta), photosynthetic active radiation (PAR), and vapor
pressure deficit (VPD) for each PFT in the Northern Hemisphere (2018–2020). The lines correspond to
the means of the corresponding data, with different colors for Ta (red), PAR (dark), and VPD (blue).
The shaded area is the standard deviation.

In addition, due to their varying geographical distribution, some PFTs were not only
distributed at places where relatively warm conditions prevailed throughout the year, but
also in places where low-temperature stress could occur. For example, C3CRO distributed
at low latitudes generally grew under relatively warm conditions, while those distributed
at high latitudes experienced low-temperature stress (Figure 3). These data provide us with
a chance to study the variations in SIF and GPP in response to temperature.

3.2. Relationships between Satellite-Based SIF and GPP for Different PFTs

To evaluate the performance of SIF, in terms of estimating GPP for different PFTs, we
compared the relationships between TROPOMI SIF and FLUXCOM GPP using the selected
samples detailed in Table 1 and Figure 3. We also explored the effect of temperature on
the SIF–GPP relationship for TeC3GRA, C4GRA, and C3CRO, which had both group A
and group B samples, using a linear regression approach with no intercept. The selected
samples in group A experienced low-temperature stress (less than 10 ◦C), while those in
group B did not.

From Figure 6, we can see that the SIF showed a strong correlation with GPP in almost
all PFTs. In addition, Figure 7 shows the statistical metrics of GPP, SIF, and their ratio
for different PFTs. The results indicate that, although the magnitude of SIF across PFTs
was consistent with the GPP (Figure 7a,b), the GPP/SIF ratio differed for different PFTs
(Figure 7c). Notably, the GPP/SIF ratio for forest types was generally higher than that of
grass and crop types.
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Figure 6. Relationship between SIF and GPP for different plant functional types (2018–2020). A and
B represent different groups. Each panel also lists the slope and determination coefficient obtained
in the linear regression with no intercept. The color bar represents the fraction of point density,
normalized by the maximum point density.
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Noticeably, the SIF–GPP relationship in group A (with a temperature below 10 ◦C)
showed a lower slope than that in group B (with a temperature above 10 ◦C throughout
the year). For example, considering TeC3GRA, the slope between SIF and GPP for group A
(slope = 7.466) was lower than that for group B (slope = 8.199); see Figure 8. Similar results
can be observed in C4GRA and C3GRO. The relatively lower slope between SIF and GPP
for group A of TeC3GRA, C4GRA, and C3GRO than that for group B may be due to the
differing temperature responses of SIF and GPP. Therefore, the SIF–GPP relationship seems
to be affected by the temperature.
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3.3. Effects of Low Temperature on the GPP/SIF Ratios for Different PFTs

From above results, we can see that temperature conditions affect the SIF–GPP rela-
tionship in some aspects. To further explore the different responses of SIF and GPP under
low-temperature conditions, we investigated the relationship between the GPP/SIF ratio
and temperature for different PFTs using both the satellite and tower-based data.

3.3.1. Global Satellite Dataset

As can be seen from Figure 9, we found that the seasonal pattern in the GPP/SIF ratio
differed among PFTs. For tropical regions, TrEBF, TrDBF, and TrC3GRA generally exhibited
a slightly “bowl-shaped” seasonal pattern for the GPP/SIF ratio. For temperate regions,
TeEBF similarly presented a “bowl-shaped” seasonal variation in the GPP/SIF ratio, while
the seasonal patterns of TeENF and TeDBF exhibited a slight “hump-shape”. For Boreal
regions, BoENF, BoDBF, BoDNF, and BoC3GRA generally showed a clear “hump-shaped”
seasonal pattern for the GPP/SIF ratio. In addition, the seasonal pattern of the GPP/SIF
ratio for C4GRA, C3CRO, and C4CRO generally presented a “bowl-shape”. By reducing
the effects of the canopy structure, the ratio of GPP to the total SIF (calculated as SIF divided
by the escape probability; see the Supplementary Materials) also showed a “hump-shaped”
pattern for many PFTs, while the “bowl-shaped” seasonal pattern was largely corrected,
except for C4CRO (Figure S1).
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Figure 9. Seasonal dynamics of the GPP/SIF ratio for different PFTs (2018–2020). The black lines are
the mean values, and the shaded areas represent the standard deviation intervals.

Groups A of TeC3GRA, C4GRA, and C3GRA generally experienced more low-
temperature stress than group B. From Figure 10, we can see that group A of TeC3GRA,
C4GRA, and C3GRO generally showed a clear “’hump-shaped” seasonal pattern for the
GPP/SIF ratio, whereas the corresponding B groups generally exhibited a slightly “bowl-
shaped” seasonal pattern for the GPP/SIF ratio. It should be noted that the seasonal
variations in the GPP/SIF ratio were affected by growth temperature conditions. For
C3CRO, although all samples together exhibited a “bowl-shaped” seasonal pattern for
the GPP/SIF ratio, group A separately exhibited a “hump-shaped” seasonal pattern. By
reducing the effects of the canopy structure (Figure S2), a similar “hump-shape” can be
observed in group A. Therefore, there were noticeable differences in the seasonal patterns
of the GPP/SIF ratio between the selected samples that experienced low-temperature stress
and those that grew under relatively warm conditions.

