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Abstract: As an important source of lithium and rare earth elements (REE) and other critical elements,
pegmatites are of great strategic economic interest for present and future technological development.
Identifying new pegmatite deposits is a strategy adopted by the European Union (EU) to decrease
its import dependence on non-European countries for these raw materials. It is in this context
that the GREENPEG project was established, an EU project whose main objective is to identify
new deposits of pegmatites in Europe in an environmentally friendly way. Remote sensing is a
non-contact exploration tool that allows for identifying areas of interest for exploration at the early
stage of exploration campaigns. Several RS methods have been developed to identify Li-Cs-Ta (LCT)
pegmatites, but in this study, a new methodology was developed to detect Nb-Y-F (NYF) pegmatites
in the Tysfjord area in Norway. This methodology is based on spectral analysis to select bands of the
Sentinel 2 satellite and adapt RS methods, such as Band Ratios and Principal Component Analysis
(PCA), to be used as input in the Random Forest (RF) and other tree-based ensemble algorithms to
improve the classification accuracy. The results obtained are encouraging, and the algorithm was
able to successfully identify the pegmatite areas already known and new locations of interest for
exploration were also defined.

Keywords: rare earth elements; critical raw materials; band ratios; principal component analysis;
remote sensing; Sentinel 2; exploration; LightGBM; CatBoost

1. Introduction

In a world that is increasingly seeking to decarbonise its industrial sectors, reduce
carbon emissions into the atmosphere and diminish the impact of human activity on
nature, there is a growing need for new technologies that respond to this “green” demand
and allow for countries to develop without neglecting their environmental and social
objectives [1–3]. With the increase in demand for these “green” technologies also comes
the demand for raw materials needed for their production and maintenance. Among these
commodities are the critical raw minerals (CRM), whose demand is dramatically rising;
thus, the need to locate new deposits of these minerals is a major societal task [4]. Granitic
pegmatites are an important source of CRM, such as lithium, tantalum, niobium, beryllium,
cesium, uranium, and REE, among others [5]. This study occurs in the scope of the
Horizon2020 GREENPEG project, an EU project, which has 13 partners, among academic
and private sector institutions, in more than six EU countries (https://www.greenpeg.eu/,
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accessed on 16 July 2021). This project aims to develop innovative, competitive, and
more environmentally friendly exploration tools to locate and expand the reserves of
pegmatites of the Lithium-Caesium-Tantalum (LCT) and Niobium-Yttrium-Fluorine (NYF)
families in Europe [4,5]. Remote sensing is one tool of exploration campaigns developing
methodologies for the identification of new possible pegmatite deposits. For this purpose,
several image processing techniques were employed, such as RGB combinations, Band
Ratios (BR), Principal Component Analysis (PCA), and two machine learning algorithms
(MLs)—Support Vector Machine (SVM) and Random Forest (RF) [6,7].

Remote sensing has been applied in the exploration field since the 1970s [8]. Some
examples of its application are in the identification of uranium [9], gold deposits [10],
REE [11], and hydrothermal alteration zones [12]. Concerning pegmatite exploration, we
can cite the work of Cardoso-Fernandes et al. [13] who developed classical RS methods
focused on studies of LCT-type pegmatites since 2018. RF and SVM were already used in
previous studies by [14] to identify Li-bearing pegmatites in Spain and Portugal and, more
recently, to identify NYF pegmatites in Tysfjord in Norway [15]. Hyperspectral data were
also applied for mineral mapping of Li-bearing pegmatites at Uis, Namibia [16]. Satellite
multispectral data have been applied to detect other types of Li-deposits, namely Li brines
in the Salar de Uyuni, Bolivia [17]. Pegmatite exploration can also be complemented by
other methods such as soil or stream geochemistry [18,19].

It should be considered that the bands used as inputs in the previous works for the
various image processing methods were selected to identify LCT pegmatites. In the Tysfjord
area, however, NYF pegmatites occur, and the methodology proposed in this study aims to
use spectral analysis (spectroscopy) to select the most appropriate parameters to be used
as inputs features for RF and other ensemble tree-based algorithms, thus improving the
results obtained in its classification. Besides selecting the most suitable bands according
to the spectral response of the NYF pegmatites of Tysfjord, spectroscopy was also used
to adapt two image processing methods already known in the literature [7,8,15] and
considered “traditional methods” for geological purposes (BR and PCA). These “traditional
methods” were used not only for area recognition, but also as inputs for the MLs together
with vegetation indexes (Normalised Difference Vegetation Index—NDVI) to improve the
sensitivity of the algorithms. The spectral analysis was divided into two steps. The first
step focused on spectra extracted directly from the Sentinel 2 bands and the second step
was based on spectra collected using a spectroradiometer.

At the end of this study, areas of interest for exploration were evaluated, with new areas
identified. The results obtained represent a major contribution not only to remote sensing
exploration in the case study of Tysfjord pegmatites, but also in the field of pegmatite
exploration in general. Since this method is based on spectral analyses it can be applied
in other areas as well. In the future, the application of these new methodological remote
sensing approaches to other areas with NYF pegmatites may validate their efficiency
in other regions. Although remote sensing only detects surface pegmatite deposits, the
GREENPEG project is working on a multi-method toolset to detect sub-surface pegmatites,
which includes geophysical and geochemical methods, is categorised according to their
respective penetration depth (see Figures 6 and 7 of [5]).

1.1. Study Area

The study area is in the Tysfjord district (Figure 1), an area of about 559 km2 that is
located in Northern Norway. The Tysfjord-Hamarøy pegmatitic field includes several NYF
pegmatites that are the target of this study [5,20,21]. The shape of the Tsyfjord pegmatites
ranges from lens-shaped to cigar-shaped pegmatites depending on the length of up to
400 m [5]. First recognised in 1941 by Foslie [22], these granitic pegmatites are known
for their great mineral diversity and are genetically linked to the Tysfjord granites [21],
which are the host rocks of the pegmatites. Among the 157 identified minerals, the most
common accessory minerals are allanite-(Ce), fergusonite-(Y), columbite-(Fe), beryl, various
sulphides, and fluorite, besides the major minerals quartz, plagioclase, K-feldspar (variety
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‘amazonite’), and biotite [21]. The most important occurrences in the Tysfjord-Hamarøy
pegmatite field include: the Jennyhaugen pegmatite, the Nedre Øyvollen pegmatite, and
the Håkonhals pegmatite. The Jennyhaugen and Håkonhals mines were chosen as the
target of this study as they are large open-pit mines and are not limited by the spatial
resolution of Sentinel 2, which has 10 m of spatial resolution.
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Figure 1. Location of the study area. (a) Overview image of the Tysfjord district where the study area
is framed by the red square. The Håkonhals pegmatite is marked with a yellow star, Jennyhaugen
mine with a white star, and other pegmatites with red stars. (b) Simplified geologic map. (c) Detailed
geological map and location of the study area in Norway. TIB: Trans-Scandinavian Igneous Belt.
Adapted with permission from Müller et al. [4,5].
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1.1.1. The Jennyhaugen Pegmatite

