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Abstract: Passive multi-frequency microwave sensors are indispensable instruments for worldwide
environmental monitoring. However, they often suffer from the issues of poor spatial resolution
and the original land–sea transition zone data are contaminated severely. Conventional analytical
deconvolution methods enhance the spatial resolution at the expense of noise amplification and
Gibbs fluctuations in the land–sea transition zone. In order to enhance the spatial resolution as well
as simultaneously enhance the integrity of the Microwave Radiometer data, a method based on
Total Variation deconvolution, Bilateral Filter, and data fusion (TVBF+) is proposed. Our method
substantially improves data integrity and obtains similar enhanced resolution compared to existing
methods. Experiments performed using both simulated and actual microwave radiation Imager
(MWRI) data demonstrate the method’s robustness and effectiveness.

Keywords: FengYun-3D (FY-3D); microwave radiation imager; spatial resolution enhancement; data
integrity enhancement; data fusion

1. Introduction

Satellite microwave remote sensing using the radiometer has been widely used for
global monitoring of weather parameters for its continuous, all-weather, all-day observing
capabilities [1]. The ability to see through clouds is a crucial feature of the microwave
instruments, allowing an uninterrupted view of the measurements. The passive microwave
instrument is designed to receive emissions from the atmosphere and Earth surface at
multi-frequency and multi-polarization. It plays a critical role in the retrieval of surface
temperature, sea-ice concentration, snow water equivalent, and soil moisture [1–4].

However, the existing microwave radiometers can only provide a relatively coarse
spatial resolution compared with the infrared and optical sensors [5–7]. Furthermore,
the spatial resolution of the different channels is non-uniform. The original resolution
cannot meet the requirement of regional-scale distribution parameters acquisition and
joint multichannel geological parameter retrieval [8,9]. In particular, the original land–
sea transition zone data are contaminated due to the relatively large antenna footprint
covering both land and water in the land–sea transition zone [10,11]. The contaminated
measured data result in the lack of retrieval products in these areas [12]. Therefore, recent
developments in precise weather forecasting have heightened the need for enhanced spatial
resolution and data integrity [13,14].

The deterioration of the radiometer data is attributed to the blurring effect caused by
the antenna pattern convolution and the noise introduced by the receiver. A considerable
number of approaches have been proposed to handle multiple degradation factors, which
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can be categorized as data fusion algorithms, antenna pattern inversion algorithms, and
deep learning methods. The data fusion technique exploits the related information from
optical [15] and higher frequency channels [16] with a finer resolution. The antenna pattern
inversion algorithm utilizes redundant information of antenna footprint overlap, which
is represented by the Backus–Gilbert (BG) inversion methods [17,18], the Wiener filtering
method [5], and the radiometer versions of the scatterometer image reconstruction (rSIR)
algorithm [19] and the methods addressed in Banach and Hilbert space [20,21]. The deep
learning methods based on convolutional neural network (CNN) solve the comprehensive
degradation problem by learning an end-to-end mapping between low- and high-resolution
images [22–24].

In fact, unlike the optical image, precise values are essential for radiometer data
during quantitative parameter retrieval [4,10,12]. Admittedly, the existing algorithms
have achieved a satisfactory reconstruction result, but their deficiencies are apparent.
The fusion algorithms are performed under the assumption that the information from
diverse sources is highly correlated [25]. The inversion algorithms introduce rapid noise
amplification [26,27] and oscillation due to the Gibbs fluctuations [6]. Deep learning meth-
ods are model-dependent, time-consuming, and resource-intensive [24]. Notably, partial
high-frequency information is irreversibly lost during degradation. Thus, existing spatial
resolution enhancement algorithms introduce Gibbs fluctuations in the land–sea transition
zone. In summary, although the spatial resolution is enhanced, the data integrity is not
ameliorated due to the mismatched fusion information, the noise, and Gibbs fluctuations.

To solve these problems, a new and practical spatial resolution and data integrity
enhancement algorithm based on the Total Variation deconvolution, cascaded Bilateral
Filter, and data fusion (TVBF+) technique is proposed in this paper. The illustration of the
method is shown in Figure 1.
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Figure 1. Illustration of the proposed spatial resolution and data integrity TVBF+ method.

Overall, the contributions of this paper are as follows:

1. A deconvolution algorithm based on TV regularization is proposed to reconstruct the dete-
riorated image aiming to enhance the spatial resolution with minimal noise amplification.

2. A bilateral fusion module is cascaded with the deconvolution module to ameliorate
the data integrity of reconstructed data.

3. Evaluation methods are proposed to evaluate the resolution enhancement and data
integrity in the coastal transition zone.

The rest of this article is organized as follows. The relevant instrument, imaging theory,
and algorithm evaluation methodology are briefly described in Section 2. In Section 3, the
theoretical background of the proposed method is described. Moreover, the experiment
on simulated data and actual microwave radiometer imager (MWRI) measurements is
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performed and analyzed in Section 4. Finally, Sections 5 and 6 draw the discussion and
conclusion, respectively.