The influence of temperature conditions on the SIF–GPP relationship was further
investigated using a linear regression and correlation analysis method. From Figure 11,
we can see that the relationship between the GPP/SIF ratio and temperature differed
among PFTs; however, the GPP/SIF ratio generally decreased under low-temperature
conditions for some of those PFTs which experienced low-temperature stress. The GPP/SIF
ratio generally exhibited a positive correlation with temperature in group A among the
PFTs, while the GPP/SIF ratio in group B had no significant relationship with temperature
(Figure 11; Table 3).
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Table 3. The Pearson correlation and partial correlation coefficients between the GPP/SIF ratio
to temperature and other environmental parameters (PAR and VPD). Horizonal bars denote no
available values.

PFTs
Pearson Correlation

Partial Correlation Coefficient
PAR VPD

A B A B A B
TrEBF — −0.08 — −0.08 — −0.15
TrDBF — −0.05 — −0.09 — −0.16
TeENF — −0.002 — −0.06 — −0.08
TeEBF — −0.43 — −0.41 — −0.44
TeDBF 0.40 — 0.38 — 0.31 —
BoENF 0.77 — 0.74 — 0.62 —
BoDBF 0.66 — 0.64 — 0.53 —
BoDNF 0.41 — 0.36 — 0.32 —

TeC3GRA 0.17 −0.27 0.15 −0.23 0.17 −0.20
TrC3GRA — −0.26 — −0.24 — −0.24
BoC3GRA 0.26 — 0.25 — 0.24 —

C4GRA 0.10 −0.06 0.12 −0.06 0.21 −0.06
C3CRO 0.40 −0.24 0.29 −0.26 0.27 −0.30
C4CRO — −0.25 — −0.25 — −0.30
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Figure 11. Relationship between the GPP/SIF ratio and temperature for different plant functional
types (2018–2020). A and B represent different groups. The slopes and determination coefficients
of linear regressions are listed in each panel. The color bar represents the fraction of point density,
normalized by the maximum point density.

By separately controlling PAR and VPD, the partial correlation coefficients of the
GPP/SIF ratio with temperature also demonstrated that the GPP/SIF ratio varied with
temperature (Table 3). The GPP/SIF ratio in group A was found to be strongly positively
correlated with temperature in the boreal region, where low-temperature stress conditions
were more likely.

To better understand the differences between SIF and GPP in response to temperature,
we further analyzed the correlation between the GPP/SIF ratio with temperature in groups
A and B of TeC3GRA, C4GRA, and C3CRO, which had samples in both groups. From
Figure 12, we can see that the slopes between the GPP/SIF ratio and temperature in group
A were positive, while those in group B were negative. The distribution of the GPP/SIF
ratio for the data when the temperature was above 10 ◦C differed from that obtained when
temperature was below 10 ◦C (Figure 13). Therefore, the satellite data indicated that the
GPP/SIF ratio was largely influenced by temperature conditions for different PFTs, and
generally decreased in response to low-temperature conditions.
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3.3.2. Tower-Based Dataset

Considering the tower-based observations, we can see that SIF tracked the GPP well
during the over-wintering period for both the XTS (Figure 14a,c) and Niwot Ridge sites
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(Figure 14b,d). The GPP/SIF ratio in winter wheat (C3CRO) increased with temperature
(Figure 14e); however, the GPP/SIF ratio in BoENF only increased with temperature
when the temperature was below 10 ◦C. When the temperature was above 10 ◦C, the
GPP/SIF ratio in BoENF decreased with temperature (Figure 14f). Therefore, the response
of the GPP/SIF ratio to high temperatures might differ for different PFTs, which was
different from the satellite results. This result needs to be further examined and verified.
Nevertheless, the GPP/SIF ratio decreased under low-temperature conditions (below
10 ◦C) for both C3CRO and BoENF, consistent with the satellite results. The lower seasonal
changes in the canopy structure and chlorophyll content in BoENF provide reliable evidence
that the GPP/SIF ratio is associated with the changes in physiological factors influenced by
a low temperature. The results also demonstrate that low temperatures affect the SIF–GPP
relationships and highlight the importance of incorporating the effects of temperature into
SIF-based GPP estimation.
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Figure 14. Seasonal dynamics of five-day running means of cumulative daily GPP (green lines) at
XTS ((a) 2020–2021) and Niwot Ridge sites ((b) year 2017–2018); the corresponding seasonal variations
in daily average SIF (blue lines) ((c), XTS site, (d), Niwot Ridge site); and the variations in GPP/SIF
ratio with air temperature (Ta) ((e), XTS site, (f), Niwot Ridge site). The gray dotted line is the 10 ◦C
line. The 90 % confidence interval is indicated by the shaded area.