Located at EU89-UTM coordinate Zone 33V 543,313E/7,548,208N, the Jennyhaugen
pegmatite has a width of up to 40 m and a length of at least 200 m [21]. When compared
to other Tysjord pegmatites, the Jennyhaugen pegmatite is considered relatively poor in
accessory minerals compared to other Tysfjord pegmatites [21]. The minerals exposed in
the open pits of Jennyhaugen and found in the mining dumps include the major minerals
quartz, plagioclase, K-feldspar (variety ‘amazonite’), and biotite, as well as the accessory
minerals garnet, allanite-(Ce), monazite-(Ce), zircon, fluorite, microlite, beryl, tantalite-
(Mn), etc. [20,21].

1.1.2. The Håkonhals Pegmatite

This pegmatite is exposed at coordinates EU89-UTM Zone 33V 527,376E/7,545,507N.
The Håkonhals pegmatite is exposed in one large open-pit mine (150 × 150 m2) on its
eastern side and two small open pits on its western side. In between, the pegmatite is
covered by Tysfjord granite. The mine exposures make the pegmatite an ideal target for
this study. Historically this pegmatite was mined for K-feldspar and more recently for high-
purity quartz, quartz with less than 50 ppm of contaminating elements [20,22]. At least
28 minerals that can be found in the Håkonhals pegmatite were described by [21]. Among
them are magnetite, allanite-(Ce), thorite, bastnäsite-(Ce), monazite-(Y), zircon, beryl, and
fluorite. As large open-pit mines, the Håkonhals and Jennyhaugen mines (Figure 2), are
ideal for remote sensing studies and in this paper will be referred to as target areas.
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Figure 2. High-resolution aerial photographs of the (a) Håkonhals and (b) Jennyhaugen mines that
were used as target areas in this study. Adapted with permission from Norge I bilder [23].

2. Materials and Methods

The methodology applied in this study is based on spectral analysis (spectroscopy)
to improve the final result of the RF algorithm classification. As described by the authors
of [20], who besides the RF algorithm also applied the SVM algorithm in the identification
of NYF pegmatites, the RF was able to identify the locations of known pegmatites. However,
this algorithm was not efficient in classifying the other elements of the study area (mainly
water and vegetation), which implies that the classification accuracy, in general, can be
improved. Overall, SVM classification performed better in Tysfjord when compared to
RF classification. Through the spectral analysis of samples from Tysfjord and spectra
extracted from all Sentinel 2 bands, the methodology of this study proposes to select the
most appropriate bands and to adapt traditional image processing methods (BR and PCA)
to be used as input into the algorithm. The workflow of the applied methodology is
represented in Figure 3.
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sensing methods.

2.1. Data Acquisition and Pre-Processing

In the scope of the GREENPEG project, we work with three multispectral satellites
(Landsat 8 OLI, TERRA ASTER, and Sentinel 2 MSI). Sentinel 2 has the best spatial reso-
lution as well as temporal resolution, allowing for analysing and selecting the best image
to apply RS methods in Tysfjord (an area with arctic weather conditions). The image was
downloaded from the United States Geological Survey (USGS) website, and all down-
loaded images have a cloud cover of less than 10%. After downloading the images, the
atmospheric correction Dark Object Subtraction (DOS1) algorithm was applied [24]. The
atmospheric correction procedure was performed using the Semi-Automatic Classification
Plugin (SCP) tool version 6.2.9 available in the QGIS software version 3.2.1. After the
atmospheric correction, the Normalised Vegetation Index (NDVI) and Normalised Snow
Index (NDSI) were applied to select the images with as little vegetation and ice coverage
as possible. The selected image for this study was from 28 September 2019, an autumn
image showing less snow cover than winter images and less vegetation when compared
with summer and spring images.

The spectral data were obtained in two different ways: (i) Extracted from Sentinel 2
image, where 28 spectra were collected (10 from Håkonhals pegmatite outcrop and 8 from
Jennyhaugen mine). The spectra were extracted and analysed in ENVI classic version
5.6 software. (ii) In total, 58 spectra were collected in the laboratory from 21 rock samples
from Tysfjord. The spectra were collected with the Analytical Spectral Devices (ASD)
FieldSpec 4 spectroradiometer a transportable battery-powered spectrometer with a spectral
range of 350–2500 nm, a spectral resolution of 3 nm at 700 nm (VNIR), 10 nm at 1400 nm
(SWIR 1), and 10 nm at 2100 nm (SWIR 2), with a scanning time of 100 milliseconds. The
equipment was calibrated using a Spectralon plate with reflectance higher than 95% for the
250–2500 nm region and higher than 99% for the 400–1500 nm region [25].

2.2. Spectral Analysis

Spectral analysis has been used for several purposes in geology, such as studies
involving REE [26], minerals in general [27], gold mining [9], and more recently the work
of Cardoso-Fernandes [28] focused on the spectral analysis of Li minerals and pegmatites.
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The spectra obtained from the Sentinel 2 satellite bands were extracted and analysed
using the ENVI classic software version 5.6. The spectra collected from the Sentinel 2 bands
were obtained directly over pixels that are in areas of pegmatite outcrop (these will be
called pure spectra). The spectra were then analysed through continuum removal so that
we could better evaluate their minimum absorption and reflectance peaks. Taking into
account that in a Greenfield exploration area it may not be possible to distinguish pixels
of pegmatites from other elements within the target area, averaging the spectra may be
an alternative to pure pegmatite spectra. To validate this method, the spectra from the
entire mine outlines were compared to the pure spectra and the reflectance analysed. As
the spectra were extracted directly from the Sentinel 2 bands, they were provided with
information on the band numbers on the X-axis, allowing us to compare the absorption and
reflectance zones with the spectral range of the Sentinel 2 bands. The continuum removed
spectra were analysed using the Spectral Library Viewer tool (Figure 4), and the bands in
the main zones of absorption and reflectance of each spectrum were identified and pointed.
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Håkonhals mine.