2. Related Work
2.1. MWRI Instrument

The FY-3D is the fourth generation of the Chinese FY-3 series of meteorological polar-
orbiting satellites with a conical-scanning MWRI on board. It provides highly accurate
measurements of the microwave emission intensity at five frequencies (10.65, 18.7, 23.8,
37, and 89 GHz) with vertical and horizontal polarization [28,29]. The spatial resolution
of the MWRI image is frequency dependent, with high-frequency data having a high
resolution due to the narrow beamwidth. The specific performance [29] of the FY-3D MWRI
instrument is shown in Table 1.

Table 1. Main characteristics of the FY3D MWRI.

Frequency
(GHz) Polarization

The Instantaneous
Field of View

(km)

Sampling
Interval

(km)

Integration
Time
(ms)

10.65 V/H 51 × 85 6 × 11 15.0

18.7 V/H 30 × 50 6 × 11 10.0

23.8 V/H 27 × 45 6 × 11 7.5

37 V/H 18 × 30 6 × 11 5.0

89 V/H 9 × 15 6 × 11 2.5

All experiments with actual measurement data are demonstrated and validated based
on Level-1 (L1) data obtained by the FY-3D MWRI, which flew at an altitude of 836 km
and measured the Earth’s surface brightness temperature at a 45◦ observation angle. The
conical scanning mode is adopted, resulting in a swath of 1400 km [30]. The sampling
points are 266× 1825 along the scan direction and the track direction. The observation
footprint varies along the scanning direction due to the oblique projection of the antenna
pattern. Thus, the along scan direction data is considered under the influence of relative
geometry variation.

2.2. Imaging Process

The brightness temperature TA(s0, v) obtained by the MWRI at any given frequency v
at the location s = s0 is the convolution of the actual scene brightness temperature TB(s, v)
with the normalized antenna pattern G(s0, s, v), which can be represented by [18]

TA(s0, v) =
x

Ω

G(s0, s, v)TB(s, v)dA + n (1)

where variable s = (α, β, θ, ϕ) contains the longitude (α), latitude (β), azimuth (θ), and
zenith angle (ϕ). n denotes the system noise.

Therefore, the actual smooth integral kernel used in Equation (1) should be the pro-
jection of the original antenna pattern on the Earth’s surface, which is calculated from the
scan geometry defined by parameter s.

The linearity problem defined by Equation (1) can be cast in a discrete setting [25] and
be expressed by:

m = H f + n (2)

where f ∈ RM×1 is a vector that denotes the unknown image TB. m ∈ RN×1 is the
vector of noise-containing measurements TA. H ∈ RM×N is the matrix that describes a
linear transformation representing the convolution operation, and n ∈ RN×1 is a vector
corresponding to radiometric noise NE∆T.
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However, in this paper, M equals N since the subsequent data fusion operation
requires two matrices to have the same size. The general purpose of the algorithms is to
recover f from the degraded data m.

2.3. Evaluation Criteria

This paper presents several evaluation metrics to assess the reconstructed image
quality from different perspectives. To objectively evaluate the overall image, the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) [31] are chosen since they are
well-known for their ability to evaluate an image in terms of the similarity of the pixels in
the whole image. Additionally, the noise evaluation is applied to the synthetic simulation
data and it is quantitively evaluated by calculating the standard variance of the data in a
flat zone.

Besides the quality of the overall image, the quality of local data in the coastal transition
zones should also be considered. In particular, the capability to reconstruct spot-like targets
and abrupt discontinuities related to the land–sea transition zone ought to be quantitively
evaluated when noise amplification and Gibbs fluctuations are introduced. As shown in
Figure 2, the simulated transect along the normal direction of the coastline demonstrates
the specific situation. The absolute value of the tangent slope is defined as Resolution
Factor (RF), which represents the ability to reconstruct abrupt discontinuities. The local
data integrity is defined by the number of the contaminated sampling point (CP). The
contaminated data has an excessive deviation from the actual TB. In a complicated two-
dimensional MWRI image, CP is specifically defined as the number of contaminated points
in the normal direction of the local coastline.
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As illustrated in Figure 2, the antenna inversion algorithm provides comparatively
acceptable capabilities in terms of improving spatial resolution. Conversely, the improve-
ment in data integrity is limited due to Gibbs fluctuations. A few sampling points are
over-enhancing, which impairs data quality. Accordingly, the inversion algorithm only
optimizes the data integrity for just two points in this case. However, the Gibbs fluctuations
further deteriorate data integrity in some complicated scenarios. The deconvolution results
are equivalent to or inferior to the original measured data.
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3. Methods

The proposed algorithm is implemented according to the flowchart described in
Figure 3. In this paper, 18 GHz is used as an example of low-resolution data, and 37 GHz is
used as an instance of high-resolution data. The proposed algorithms can be applied in a
broader frequency channel with different spatial resolutions.
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Using a TV regularization deconvolution, the antenna inversion version of TB−18GHz−TV
is obtained, which is shown in green block 1. With the intention of obtaining the noise-free
and Gibbs fluctuation-free data, the Bilateral Fusion module is cascaded with TB−18GHz−TV .
The results are represented in green blocks 2 and 3, where the numbers in the green blocks
represent the proposed algorithm’s restoration level. TB−18GHz−TVBF is obtained by Bilat-
eral Filter operation to TB−18GHz−TV , which aims at achieving a noise-free version. Fused
with the gradient information of the 37 GHz channel to the Bilateral Filter, TB−18GHz−TVBF+
is obtained. The Bilateral Filter and data fusion of the 37 GHz channel are combined as the
proposed Bilateral Fusion module.