4. Discussion
4.1. Why Does the GPP/SIF Ratio Decrease at Low Temperatures

Using satellite and tower-based data, we observed strong seasonal patterns in the
GPP/SIF ratio and obvious differences in the GPP/SIF ratio for different PFTs. Although
the SIF had a consistently seasonal pattern with GPP across different vegetation types,
we found that there were noticeable differences in the seasonal patterns of the GPP/SIF
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ratios between the selected samples that experienced low-temperature stress (below 10 ◦C)
and those that grew under relatively warm conditions (above 10 ◦C) (Figures 9 and 10).
The GPP/SIF ratio was generally positively related to temperatures below 10 ◦C, but did
not consistently respond to temperatures above 10 ◦C (Figure 8, Table 2). For regions
where low-temperature conditions do not occur (e.g., tropical regions), temperature may
not be a factor limiting the GPP/SIF ratio (Figures 5 and S1; [41,77]). Due to the selected
samples in group A generally experiencing low-growth-temperature conditions (e.g., boreal
ecosystems), with decreasing temperature, the GPP decreased faster than the SIF, and, hence,
the GPP/SIF ratio declined again (Figures 9 and S1; [42]). In addition, the tower-based
measurements indicated that the response of the GPP/SIF ratio to high temperatures
differed with different PFTs, which is inconsistent with the results obtained based on
satellite data (Figures 11, 12 and 14e,f). However, the GPP/SIF ratio decreased at low
temperatures (below 10 ◦C) for both C3CRO and BoENF in the results based on both
satellite and tower-based observations. Small seasonal changes in canopy structure and
chlorophyll content in BoENF also provide reliable evidence that the GPP/SIF ratio is
related to changes in physiological factors affected by low temperatures. The GPP/SIF ratio
generally had a low value at low temperatures, suggesting that the SIF–GPP relationship
should be not assumed to be constant across PFTs and climates [1,57,78].

The reason why the GPP/SIF ratio decreases under low-temperature conditions may
be attributed to the physiological differences between SIF and GPP in response to low
temperature [21,79]. As SIF is closely related to light reactions, the differences between
light and carbon reactions in response to environmental pressure may affect the SIF–GPP
relationships [27,35,36]. Low temperatures impose thermodynamic constraints, slowing
the enzymes related to the activities of the Calvin cycle. The decrease in photosynthetic
enzyme activity with low temperature might explain the faster decrease in GPP than SIF,
thus decreasing the GPP/SIF ratio [34]. In addition, the potential change of distribution in
the absorbed energy among PQ, NPQ, and SIF may be another factor affecting the SIF–GPP
relationship under low-temperature conditions [5]. Some studies have reported that the
proportion of energy allocated to each energy-dissipated pathway is not constant under dif-
ferent environmental stresses [33]. Under low-temperature conditions, the light-harvesting
complex (LHC) cannot completely utilize the absorbed light for CO2 fixation [49]. NPQ is
an important photoprotective mechanism that plays a role in protecting photosystem II
(PSII) from damage under low-temperature conditions [16,46]. Under NPQ changes, the
dynamic range of PSII yields is much larger than that of the SIF yields, whereas sustained
NPQ and deactivation of photosystems under low-temperature conditions may result in
a reduction in SIF yields [9]. As SIF is mainly emitted from the chlorophyll molecules
of PSII, a decrease in PSII productivity due to environmental stresses causes a chain of
different protection mechanisms, which eventually decreases SIF [47,80–82]. Therefore, the
potential physiological differences between SIF and GPP may explain why the GPP/SIF
ratio decreased under low-temperature conditions.

4.2. Uncertainties and Limitations

In our study, we found that the GPP/SIF ratio differed for 14 vegetated PFTs using
the TROPOMI SIF product and FLUXCOM GPP data. The GPP/SIF ratio for forest types
was generally higher than that of grass and crop types, which is not consistent with
previous research [58]. Li et al. [58] reported that there was a generally consistent slope of
the SIF-GPP relationship among biomes using the OCO-2 SIF and flux tower GPP data.
The reason why our results are not consistent with previous research may be as follows:
(1) the different datasets used in research; (2) different biome types, as we used a vegetation
map produced from CCI LC, LUH2 and a C3/C4 vegetation map, while Li et al. [58] used
the MODIS Land Cover Type product (MCD12Q1) based on the University of Maryland
(UMD) classification scheme; and (3) different linear fitting methods, as we used a linear
regression with no intercept, while Li et al. [58] used a linear regression with an intercept.
Theoretically, SIF is related to GPP through the coordinate origin. In addition, we found
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that the slope between GPP and SIF for C4CRO was lower than that for C3CRO, which is
not consistent with the results of Li et al. [58]. In our study, the selected samples of C4CRO
were mainly distributed at tropical regions (Figure 3) and could experience temperature
and water stress. SIF is mainly driven by APAR and is also influenced by environmental
stress (temperature and water stress), which determines photosynthetic light use efficiency
(LUE). Therefore, both SIF and GPP for selected C4CRO samples had a lower value than
that for selected C3CRO (Figure 3). Some studies have reported that the slope between
GPP and SIF for C4CRO was generally higher than that for C3CRO [7,58]. However, the
potential influences of environmental conditions and the distributions of different PFTs
are ignored. In addition, less C4CRO samples were used, which may also have resulted in
some uncertainties in our study.

The potential physiological changes caused by low-temperature conditions may result
in the decrease in the GPP/SIF ratio in response to low temperatures. Group A of each
PFT generally experienced low-temperature stress (below 10 ◦C), whereas group B of
each PFT generally experienced relatively optimal temperature conditions (above 10 ◦C).
In this study, we demonstrated that the seasonal patterns of the GPP/SIF ratio in group
A of each PFT generally differed from those associated with group B, indicating that
different temperatures affect the SIF–GPP relationship differently (Figure 12), especially
under low-temperature conditions (Figure 13). The GPP/SIF ratio for group A generally
exhibited a “hump-shaped” seasonal pattern, and that for group B showed a slightly “bowl-
shaped” seasonal pattern. The above results are different from previous research that did
not consider the effect of temperature conditions [34,58]. There were multiple sources of
uncertainty in the seasonal variations in the GPP/SIF ratio [34].