The data collected in the laboratory using the spectrometer were received through the
ASD Indico Pro application, an application developed by ASD Inc. to receive and store
the spectral data transmitted from the ASD spectrometer [29]. To improve the signal-to-
noise ratio, each spectrum collected represents an average of 40 scans [28]. Five spectra
were collected for each spot, and an average of these five spectra was made to acquire
the final spectra. At least two spectra were collected from each sample, which were
arranged according to their mineral composition. The spectra were pre-processed using
SpectraGryph software version 1.6 (Friedrich Menges (Oberstdorf, Germany)). The spectra
were processed and had their continuum removed in Python programming language using
the pysptools library.

In total, 58 spectra were analysed, of which 5 correspond to ‘amazonite’—the green
K-feldspar variety, 13 to pink K-feldspar, 9 to plagioclase, 16 to massive quartz from
the pegmatite core zone, 6 to Tysfjord granite, 4 to biotite, and 5 were from wall zone
of pegmatites, which is a mineral mixture of plagioclase, quartz, biotite, and K-feldspar.
The spectra were exported to .txt format and imported to Envi Spectral Library Viewer
tools, where they were analysed and one spectrum from each sample was selected as
representative, resulting in 21 spectra selected for analysis. The next step was to compare
the region of absorptions and reflectance with the spectral range of the Sentinel 2 bands
(Figure 5). After this analysis, new bands were selected and assigned in the methods
described in the following steps.
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2.3. Band Ratios

BR is one of the most widely used image processing methods for lithological pur-
poses [30–32] and consists of diving bands with high reflectance by bands with high
absorption to highlight specific spectral differences [33]. The BR tested in this study are
presented in Table 1, for BRs derived from spectra collected in the laboratory, and in Table 2,
for BRs derived from spectra extracted from Sentinel 2 bands.

Table 1. BR developed through spectral analysis of spectra collected in the laboratory. The spectra
were organised according to mineral samples.

Granite Plagioclase Biotite Quartz

3/6 8A/4 8/5 3/4
12/6 8A/11 xx 3/12
8/6 xx xx 8/12

Table 2. BR developed through spectral analysis of spectra extracted from Sentinel 2 bands. The
spectra were organised according to reflectance bands.

Band 4 Band 6 Band 7 Band 8A

4/3 6/3 7/3 8A/3
4/5 6/5 7/5 8A/5
4/8 6/8 7/8 8A/8

2.4. Principal Components Analysis

According to Singh and Harrison [34], PCA is a multivariate statistical technique used
to enhance and separate certain types of spectral signatures from the background. Over the
years, it has been applied in several areas and is now used, for instance, for image enhance-
ment, digital change detection, and determining the underlying statistical dimension of the
image data set [34,35]. The formula that expresses the principal components is presented in
Equation (1).

Yj = a1jX1 + a2jX2 + . . . + anj + Xn = aT
j X (1)

where T denotes the transpose of a matrix and aT
j = [a1j, . . . , anj] are the normalised eigen-

vectors [i.e., aT
j aj = 1] of the variance-covariance matrix [34].
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Considering the results of previous studies that have used PCA to identify pegmatites
or their minerals of interest [31,32], selective PCA was applied to only two bands’ subsets
(Table 3).

Table 3. PCA on two bands developed through spectral analysis of spectra collected in the laboratory
and extracted from Sentinel 2 bands.

PC2 Laboratory Spectra PC2 Extracted from Sentinel 2 Bands

3 and 6 4 and 8
12 and 6 4 and 5

2.5. Random Forest and Other Ensemble Tree-Based Algorithms

As a very robust algorithm that can be used for supervised classification, the RF
algorithm consists of an ensemble tree type classifier, capable of improving classification
accuracy by combining various decision trees to avoid overfitting [36]. More recently,
other ensemble tree-based algorithms have emerged, based on gradient boosting, namely
(i) the Light Gradient Boosting Machine (LightGBM) [37] and (ii) the Categorical Boosting
(CatBoost) [38] that should present higher training speed, efficiency, and better accuracy
than RF, according to the developers.

The models proposed have two stops, one after the class separability processes and
another after the image prediction. These “stops” were created after important phases of
the model to improve the algorithms and minimise errors. These processes can be observed
in Figure 6.

The algorithms were implemented in Python programming language using free open-
source libraries for ML, namely scikit-learn, lightgbm, and catboost. The Python lan-
guage allows for the development of an algorithm more interactively than in plugins
such as QGIS.

Two RF models were tested for classification. The first (C1) takes into account only the
pegmatite pixels that are concentrated within the pegmatite outcrop at Håkonhals. In the
second (C2), the sampling polygons are distributed over the mining area of Håkonhals. At
Jennyhaugen, the sampling polygons were distributed over the entire mine in both models
because, in the geological maps, the entire mining area is considered an open-pit outline.
The results of the two models were compared to check if the area east of the outcrop, that
may contain traces of pegmatite material (e.g., mining waste dumps and storage sites made
of pegmatite material), are also efficient to be used in the classification. The same procedure
of Figure 6 was employed for the remaining boosting algorithms and the results were
compared with the C1 model for RF.

2.5.1. Reconnaissance of the Area

In this step, a geological map and vegetation (NDVI), snow (NDSI), and water (NDWI)
indices were used to understand the elements that make up the study area and, conse-
quently, which classes to consider in the classification stage. The band indices confirm
the absence of snow and point out a high vegetation cover. Water is an abundant ele-
ment throughout the study area. The NDWI, in some areas, does not highlight very well
pixels of water bodies with high values, which may indicate high sediment concentra-
tion. The study area has two rock classes that may be influential in the classification: the
AMCG (anorthositic, mangeritic, charnockitic, and granitic) rocks and the Tysfjord granite
gneiss [5]. Due to the spectral similarity between these two rock classes, both were classified
in a single class, granite. Built areas are also present but are a very unrepresentative element
in the study area. With few villages scattered around the Tysfjord district, this element was
masked, after image classification, with a Normalised Difference Built-Up Index (NDBI).
After this analysis, four classes were defined for classification: (1) pegmatites, (2) granite,
(3) water, and (4) vegetation.
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2.5.2. Class Separability

To ensure that the classes are well separated and distinguished, the separability of
the classes’ signatures was performed using Bhattacharyya Distance in PCI Geomatica
software. Separability is measured by values between 0 and 2, with values between 0 and
1 (0.0 < x < 1.0) representing very poor separability, values between 1 and 1.9 (1.0 < x < 1.9)
representing poor separability, and values between 1.9 and 2 (1.9 < x < 2.0) representing
good separability.

2.5.3. Data Pre-Processing

To input the data into the algorithm, it is necessary to convert it into a format that can
be acceptable in Python language. To do this, a series of procedures were performed in
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the ArcMap software. First, each band was clipped only for the training areas. After that,
the result was transformed into a point shapefile. The next step was to extract the data
from the other rasters using this same point file that allows us to extract the information
of all the rasters and organise it in a database (extract multi values to points). Finally, the
intersect tool was used to correlate the training areas with the information collected from
the pixels of each raster.