The complex interactions of environmental factors (e.g., light intensity, temperature,
and available water) on the photosynthetic activities play a role in changing the GPP/SIF
ratio. Increasing light intensity led to a decline in the GPP/SIF ratio [3,21,38]. As the
photosynthetic efficiency presents a non-linear decrease and the chlorophyll fluorescence
quantum efficiency is not sensitive to increasing light intensity, the GPP exhibits a satu-
ration effect under high light levels, while the SIF tends to continuously increase [37,83].
Decoupling of the GPP flux and SIF signals under water stress conditions may also alter
the GPP/SIF ratio [41]. The rapid response of the stomatal conductance to water stress
may explain the decline in the GPP/SIF ratio under water stress conditions [30,42]. Some
studies have explored the performance of early water stress detection using leaf-level mea-
surements of chlorophyll fluorescence and found that chlorophyll fluorescence decreased
for plants with water stress relative to well-watered plants, while the filled watering experi-
ment stated that chlorophyll fluorescence levels of maize under water stress were similar
to those of well-watered maize [84]. Kimm et al. [45] also reported that the field-scale SIF
yield (φF) data showed water deficit stress from the comparison between irrigated and
rain-fed corn field at three different spatial scales, and φF was positively correlated with
canopy-scale stomatal conductance, a reliable indicator of plant physiological condition.
Chen et al. [42] found that decoupling of GPP and SIF under water stress conditions may
also alter the GPP/SIF ratio, and the rapid response of the stomatal conductance to water
stress may explain the decline in the GPP/SIF ratio under water stress conditions. Under
optimal temperature conditions, the GPP/SIF ratio may be dominated by other environ-
mental variables or changes in canopy structure, whereas under a wide temperature range
including low-temperature conditions, the GPP/SIF ratio may be largely influenced by low
temperatures [34]. In this study, we found that the GPP/SIF ratio was positively correlated
with temperature for group A, indicating that the GPP-SIF relationship is affected by a wide
temperature range, including low temperatures. In addition, the potential of using SIF to
detect forest stresses, especially the defoliation of the plant by primary insects or foliar
infection by pathogens, is of great interest [85]. However, current studies generally ignore
the crown heterogeneity caused by pests. The impact of structural properties of damaged
foliage on canopy SIF, as well as the response of the GPP/SIF ratio to pest-damage, has not
been well-explored.
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Despite the potential effects of environmental pressures, the GPP/SIF ratio is also
affected by the leaf age, leaf phenology, and leaf chlorophyll content during the growing
period [30]. Some studies have reported that the seasonal peak timing of APAR played
a dominated role in the seasonal peak timing of far-red SIF, whereas the seasonal peak
timing of chlorophyll content contributed more to the seasonal peak timing of GPP [30,46].
The seasonal difference between far-red SIF and GPP is, thus, possibly more strongly
determined by the seasonal changes in the APAR and canopy chlorophyll content [30].
Therefore, the seasonal GPP/SIF variation may also be affected by the seasonal variations
in vegetation function traits.

Canopy structure can also play a role in forming the seasonal pattern of the GPP/SIF
ratio [18,25,27]. The seasonal variations in canopy structure can lead to the changes in
the escape probability (fesc), which further affects the observed SIF. The fesc is generally
lower when the canopy is denser during the growing season. Some studies have reported
that a denser canopy structure can also lead to a higher GPP/SIF ratio [86]. Remote-
observed SIF is only part of the total emitted SIF by leaves, which can experience a large
number of scattering and reabsorption effects [87]. To reduce the effects of the canopy
structure, we explored the seasonal variations in the ratio of GPP to the total SIF (defined
as GPP/tSIF, Figures S1–S3). A similar “hump-shaped” seasonal pattern of GPP/tSIF
was found in many PFTs, while the “bowl-shaped” seasonal pattern of GPP/SIF for some
PFTs was largely corrected. Although this indicates that the canopy structure affects
the seasonal variation in GPP/SIF, a decline in GPP/tSIF was also found under low-
temperature conditions (Figures S1–S3). By reducing the potential contribution of the
canopy structure to the change in GPP/SIF, we can better explore the seasonal pattern in
GPP/SIF under changeable climates. Therefore, this study provided a reliable evaluation
of the seasonal variation in GPP/SIF by separating the data into two groups based on
different growth temperature conditions.

In addition, improvement of the remote estimation of GPP is the ultimate motivation
for studying the SIF–GPP relationship [34,88]. Large-scale GPP estimation relies on fine
spatio-temporal satellite SIF products [89]. In this study, we used the aggregated eight-day
TROPOMI SIF to obtain more data at the global scale. Future SIF products could provide
daily and sub-daily observations, which would be more valuable for studying the SIF–GPP
relationship under changeable environmental conditions. In addition, some studies have
reported that an increased cloud fraction threshold can result in a decrease in estimated
SIF [90]. Therefore, the availabilities would impact the number of selected samples for each
PFT used to analyze the different responses of SIF and GPP to low temperatures.

Overall, our analyses revealed obvious differences in the seasonal patterns of SIF and
GPP under different growth temperature conditions, where the GPP/SIF ratio decreased
under low-temperature conditions. The decrease in GPP/SIF with low temperatures
highlighted the importance of considering this behavior when estimating GPP from satellite
SIF observations [91]. Future studies should conduct more field experiments to explore
the potential physiological and structural factors affecting the seasonal patterns of SIF
and GPP. Although the mechanisms underlying the seasonal GPP/SIF patterns under
environmental pressure require further investigation, the results obtained in this study
regarding the effects of low temperatures on the SIF–GPP relationship can help to improve
our understanding of the SIF-GPP relationship.

5. Conclusions

We investigated the seasonal variations in the ratio of the GPP to the far-red SIF
across various PFTs using both satellite and tower-based data. The GPP/SIF ratio for forest
types was generally higher than that of grass and crop types. There were also noticeable
differences in the seasonal pattern of the GPP/SIF ratio between the selected samples
experiencing low-temperature stress (below 10 ◦C) and those growing in relatively warm
conditions (above 10 ◦C throughout the year). For the data with a wide temperature range,
including low-temperature conditions, we observed a positive relationship between the
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GPP/SIF ratio and temperature; however, the relationship did not consistently respond
to temperature when considering data for temperatures above 10 ◦C throughout the year.
Overall, the results demonstrate that the relationship between the GPP/SIF ratio and
temperature was not constant among PFTs, as the GPP/SIF ratio decreased under low-
temperature conditions for some PFTs experiencing low-temperature stress. Therefore,
our findings highlight the importance of incorporating the temperature into SIF-based
GPP estimation.
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32. Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing potential of steady-state
chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 2015,
168, 420–436. [CrossRef]

33. Flexas, J.; Escalona, J.M.; Evain, S.; Gulías, J.; Moya, I.; Osmond, C.B.; Medrano, H. Steady-state chlorophyll fluorescence (Fs)
measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants.
Physiol. Plant. 2002, 114, 231–240. [CrossRef] [PubMed]

http://doi.org/10.2307/2401901
http://doi.org/10.1002/jgrg.20068
http://doi.org/10.1016/j.rse.2012.02.006
http://doi.org/10.1016/j.rse.2016.10.016
http://doi.org/10.1126/science.aam5747
http://www.ncbi.nlm.nih.gov/pubmed/29026013
http://doi.org/10.1016/j.rse.2018.07.008
http://doi.org/10.1016/j.agrformet.2022.109033
http://doi.org/10.1146/annurev.arplant.59.032607.092759
http://www.ncbi.nlm.nih.gov/pubmed/18444897
http://doi.org/10.1016/j.rse.2019.05.028
http://doi.org/10.1029/2020JG006136
http://doi.org/10.1111/nph.15796
http://doi.org/10.1002/2016GL070775
http://doi.org/10.1016/j.rse.2018.05.035
http://doi.org/10.1016/j.rse.2020.111860
http://doi.org/10.34133/2021/9795837
http://doi.org/10.1111/nph.14437
http://www.ncbi.nlm.nih.gov/pubmed/28181244
http://doi.org/10.1016/j.rse.2020.111733
http://doi.org/10.1016/j.agrformet.2019.107846
http://doi.org/10.1016/j.rse.2021.112763
http://doi.org/10.1016/j.rse.2022.113104
http://doi.org/10.1016/j.rse.2018.10.018
http://doi.org/10.1016/j.rse.2015.07.022
http://doi.org/10.1034/j.1399-3054.2002.1140209.x
http://www.ncbi.nlm.nih.gov/pubmed/11903970


Remote Sens. 2022, 14, 3716 21 of 23

34. Chen, A.; Mao, J.; Ricciuto, D.; Lu, D.; Xiao, J.; Li, X.; Thornton, P.E.; Knapp, A.K. Seasonal changes in GPP/SIF ratios and their
climatic determinants across the Northern Hemisphere. Glob. Chang. Biol. 2021, 27, 5186–5197. [CrossRef]

35. Farquhar, G.; Wong, S.; Evans, J.; Hubick, K. Photosynthesis and gas exchange. In Plants Under Stress; Cambridge University
Press: Cambridge, UK, 1989; Volume 39, pp. 47–69. [CrossRef]

36. Ögren, E.; Evans, J. Photosynthetic light-response curves. Planta 1993, 189, 182–190. [CrossRef]
37. Chen, J.; Liu, X.; Du, S.; Ma, Y.; Liu, L. Integrating sif and clearness index to improve maize GPP estimation using continuous

tower-based observations. Sensors 2020, 20, 2493. [CrossRef] [PubMed]
38. Liu, X.; Liu, Z.; Liu, L.; Lu, X.; Chen, J.; Du, S.; Zou, C. Modelling the influence of incident radiation on the SIF-based GPP

estimation for maize. Agric. For. Meteorol. 2021, 307, 108522. [CrossRef]
39. Sun, Y.; Fu, R.; Dickinson, R.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N. Drought onset mechanisms revealed by

satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci. 2015,
120, 2427–2440. [CrossRef]

40. Wang, X.; Qiu, B.; Li, W.; Zhang, Q. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite
solar-induced chlorophyll fluorescence. Sci. Total Environ. 2019, 693, 133627. [CrossRef] [PubMed]