2.5.4. Model Creation

To ensure the maximum independence between the training and test subsets, the
dataset was split, considering 25% of the pixels for testing and the remaining 75% for
training. This method was adopted in previous studies [15]. In this step, the parameters to
be optimised and the corresponding parameter range (or variation) to be used in the grid
search were defined. For example, in this study, the number of trees to test in the model,
defined by the function ‘n_estimators’, ranged from 10 to 500, with a steady increase after
n_estimators = 50. Another defined parameter was the ‘Class_weight’, which was set to
“balanced”, thus adjusting the weights inversely, proportional to class frequencies in the
input data, to not penalise less frequent data, as is the case of pegmatites.

2.5.5. Model Evaluation

In this step, different metrics are applied to evaluate the best model returned by the
grid search of the previous step. The metrics applied in this study were the mean cross-
validation score and the Kappa statistics. A confusion matrix was generated considering
the test subset.

3. Results
3.1. Spectral Analyses
3.1.1. Spectra from Sentinel 2 Images

Considering the importance of the reflectance peaks for this study, the analysis of the
spectra was performed with spectra with continuum removed. In this study, only the main
absorptions and reflectance that are in zones of interest for the analysis will be referred
to, i.e., zones that fall within the spectral range of the Sentinel 2 bands. The analysis of
the spectra directly collected from the 13 bands of Sentinel 2 allowed for the identification
and selection of bands of interest for the study. However, these spectra are affected by the
water vapour absorption bands (bands 9 and 10), since they are designed for atmospheric
correction and cloud detection, and thus were eliminated in this study [39]. This analysis
requires previous knowledge of the study area to collect reference spectra correctly while
avoiding picking other elements of the image by mistake. The spectra collected on the
pegmatite outcrop (Figure 7) were called pure spectra and were further used for the analysis.
Ten spectra were collected from Håkonhals and nine from Jennyhaugen.

It is known that in the mining area to the east of the Hakonhals pegmatite outcrop
there are mining dumps, mining roads, and storage sites made of pegmatite material, but
this is not cropping out. As in these areas, there are other geological elements besides
pegmatites, such as granites, and to minimise the influence of non-pegmatite spectral pixels
on the final results, another pixel extraction method was tested. This method was tested to
verify if the average of the spectra can mitigate the impact of other elements in the mining
area. In this way, to validate the applicability of this method in Greenfield areas where
the exact location of pegmatite outcrops is uncertain, 90 spectra were collected (50 from
Håkonhals mine and 40 from Jennyhaugen mine). After the collection, an average was
taken from every 5 spectra, resulting in 10 spectra from Håkonhals mine (numbered 1 to 10)
and 8 spectra from Jennyhaugen mine (numbered 1 to 8). The average was made using the
spectral mathematical tool available in the Envi software. To check whether this method is
correct in representing the pegmatite spectra, a comparison was made between the mining
spectra and the pure spectra (Figure 8). For this, comparison maps showing the contacts



Remote Sens. 2022, 14, 3532 11 of 27

between the pegmatites and the surrounding rocks were used, with the pegmatite contacts
mapped by the authors in the field.
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Analysing the relationship between the reflectance of the pegmatites and the spectral
range that each Sentinel 2 band covers in the continuum spectrum (Figure 9), it is possible
to see that the main absorption bands are 3, 5, 8, and 12, while the most relevant bands in
reflectance peaks are 4, 6, 7, and 8A.
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Figure 9. Sentinel 2 spectral behaviour from Håkonhals mine (mining spectra). (a) Bands in absorp-
tion features. (b) Bands in reflectance peaks. For each spectrum, in either absorption or reflectance
regions, is presented, between brackets, the number of the Sentinel 2 bands, and the respective
reflectance value.

Comparing the reflectance characteristic of the spectra with the spectral range of the
Sentinel 2 bands, we see that there is no difference between the pure spectra and the entire
mine spectra. However, the extraction of spectra where it is certain that there is a pegmatitic
outcrop is the best option for spectral studies.

3.1.2. Spectra Collected in the Laboratory

The plagioclase spectra (Figure 10) show absorptions at around 670 nm (covered
by band 4) and at 2200 nm (covered by band 12). The reflectance peaks start at around
850 nm (band 8A) and finish at around 1700 nm (band 11). The strong, symmetric OH-
and water absorptions (around 1411 nm and 1904 nm, respectively) and a single AlOH
absorption (around 2200 nm) indicate the presence of montmorillonite in the three samples.
Illite is probably mixed with montmorillonite in the red spectra of Figure 10 due to the
AlOH secondary absorptions at 2354 nm and 2453 nm. The double absorptions’ features
at 2215 nm and 2354 nm in the same spectrum are diagnostic of the presence of FeOH
and MgOH, respectively. These two absorptions together with a peak between them (at
2300 nm), and diagnostic iron features in VNIR indicate the presence of biotite in sample
T4220090212UIO_1.
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As shown in Figure 11, the spectral bands of the Sentinel 2 do not cover the absorption
features of the spectra collected from the K-feldspar samples (around 890, 1100, 1400, 1800,
and 1900 nm). The exception is an absorption around 2200 nm (covered by band 12). It is
worth mentioning that band 12 also covers the reflectance peaks for these samples (which
occur around 2130 nm). The absorption features of the K-feldspar samples point to the
possible presence of montmorillonite and Fe2+. The extremely pronounced and rounded
water features could be due to aqueous fluid inclusions.
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The first absorption feature of biotite (Figure 12) is at around 710 nm (band 5), which,
together with the absorptions at 717 nm and 916 nm, indicates that chlorite is also present
in the mixture. Another significant absorption feature is at around 2250 nm (covered by
band 12). As for the reflectance, there is a peak around 810 nm (band 8) and another at
2100 nm (band 12). In addition to the two absorptions at 2253 nm–2324 nm, which are due
to either chlorite or biotite, the peak reflectance between them is relatively high compared
to the reflectance that is diagnostic of biotite.
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As the quartz samples from the pegmatite core zone have similar absorption and
reflectance zones. The spectrum of sample T4220082819UIO_1 was selective as a repre-
sentative spectrum. As shown in Figure 13, absorptions occurring at 666 nm and 673 nm
are covered by band 4 and another significant absorption feature is at around 2195 nm
(band 12). The main peaks of reflectance are at 550 nm (covered by band 3) and 819 nm
(covered by band 8) and the last minimum is around 2130 nm (band 12). A single, asym-
metric OH absorption at 1407 nm together with a strong water absorption around 1920 nm
and a single sharp, asymmetric AIOH absorption feature at 2190 nm indicates the presence
of montmorillonite. The broad water adsorption feature indicates the presence of aqueous
fluid inclusions in the quartz samples. The two absorptions around 2350 nm and 2440 nm
suggest that illite also occurs in this sample.