41. Helm, L.T.; Shi, H.; Lerdau, M.T.; Yang, X. Solar-induced chlorophyll fluorescence and short-term photosynthetic response to
drought. Ecol. Appl. 2020, 30, e02101. [CrossRef]

42. Chen, J.; Liu, X.; Du, S.; Ma, Y.; Liu, L. Effects of Drought on the Relationship Between Photosynthesis and Chlorophyll
Fluorescence for Maize. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11148–11161. [CrossRef]

43. Zhuang, J.; Wang, Y.; Chi, Y.; Zhou, L.; Chen, J.; Zhou, W.; Song, J.; Zhao, N.; Ding, J. Drought stress strengthens the link between
chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 2020, 8, e10046. [CrossRef] [PubMed]

44. Song, L.; Guanter, L.; Guan, K.; You, L.; Huete, A.; Ju, W.; Zhang, Y. Satellite sun-induced chlorophyll fluorescence detects early
response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Glob. Chang. Biol. 2018, 24, 4023–4037. [CrossRef]
[PubMed]

45. Kimm, H.; Guan, K.; Burroughs, C.H.; Peng, B.; Ainsworth, E.A.; Bernacchi, C.J.; Moore, C.E.; Kumagai, E.; Yang, X.; Berry, J.A.
Quantifying high-temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence.
Glob. Chang. Biol. 2021, 27, 2403–2415. [CrossRef] [PubMed]

46. Kim, J.; Ryu, Y.; Dechant, B.; Lee, H.; Kim, H.S.; Kornfeld, A.; Berry, J.A. Solar-induced chlorophyll fluorescence is non-linearly
related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition. Remote Sens. Environ. 2021,
258, 112362. [CrossRef]

47. Fracheboud, Y.; Leipner, J. The application of chlorophyll fluorescence to study light, temperature, and drought stress. In Practical
Applications of Chlorophyll Fluorescence in Plant Biology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 125–150.

48. Sippel, S.; Meinshausen, N.; Fischer, E.M.; Székely, E.; Knutti, R. Climate change now detectable from any single day of weather
at global scale. Nat. Clim. Chang. 2020, 10, 35–41. [CrossRef]

49. Li, Y.-N.; Li, Y.-T.; Ivanov, A.G.; Jiang, W.-L.; Che, X.-K.; Liang, Y.; Zhang, Z.-S.; Zhao, S.-J.; Gao, H.-Y. Defective photosynthetic
adaptation mechanism in winter restricts the introduction of overwintering plant to high latitudes. bioRxiv 2019, 613117.
[CrossRef]

50. Fracheboud, Y.; Jompuk, C.; Ribaut, J.; Stamp, P.; Leipner, J. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant
Mol. Biol. 2004, 56, 241–253. [CrossRef]

51. Pickering, M.; Cescatti, A.; Duveiller, G. Sun-Induced Fluorescence as a Proxy of Primary Productivity across Vegetation Types
and Climates. Biogeosci. Discuss. 2022, 1–33. [CrossRef]

52. Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.-E.
Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 2014,
111, E1327–E1333. [CrossRef]

53. Guanter, L.; Bacour, C.; Schneider, A.; Aben, I.; van Kempen, T.A.; Maignan, F.; Retscher, C.; Köhler, P.; Frankenberg, C.; Joiner,
J. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data 2021,
13, 5423–5440. [CrossRef]

54. Köhler, P.; Frankenberg, C.; Magney, T.S.; Guanter, L.; Joiner, J.; Landgraf, J. Global retrievals of solar-induced chlorophyll
fluorescence with TROPOMI: First results and intersensor comparison to OCO-2. Geophys. Res. Lett. 2018, 45, 10456–10463.
[CrossRef] [PubMed]

55. Miao, G.; Guan, K.; Yang, X.; Bernacchi, C.J.; Berry, J.A.; DeLucia, E.H.; Wu, J.; Moore, C.E.; Meacham, K.; Cai, Y. Sun-induced
chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements. J.
Geophys. Res. Biogeosci. 2018, 123, 610–623. [CrossRef]

56. Zhang, Y.; Zhang, Q.; Liu, L.; Zhang, Y.; Wang, S.; Ju, W.; Zhou, G.; Zhou, L.; Tang, J.; Zhu, X. ChinaSpec: A Network for Long-
Term Ground-Based Measurements of Solar-Induced Fluorescence in China. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006042.
[CrossRef]

57. Liu, Z.; Zhao, F.; Liu, X.; Yu, Q.; Wang, Y.; Peng, X.; Cai, H.; Lu, X. Direct estimation of photosynthetic CO2 assimilation from
solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 2022, 271, 112893. [CrossRef]

http://doi.org/10.1111/gcb.15775
http://doi.org/10.1017/CBO9780511661587.005
http://doi.org/10.1007/BF00195075
http://doi.org/10.3390/s20092493
http://www.ncbi.nlm.nih.gov/pubmed/32354053
http://doi.org/10.1016/j.agrformet.2021.108522
http://doi.org/10.1002/2015JG003150
http://doi.org/10.1016/j.scitotenv.2019.133627
http://www.ncbi.nlm.nih.gov/pubmed/31377349
http://doi.org/10.1002/eap.2101
http://doi.org/10.1109/JSTARS.2021.3123111
http://doi.org/10.7717/peerj.10046
http://www.ncbi.nlm.nih.gov/pubmed/33024649
http://doi.org/10.1111/gcb.14302
http://www.ncbi.nlm.nih.gov/pubmed/29749021
http://doi.org/10.1111/gcb.15603
http://www.ncbi.nlm.nih.gov/pubmed/33844873
http://doi.org/10.1016/j.rse.2021.112362
http://doi.org/10.1038/s41558-019-0666-7
http://doi.org/10.1101/613117
http://doi.org/10.1007/s11103-004-3353-6
http://doi.org/10.5194/bg-2021-354
http://doi.org/10.1073/pnas.1320008111
http://doi.org/10.5194/essd-13-5423-2021
http://doi.org/10.1029/2018GL079031
http://www.ncbi.nlm.nih.gov/pubmed/33104094
http://doi.org/10.1002/2017JG004180
http://doi.org/10.1029/2020JG006042
http://doi.org/10.1016/j.rse.2022.112893


Remote Sens. 2022, 14, 3716 22 of 23

58. Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.
Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First
global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol. 2018, 24, 3990–4008. [CrossRef] [PubMed]

59. Frankenberg, C.; O’Dell, C.; Guanter, L.; McDuffie, J. Remote sensing of near-infrared chlorophyll fluorescence from space in
scattering atmospheres: Implications for its retrieval and interferences with atmospheric CO2 retrievals. Atmos. Meas. Tech. 2012,
5, 2081–2094. [CrossRef]

60. Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production
during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 2021, 755, 142569. [CrossRef]

61. Jung, M.; Koirala, S.; Weber, U.; Ichii, K.; Gans, F.; Camps-Valls, G.; Papale, D.; Schwalm, C.; Tramontana, G.; Reichstein, M. The
FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 2019, 6, 74. [CrossRef] [PubMed]

62. Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.;
Carvalhais, N. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach.
Biogeosciences 2020, 17, 1343–1365. [CrossRef]

63. Chen, A.; Mao, J.; Ricciuto, D.; Xiao, J.; Frankenberg, C.; Li, X.; Thornton, P.E.; Gu, L.; Knapp, A.K. Moisture availability
mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from
global-scale variations. Glob. Chang. Biol. 2021, 27, 1144–1156. [CrossRef] [PubMed]

64. Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely,
G. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 2016,
13, 4291–4313. [CrossRef]

65. Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B. From ERA-Interim
to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem.
Phys. 2019, 19, 3097–3124. [CrossRef]

66. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.
The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]

67. Blevin, W.; Brown, W. A precise measurement of the Stefan-Boltzmann constant. Metrologia 1971, 7, 15. [CrossRef]
68. Buck, A.L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. Climatol. 1981, 20, 1527–1532.

[CrossRef]
69. Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin, Germany, 1988; Volume 13.
70. Still, C.; Berry, J.; Collatz, G.; DeFries, R.; Hall, F.; Meeson, B.; Los, S.; Brown De Colstoun, E.; Landis, D. ISLSCP II C4 Vegetation

Percentage; ORNL DAAC: Oak Ridge, TN, USA, 2009. [CrossRef]
71. Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.

Plant functional type classification for earth system models: Results from the European Space Agency’s Land Cover Climate
Change Initiative. Geosci. Model Dev. 2015, 8, 2315–2328. [CrossRef]

72. Atlas, R.M. Microbial Ecology: Fundamentals and Applications; Pearson Education: Noida, India, 1998.
73. Rabenhorst, M.C. Biologic zero: A soil temperature concept. Wetlands 2005, 25, 616–621. [CrossRef]
74. Hao, Z.; Geng, X.; Wang, F.; Zheng, J. Impacts of climate change on agrometeorological indices at winter wheat overwintering

stage in Northern China during 2021–2050. Int. J. Climatol. 2018, 38, 5576–5588. [CrossRef]
75. Du, S.; Liu, L.; Liu, X.; Guo, J.; Hu, J.; Wang, S.; Zhang, Y. SIFSpec: Measuring solar-induced chlorophyll fluorescence observations

for remote sensing of photosynthesis. Sensors 2019, 19, 3009. [CrossRef]
76. Grossmann, K.; Frankenberg, C.; Magney, T.S.; Hurlock, S.C.; Seibt, U.; Stutz, J. PhotoSpec: A new instrument to measure spatially

distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 2018, 216, 311–327. [CrossRef]
77. Huang, M.; Piao, S.; Ciais, P.; Peñuelas, J.; Wang, X.; Keenan, T.F.; Peng, S.; Berry, J.A.; Wang, K.; Mao, J. Air temperature optima

of vegetation productivity across global biomes. Nat. Ecol. Evol. 2019, 3, 772–779. [CrossRef] [PubMed]
78. Damm, A.; Guanter, L.; Paul-Limoges, E.; Van der Tol, C.; Hueni, A.; Buchmann, N.; Eugster, W.; Ammann, C.; Schaepman,

M.E. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An
assessment based on observational and modeling approaches. Remote Sens. Environ. 2015, 166, 91–105. [CrossRef]

79. Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances,
photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [CrossRef]

80. Agati, G.; Mazzinghi, P.; Fusi, F.; Ambrosini, I. The F685/F730 chlorophyll fluorescence ratio as a tool in plant physiology:
Response to physiological and environmental factors. J. Plant Physiol. 1995, 145, 228–238. [CrossRef]

81. Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [CrossRef] [PubMed]
82. Suggett, D.J.; Prášil, O.; Borowitzka, M.A. Chlorophyll a FLuorescence in Aquatic Sciences: Methods and Applications; Springer:

Berlin/Heidelberg, Germany, 2010; Volume 4.
83. Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244.