Remote Sens. 2022, 14, 3532 14 of 27 
 

 

The first absorption feature of biotite (Figure 12) is at around 710 nm (band 5), which, 
together with the absorptions at 717 nm and 916 nm, indicates that chlorite is also present 
in the mixture. Another significant absorption feature is at around 2250 nm (covered by 
band 12). As for the reflectance, there is a peak around 810 nm (band 8) and another at 
2100 nm (band 12). In addition to the two absorptions at 2253 nm–2324 nm, which are due 
to either chlorite or biotite, the peak reflectance between them is relatively high compared 
to the reflectance that is diagnostic of biotite. 

 
Figure 12. Absorption and reflectance peaks from spectra collected from samples of Tysfjord biotite. 
(a) Main absorption peaks (minimum). (b) Main reflectance peaks. 

As the quartz samples from the pegmatite core zone have similar absorption and re-
flectance zones. The spectrum of sample T4220082819UIO_1 was selective as a representa-
tive spectrum. As shown in Figure 13, absorptions occurring at 666 nm and 673 nm are 
covered by band 4 and another significant absorption feature is at around 2195 nm (band 
12). The main peaks of reflectance are at 550 nm (covered by band 3) and 819 nm (covered 
by band 8) and the last minimum is around 2130 nm (band 12). A single, asymmetric OH 
absorption at 1407 nm together with a strong water absorption around 1920 nm and a 
single sharp, asymmetric AIOH absorption feature at 2190 nm indicates the presence of 
montmorillonite. The broad water adsorption feature indicates the presence of aqueous 
fluid inclusions in the quartz samples. The two absorptions around 2350 nm and 2440 nm 
suggest that illite also occurs in this sample. 

 
Figure 13. Absorption and reflectance peaks from spectra collected from pegmatite quartz samples 
of Tysfjord. (a) Main absorption peaks (minimum). (b) Main reflectance peaks. 

As shown in Figure 14, the main absorption wavelengths of significance to the study 
for Tysfjord granite samples are at around 738 nm (covered by band 6) and between 2200 

Figure 13. Absorption and reflectance peaks from spectra collected from pegmatite quartz samples of
Tysfjord. (a) Main absorption peaks (minimum). (b) Main reflectance peaks.

As shown in Figure 14, the main absorption wavelengths of significance to the study for
Tysfjord granite samples are at around 738 nm (covered by band 6) and between 2200 and
2400 nm (covered by band 12). The reflectance zones of interest are at 580 nm (covered by
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band 3), 817 nm (covered by band 8), and around 2300 nm (covered by band 12). Band
12 covers both absorption features and reflectance peaks. Both spectra show absorptions
around 2200 nm, 2250 nm, and 2360 nm, but the absorptions in VNIR and the water
absorption indicate that the top spectrum (in blue) is characterised by the occurrence of
chlorite mixed with biotite and possibly montmorillonite, while the bottom spectra (in red)
indicates the existence of biotite mixed with white mica and minor chlorite.
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3.2. Traditional Methods
3.2.1. Band Ratios

Knowing the bands in absorption and reflectance zones, it is then possible to propose
a new BR. Among the BR tested from the analysis of the spectra of the Sentinel 2 bands
(Table 2), the BR 4/8 and BR 4/5 were able to successfully highlight the target areas. BR
4/8 was able to highlight the target areas with values between 0.70 and 0.90 (on a scale of
0 to 2.94), which are represented in Figure 15, in red pixels. This BR also highlighted water
bodies with high values making it necessary to include a water mask.

BR 4/5 highlights areas with known pegmatites with values between 0.90 and 1.51 (on
a scale of 0 to 2.94). Even though it highlights the target areas well, the number of false
positives in granite areas is much higher in comparison to BR 4/8. A water mask was also
applied (Figure 16).

Regarding the ratios derived from the analysis of the rock samples, and starting with
the BR from granite samples, the BR 3/6 highlights the pixels of the pegmatite areas at
values around 0.50 (at Håkonhals) and 0.73 (at Jennyhaugen). Water was highlighted with
high values for this BR with values greater than 1.0. Granite zones were not well identified
(0.30). BR 12/6 cannot distinguish granite from pegmatite. Both present pixels with values
around 0.50. BR 8/6 could not distinguish either granite or pegmatite. As these ratios were
developed from granite samples, it was expected that they would highlight granite. BR
8A/4 and 8A/11 (from plagioclase) obtained similar results. Both highlighted vegetation
better (with values between 1.0 and 2.0) than pegmatites (0.80). As with the plagioclase
BRs, the BR 8/5 (from biotite), also highlighted vegetation pixels better (around 4.0) than
pegmatites. The BR 8/12 (from quartz) was able to highlight the vegetation better. However,
it cannot distinguish pegmatite from granite and assigns high values for water.
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In general, the BRs elaborated from the analysis of the spectra collected in the labor-
atory are not suitable to be used as input for the RF algorithm, as they highlight other 
elements, such as vegetation, instead of the pegmatite that is the target of this study. Alt-
hough BR 3/6 can highlight the pegmatite areas, its result is much inferior to BR 4/5 and 
4/8 and, because of that, it was not selected as input. 

3.2.2. Principal Components Analyses 
The PCA of bands 4, 5 and 4, 8 obtained very good results. Both were able to highlight 

the target areas very well and without signal confusion with the surrounding elements, 

Figure 15. Result for BR 4/8. Pixels higher than 0.70 are represented in red colour. (a) Overview of
the study area where Håkonhals mine is highlighted by the orange rectangle and Jennyhaugen mine
by the blue rectangle. (b) Håkonhals mine in focus. (c) Jennyhaugen mine in focus.
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Here it can be seen that this BR has also highlighted many granite pixels with elevated values.
(c) Jennyhaugen mine in focus.