[CrossRef] [PubMed]
84. Ni, Z.; Liu, Z.; Huo, H.; Li, Z.-L.; Nerry, F.; Wang, Q.; Li, X. Early water stress detection using leaf-level measurements of

chlorophyll fluorescence and temperature data. Remote Sens. 2015, 7, 3232–3249. [CrossRef]

http://doi.org/10.1111/gcb.14297
http://www.ncbi.nlm.nih.gov/pubmed/29733483
http://doi.org/10.5194/amt-5-2081-2012
http://doi.org/10.1016/j.scitotenv.2020.142569
http://doi.org/10.1038/s41597-019-0076-8
http://www.ncbi.nlm.nih.gov/pubmed/31133670
http://doi.org/10.5194/bg-17-1343-2020
http://doi.org/10.1111/gcb.15373
http://www.ncbi.nlm.nih.gov/pubmed/33002262
http://doi.org/10.5194/bg-13-4291-2016
http://doi.org/10.5194/acp-19-3097-2019
http://doi.org/10.1002/qj.3803
http://doi.org/10.1088/0026-1394/7/1/003
http://doi.org/10.1175/1520-0450(1981)020&lt;1527:NEFCVP&gt;2.0.CO;2
http://doi.org/10.3334/ORNLDAAC/932
http://doi.org/10.5194/gmd-8-2315-2015
http://doi.org/10.1672/0277-5212(2005)025[0616:BZASTC]2.0.CO;2
http://doi.org/10.1002/joc.5764
http://doi.org/10.3390/s19133009
http://doi.org/10.1016/j.rse.2018.07.002
http://doi.org/10.1038/s41559-019-0838-x
http://www.ncbi.nlm.nih.gov/pubmed/30858592
http://doi.org/10.1016/j.rse.2015.06.004
http://doi.org/10.5194/bg-6-3109-2009
http://doi.org/10.1016/S0176-1617(11)81882-1
http://doi.org/10.1093/jexbot/51.345.659
http://www.ncbi.nlm.nih.gov/pubmed/10938857
http://doi.org/10.1126/sciadv.1602244
http://www.ncbi.nlm.nih.gov/pubmed/28345046
http://doi.org/10.3390/rs70303232


Remote Sens. 2022, 14, 3716 23 of 23

85. Li, X.; Shabanov, N.V.; Chen, L.; Zhang, Y.; Huang, H. Modeling solar-induced fluorescence of forest with heterogeneous
distribution of damaged foliage by extending the stochastic radiative transfer theory. Remote Sens. Environ. 2022, 271, 112892.
[CrossRef]

86. Van Wittenberghe, S.; Alonso, L.; Verrelst, J.; Moreno, J.; Samson, R. Bidirectional sun-induced chlorophyll fluorescence emission
is influenced by leaf structure and light scattering properties—A bottom-up approach. Remote Sens. Environ. 2015, 158, 169–179.
[CrossRef]

87. Yang, P.; van der Tol, C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sens.
Environ. 2018, 209, 456–467. [CrossRef]

88. Ryu, Y.; Berry, J.A.; Baldocchi, D.D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ.
2019, 223, 95–114. [CrossRef]

89. Duveiller, G.; Filipponi, F.; Walther, S.; Köhler, P.; Frankenberg, C.; Guanter, L.; Cescatti, A. A spatially downscaled sun-induced
fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 2020, 12, 1101–1116.
[CrossRef]

90. Köhler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and
SCIAMACHY data. Atmos. Meas. Tech. 2015, 8, 2589–2608. [CrossRef]

91. Jeong, S.; Park, H. Toward a comprehensive understanding of global vegetation CO2 assimilation from space. Glob. Chang. Biol.
2021, 27, 1141–1143. [CrossRef] [PubMed]

http://doi.org/10.1016/j.rse.2022.112892
http://doi.org/10.1016/j.rse.2014.11.012
http://doi.org/10.1016/j.rse.2018.02.029
http://doi.org/10.1016/j.rse.2019.01.016
http://doi.org/10.5194/essd-12-1101-2020
http://doi.org/10.5194/amt-8-2589-2015
http://doi.org/10.1111/gcb.15475
http://www.ncbi.nlm.nih.gov/pubmed/33274574

	Introduction 
	Materials and Methods 
	TROPOMI SIF 
	FLUXCOM GPP 
	ERA5 Re-Analysis Dataset 
	PFTs Map and Selection of Homogeneous Samples 
	Tower-Based Observations 
	Data Analysis 

	Results 
	Seasonal Patterns of SIF and GPP across PFTs 
	Relationships between Satellite-Based SIF and GPP for Different PFTs 
	Effects of Low Temperature on the GPP/SIF Ratios for Different PFTs 
	Global Satellite Dataset 
	Tower-Based Dataset 


	Discussion 
	Why Does the GPP/SIF Ratio Decrease at Low Temperatures 
	Uncertainties and Limitations 

	Conclusions 
	References