In general, the BRs elaborated from the analysis of the spectra collected in the labo-
ratory are not suitable to be used as input for the RF algorithm, as they highlight other
elements, such as vegetation, instead of the pegmatite that is the target of this study. Al-
though BR 3/6 can highlight the pegmatite areas, its result is much inferior to BR 4/5 and
4/8 and, because of that, it was not selected as input.
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3.2.2. Principal Components Analyses

The PCA of bands 4, 5 and 4, 8 obtained very good results. Both were able to highlight
the target areas very well and without signal confusion with the surrounding elements, as
occurred with the BR. As can be seen in Figure 17, both obtained very similar results. The
PCA of the 4 And 5 bands highlighted the target areas with pixels at high values around
1.75 (on a scale of −0.03 to 1.8), while the PCA 4, 8 highlighted the target area pixels at
values around 0.20 (scale of −0.07 to 0.308).
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shows a good result, highlighting pixels in the white target areas and with values around 
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RF algorithm were (i) bands 4, 6, 7, and 8A; (ii) band ratios 4/5 and 4/8; (iii) PCA 4/5 and 

Figure 17. Comparison of PCA results of bands 4 and 5 and 4 and 8. (a) Håkonhals mine in focus for
PCA 4, 8. (b) Jennyhaugen mine in focus for PCA 4 And 8. (c) Håkonhals mine in focus for PCA 4, 5.
(d) Jennyhaugen mine in focus for PCA 4, 5.

For the PCA based on the spectra collected in the laboratory, the PCA of bands 3, 6
shows a good result, highlighting pixels in the white target areas and with values around
0.22 (on a scale of −0.028 and 0.26). Despite highlighting the areas of the mines, the PCA
of the bands 12, 6, as well as the BR made of the same bands, also highlights the granite,
which is not ideal for this study (Figure 18).
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(d) Jennyhaugen mine in focus for PCA 12, 6.
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3.3. Random Forest and Other Ensemble Tree-Based Algorithms

Based on the previous results, the inputs that were selected to be introduced in the
RF algorithm were (i) bands 4, 6, 7, and 8A; (ii) band ratios 4/5 and 4/8; (iii) PCA 4/5 and
4/8; and, taking into consideration a greater inefficiency of the algorithm in classifying
vegetation areas in previous works [15], it was decided to add the (iv) NDVI to improve
the classification of vegetated areas. The classification occurs with all inputs previously
described. Two classifications were made. One (C1) where the pegmatite training areas at
Håkonhals only include certain pegmatite outcrop pixels. The other (C2) where the training
areas include the outcrops and also other parts of the mining area where the presence of
pegmatite material may be present, but it is uncertain. Table 4 shows the scores for the C1
and C2 models.

Table 4. Scores for RF model.

Kappa Statistics: C1 = 0.95/C2 = 0.96

Mean Cross-Validation Score (Accuracy): C1 = 0.96/C2 = 0.97

Precision Recall F1 Score

C1 C2 C1 C2 C1 C2
Granite 0.95 0.92 0.90 0.97 0.93 0.95

Pegmatite 0.95 0.91 0.97 1.00 0.96 0.95
Vegetation 0.98 1.00 0.99 1.00 0.99 1.00

Water 1.00 1.00 1.00 0.97 1.00 0.98

Both models’ scores are similar. Concerning the overall classification metrics, the
Kappa Statistics and the accuracy are similar. When looking at the classification of the class
level separately (Recall, Precision, and F1 Score), there is also little difference in the results.
The biggest difference between the two models for the pegmatite class is the precision,
where the model with the highest precision is C1 with 0.95, while model C2 shows 0.91. A
difference of 0.04 values. Regarding image classification (Figure 19). Model C1 classifies
more pixels as pegmatites and, consequently, more false positives with granite and coastal
areas. Both models identified pixels as pegmatites outside the outcrop area at Hakonhals.
This shows that there are pegmatite materials in this region and that the algorithm is
sensitive to them.
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Figure 19. RF classifier for C1 and C2 models. Pegmatites are classified as red colour, granite as beige,
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classification for Jennyhaugen mine. (c) C2 model classification for Håkonhals mine. (d) C2 model
classification for Jennyhaugen mine.
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Model C1, despite having more false positives, uses more enhanced sample data with
more pixels that are sure to be pegmatites. Therefore, model C1 is the most appropriate for
the study area. The results presented hereafter refer to this model.

When the confusion matrix was analysed (Table 5), it was noticed that many granite
pixels were misclassified as vegetation. As expected, some pegmatite pixels were also
wrongly classified as granite and vice versa. The confusion matrix also indicates mis-
classification between the vegetation and pegmatite classes and between the granite and
vegetation classes.

Table 5. C1 model confusion matrix.

Predicted

Granite Pegmatite Vegetation Water

Granite 37 2 3 0
Pegmatite 2 58 0 0
Vegetation 0 1 99 0

Water 0 0 0 39

The distinction between the granite and pegmatite classes was a challenge, but sam-
pling was redone until good separability was obtained. As exemplified in Table 6, all classes
have good separability, which is encouraging especially concerning the separability of the
pegmatite and granite classes, which was low in previous studies in Tysfjord [15].

Table 6. Signature separability for training classes.

Pegmatite Granite Water Vegetation

Pegmatite
Granite 1.953983
Water 2.000000 1.999965

Vegetation 1.993627 1.964088 1.999998

Still, a lot of false positives are concentrated in the upper right corner of the study area
(Figure 20). When comparing the classification with high-resolution images, it is noticeable
that areas that are in the shadow of tall landforms, such as mountains or slopes, were
mostly classified as granite, even when vegetation is present in these areas. The pixels
in these zones have extremely low reflectance, around 0.020, which may have negatively
influenced the classification.

The importance of the inputs was also analysed (Table 7). Regarding C1 model, the
most relevant inputs for the analysis were, in order of importance, NDVI, band 7, PCA 4, 8,
and band 4. However, all inputs were relevant in the image classification, it is evident that,
among the traditional image processing methods, PCA 4, 8 and BR 4/8 have the highest
importance. Among the bands, band 7 and band 4 are the ones that stood out the most.
While in model C1, there was a great discrepancy between the importance of band 8A and
the others, in the Boosting algorithms the importance of the bands is more balanced. In the
LightGBM algorithm, band 6 had the highest contribution in the classification and band 4
the lowest. In contrast to LightGBM, band 4 is the most important band for the Catboost
algorithm. In both Boosting algorithms, BR 4/8 had the highest importance, followed
by PCA 4, 8. While BR 4/5 and PCA 4, 5 have the lowest importance in both Boosting
algorithms. The BR 4/8 was the most important input for LightGBM and BR 4/5 was the
least important. NDVI was the most important input for Catboost, while BR 4/5 was the
least important for the classification.
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the classification output, both boosting models were able to classify pegmatite. When 
comparing the results with model C1, it is possible to see that the boosting models classi-
fied fewer pixels as pegmatite, but the difference is so small that it cannot be said that this 
has reduced false positives. Despite being able to identify known pegmatites as effectively 
as the other models, Catboost did not correctly classify water bodies and vegetation. 
Among the boosting algorithms, the LightGBM algorithm obtained the best result, being 
able to identify pegmatites in target areas and classify other elements of the study area 
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Figure 20. RF classifier. Pegmatites are classified as red colour, granite as beige, water as blue,
and vegetation as green. (a) Overview of the study area where Håkonhals mine is highlighted by
the orange rectangle and Jennyhaugen mine by the blue rectangle. (b) Håkonhals mine in focus.
(c) Jennyhaugen mine in focus.

Table 7. Importance of inputs in image classification, measured in percentage.

Input Importance C1 Importance LightGBM Importance Catboost

Band 04 16.46 9.4 13.25
Band 06 12.24 13.18 12.27
Band 07 15.06 11.77 11.35
Band 8A 5.22 10.93 11.54
PCA 4, 5 1.20 5.6 4.8
PCA 4, 8 13.35 11.79 11.24
BR_4/5 8.03 4.3 3.8
BR_4/8 8.53 18.57 14.69
NDVI 19.87 14.25 16.95

Both boosting models obtained the same result as model C1 for accuracy (0.96), while
the kappa statistic was 0.97 for the LightGBM algorithm and 0.96 for Catboost. Regarding
the classification output, both boosting models were able to classify pegmatite. When
comparing the results with model C1, it is possible to see that the boosting models classified
fewer pixels as pegmatite, but the difference is so small that it cannot be said that this has
reduced false positives. Despite being able to identify known pegmatites as effectively as
the other models, Catboost did not correctly classify water bodies and vegetation. Among
the boosting algorithms, the LightGBM algorithm obtained the best result, being able to
identify pegmatites in target areas and classify other elements of the study area (Figure 21).
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Figure 21. LGB classifier. Pegmatites are classified as red colour, granite as beige, water as blue,
and vegetation as green (a) Overview of the study area where Håkonhals mine is highlighted by
the orange rectangle and Jennyhaugen mine by the blue rectangle. (b) Håkonhals mine in focus.
(c) Jennyhaugen mine in focus.

4. Discussion
4.1. Spectral Analyses
4.1.1. Spectra from Sentinel 2 Images

Although the spectra from the Jennyhaugen mine have a more prominent marked
minimum in band 8 when compared to the Håkonhals spectra, the spectra extracted from
both study areas have, in general, similar absorption features and reflectance behaviour.
The results shown in Figure 8, confirm that the spectral average for spectra obtained from
multispectral satellite images can be an effective method in Greenfield areas where the exact
location of the pegmatite to be exploited is not known. On the other hand, the results of this
method may be impacted if the pixels present in the mining area are mostly represented
by pixels of the bedrock. At Håkonhals the pegmatite occupies a considerable part of the
mine area and as shown in Figure 8a,b, the differences in intensity between the absorptions
and reflectance peaks are minor. At Jennyhaugen the pegmatite is found in a small part
of the mine area, as illustrated in Figure 8c,d, and the absorptions, in particular, are much
stronger in the mining spectra. It can be said that the pegmatites have strong absorption in
band 8 (NIR) in the individual pixels and this absorption was attenuated when the spectra
from Jennyhaugen were averaged. This did not happen for Håkonhals, where the average
spectra still show, even if timidly, absorption in band 8. The main bands for this set of
spectra are the same for pure and mining spectra. The difference in absorption intensity
and reflectance are important elements in distinguishing between minerals. However, in
the absence of such information, the average of the spectra can be used in Greenfields. We
should point out that averaging the spectra may not have much impact on multispectral
bands, but this is different for hyperspectral images. With much more robust spectra
carrying much more information, averaging can negatively impact the analysis of the
results. Therefore, it should be noted that the same approach would not be viable when
using hyperspectral data, as seen by some spectral changes around band 8 between the
pure and the mine spectra.
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4.1.2. Spectra Collected in the Laboratory

Analysis of the spectra collected in the laboratory shows that most of the abortions
of the samples studied take place in the SWIR region (1100–2500 nm). However, only a
few of these absorptions are covered by the spectral range of the Sentinel 2 bands, except
for band 12, which covers the absorptions in almost all samples around 2200 nm. This
absorption is characteristic of the presence of AlOH, which indicates that most samples
contain this group [16]. However, band 12 also covers the FeOH and MgOH features that,
in the analysed samples, are related to the presence of chlorite or biotite in the samples.
Regarding reflectance, band 10 (1360–1390 nm) comprises reflectance peaks in the quartz,
K-feldspar, plagioclase, and granite samples and could be the most representative band
regarding reflectance. However, this band has no surface information and was omitted
from this study. As pointed out by [16], is evident that the SWIR region has a strong
contribution to lithological studies. However, as the results of this study show, Sentinel 2
does not have an important band in this region for detecting NYF pegmatites.

4.2. Traditional Methods
4.2.1. Band Ratios

In general, the BRs elaborated from the analysis of the spectra collected in the labo-
ratory are not suitable to be used as input for the RF algorithm, as they highlight other
elements, such as vegetation, instead of the pegmatite that is the target of this study. Al-
though BR 3/6 can highlight the pegmatite areas, its result is much inferior to BR 4/5 and
4/8 and, because of that, it was not selected as an input.

4.2.2. Principal Components Analyses

The results obtained indicate that PCA is more efficient in highlighting NYF pegmatites
from Tysfjord than BR. On the other hand, BRs were able to highlight pegmatite areas, but
the signal confusion with water and granite bodies (in the case of BR 4/5) makes their result
inferior to PCAs that, in turn, highlight pegmatites with fewer false positives (Figure 22).
Regardless of the false positives presented by BR, they were able to successfully identify
the zones of interest, and together with selected bands, PCA and NDVI were used as input
in the algorithms.
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Note that it identifies the target area perfectly with no signal confusion with water or granite.

The traditional methods, which were adapted from the analysis of the spectra extracted
from the Sentinel 2 bands, proved to be more efficient in highlighting the target areas when
compared to the methods proposed from the spectral analysis of the spectra collected in
the laboratory. This suggests that extracting spectra directly from satellite bands is a better
method for selecting the most appropriate bands for identifying the target. It should be
noted that the target of this study is not individual minerals, but the whole pegmatite rock;
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therefore, analysing the spectra of specific mineral samples is not the most efficient method
of identifying NYF pegmatites.

In the case of the methods adapted from the spectra collected in the laboratory, except
for granite, whose ratios of 3/6 were able to discard the target areas, none of the other
ratios proposed achieved the same effect so well. On the other hand, the PCA achieved
good results, especially the PC 3, 6, which highlighted the target areas very well.

4.3. Random Forest Algorithm

Despite the good results, the C2 model was developed with the sole intention of
validating the average approach to be used in Greenfield exploration areas with little
information on the pegmatite outcrop. In such cases, pixels across the entire open pit
mining area would be used to sample. When comparing satellite images in true colour,
we noticed high reflectance in this area, which could indicate snow, but the NDSI does
not identify snow cover in this same location. The reasons for this false positive will be
investigated in the future. With exception of “shadow” zones, the classification of the other
classes seems correct as to the reality of the study area, which demonstrates an improvement
in the classification of vegetation and water bodies in relation to previous studies [15].

The RF C1 model developed was shown to be effective in detecting NYF pegmatites,
indicating that selecting bands for their ability to highlight (reflect) the target is an accurate
method. Even so, when compared to previous works, an improvement in the classification
of other elements in the study area such as granite and vegetation was seen. However, the
number of false positives is an issue that should be investigated in the future. In terms
of relevance for the classification, it can be said that the Bands with higher reflectance
(B4, B6, B7 and B8A) and the PCA (4, 8) are the most important for the study. In an area
with a strong presence of vegetation, NDVI is an important contribution to improving the
classification of this class.

4.4. Boosting Algorithms

Both algorithms were able to highlight pegmatites pixels from the target areas. In
relation to the classification, in general, the LightGBM algorithm was shown to be superior
to the Catboost, managing to classify all the elements of the study area. The Catboost
algorithm was not effective in classifying water and vegetation, misclassifying as vegeta-
tion pixels that correspond to water bodies. The confusion in the classification between
these two classes is already known from previous works [15], where RF also misclassified
vegetation pixels as belonging to the water class. In this work, this was avoided using the
NDVI to increase the sensitivity of the algorithms in the vegetation classification. Despite
the misclassification between these classes, Catboost was able to identify pegmatites in the
target areas, which proves that using inputs with high pixel values for pegmatites is an accu-
rate method of identifying this target. In terms of relevance for the classification BR 4/8 and
the bands with higher reflectance were the most important for both boosting algorithms.

5. New Possible Areas of Interest for Exploration

The applied RF C1 model shows a robust classification of pegmatites having classified
more areas as pegmatites than previous models [15], and this demonstrates the possibility
that new areas of interest for exploration can be found. For this analysis, the areas indicated
by the RF algorithm that were also highlighted by traditional methods were compared
with high-resolution photographs. Three points were selected (Figure 23). Points 1 and 2
are very closely located at the WGS 84-UTM coordinate Zone 33N 15,786N/68,140Y and
15,789X/68,140Y, respectively. The sites are located at the flank of a hilltop on the island
of Tannøya. The pictures show greyish to whitish hard rock exposures. However, the RF
model most likely has probably aimed at the whitish areas, which could be either quartz
pegmatite or Tysfjord granite. A follow-up in the field is necessary.
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Figure 23. Points of interest for exploration. (a) Overview of the study area where the points of
interest were identified by the yellow rectangle. (b) Points 1 and 2 in focus. (c) Point 3 in focus.
(d) Point 4 in focus.

Point 3 (Figure 23c) is located at 15660N/68125Y on a mountain flank in the eastern
part of Hamarøy and north of Brennvikvatnet. The area of interest shows an elongated
area of yellowish-coloured rock exposure surrounded by forest. The area seems to be used
as an open pit for gravel and sand, but also sections with hard rock of the same colour
can be seen. In Northern Norway and, in particular, on Hamarøy, deep weathering of the
basement rocks and chemical alteration to clay minerals like illite and smectites is well
known and widespread. Since quartz is very hard to weather, the site shows potentially
original feldspar pegmatite occurrence with an abundance of feldspar weathering. Locals
use the saprolite preferable to build and maintain their gravel roads, which could explain
this open pit. Furthermore, a reported minor location with feldspar pegmatite just south of
the Brenvikvatnet [40] increases the possibility for another feldspar pegmatite location here.

Finally, point 4 is located at 15821X/68125Y at the top of Jørenvik mountain. The
site shows bright, whitish areas within the Tysfjord granite, which could represent quartz-
pegmatitic quartz, but it could also be loose gravel or sand derived from physical weather-
ing, enriched in quartz from the underlying Tysfjord granite. This needs to be followed up
in the field. In any case, the points identified are promising and show that the approach
works. Having a more comprehensive spectral database, including spectra from altered
and weathered bedrock, will help to fine-tune and improve it.

6. Conclusions

This study was based on spectral analysis to select the most adequate bands for image
processing methods and then the most suitable inputs for tree-based ensemble classifiers.

Extracting spectra from areas where it is certain that they are pegmatite outcrops (pure
spectra) is the best option for spectral studies, but in the absence of such information, the
average spectra can be used in Greenfields areas.

The traditional methods, which were adapted from the analysis of the spectra extracted
from the Sentinel 2 bands, proved to be more efficient in highlighting the target areas when
compared to the methods proposed from the spectra collected in the laboratory.

As for the methods adopted from the analysis of the spectra extracted from the
Sentinel 2 bands, we can say that the BR could highlight the target areas, despite the
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spectral confusion with water bodies. Nonetheless, adding a water mask is still a very
useful tool in the application of such methods. The PCA was the method that best allowed
us to attain the objectives of this work, correctly identifying the target areas.

Regarding the identification of pegmatites, all tree-based ensemble algorithms ob-
tained a similar result. As for the other elements of the study area, Catboost obtained the
lowest performance, showing less sensitivity in the spectral differences between water and
vegetation classes.

Despite this, the results still need to be improved, especially to decrease false positives.
Overall, the applied method proved to be a powerful and robust tool for the exploration of
NYF pegmatites in areas with poor vegetation coverage.

The spectral analysis allows for the method to be adapted according to the charac-
teristics of the target under study, and it can be adapted to identify LCT pegmatites. In
the future, other algorithms such as SVM and Convolutional Neural Networks (CNN)
will be applied that, together with the products generated in this research, will be used as
parameters to perform a robust spatial analysis and generate prospect maps that can be
used to support decision making regarding the exploration of NYF pegmatites in Tysfjord.

The results of the techniques applied in this study are very promising, being able
to accurately identify the occurrence of pegmatites. Furthermore, this method is highly
adaptable and can be applied to other study areas and tested with other satellite products
such as Landsat 9 OLI 2, Landsat 8 OLI, ASTER TERRA, WORLDVIEW-3, and hyper-
spectral images. Thus, this approach is highly valuable to the mining industry and is
a strong contribution to the field of pegmatite prospecting, providing information that
can be used by other researchers and mining professionals to decrease the impacts of
early-stage exploration.
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