3.1. Total Variation Regularization Deconvolution

Since most algorithms amplify noise during image restoration, a small amount of
noise in the original data may significantly impair the restoration result. To eliminate
possible artifacts and noise suppression from the restoration process, specific regular
terms are added to the optimization problem’s model. The TV norm is a common type
of regularization [32]. The solution to the problem defined by the Equation (2) can be
expressed as:

minimize
f

µ

2
‖ H f −m ‖2 + ‖ f ‖TV (3)

where ‖ · ‖2 is the conventional L2-norm and µ is the regularization parameter,

‖ f ‖TV = ∑
i

(
|∆x f |i +

∣∣∆y f
∣∣
i

)
(4)

is the TV-norm, i denotes ith component of f . ∆x and ∆y are the forward finite-difference
operators of horizontal and vertical directions, respectively. Thus, the Equation (3) can be
equivalent as follows:

minimize
f

µ

2
‖ H f −m ‖2 + ‖ ∆ f ‖1 (5)

where
∆ =

[
∆T

x ∆T
y

]T
(6)
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To solve the problem defined by Equation (5), the intermediate variable u can be
introduced to transform the problem, which can be expressed as:

minimize
u

µ

2
‖ H f −m ‖2 + ‖ u ‖1 subject to u = ∆ f (7)

The augmented Lagrangian [33,34] of Equation (7) can be formulated as:

L( f , u, y) =
µ

2
‖ H f −m ‖2 + ‖ u ‖1 −pT(u− ∆ f ) +

ρr

2
‖ u− ∆ f ‖2 (8)

where ρr is a regularization parameter associated with the quadratic penalty term ‖ u−∆ f ‖2.
p is the Lagrange multiplier associated with the constraint u = ∆ f .

The solution to Equation (8) is to find a saddle point of L( f , u, y). Consequently, we use
the alternating Direction Method of Multipliers (ADMM) [35] to solve the two subsequent
subproblems in alternating iterations:

(1) : fk+1 = arg min
f

µ
2 ‖ H f −m ‖2 −pT

k (uk − ∆ f ) + ρr
2 ‖ uk − ∆ f ‖2

(2) : uk+1 = arg min
u

‖ u ‖1 −pT
k (u− ∆ fk+1) +

ρr
2 ‖ u− ∆ fk+1 ‖2 (9)

For subproblem (1), since L is derivable with respect to f , the solution can be obtained
by taking the derivative:

f = F−1

 F
[
µHTm + ρr∆Tu− ∆T p

]
µ|F [H]|2 + ρr

(
|F [∆x]|2 +

∣∣F [∆y
]∣∣2)

 (10)

where F denotes the Fourier transform operator.
To solve the subproblem (2), a shrinkage formula [36] is introduced. Thus, the solution

of ux is given as:

ux = max
{∣∣∣∣∆x f +

1
ρr

px

∣∣∣∣− 1
ρr

, 0
}
·sign

(
∆x f +

1
ρr

px

)
(11)

The solution for uy is also obtained using a similar formula as Equation (11). Therefore,
the solution for the u-subproblem is represented as:

u =
[
uT

x uT
y

]T
(12)

By alternating iterations of two subproblems, the Lagrange multiplier p can be updated
as follows:

pk+1 = pk − ρr(uk+1 − ∆ fk+1) (13)

The initial values f0 = m, u0 = ∆ f , p0 = 0, and parameters ρr = 5 are chosen. In the
kth iteration, fk+1, uk+1, and pk+1 are updated sequentially according to Equations (10),
(11), and (13). The convergence condition of the iterations is shown as follows:

‖ fk+1 − fk ‖2/‖ fk ‖2 ≤ 1e−3 (14)

The result of iteration is defined as TB−18GHz−TV , which is abbreviated as TTV .

3.2. Data Integrity Enhancement with Bilateral Fusion
3.2.1. Bilateral Filter Denoising

However, during the process of obtaining TTV , the spatial resolution enhancement is
still achieved at the expense of noise amplification. The microwave radiometer image is
steep only at the land–sea transition zone and comparatively flat in both terrestrial and



Remote Sens. 2022, 14, 3502 7 of 21

marine areas. To mitigate the effects of amplified noise for the microwave radiometer
image, the Bilateral Filter (BF) [37] is selected.

Bilateral Filtering is a local, nonlinear, and non-iterative technique that combines a
classical Gaussian filter with an edge protection function that attenuates the filter kernel
when the values between sampling points vary drastically. As brightness temperature
similarities and closeness of the neighboring sampling points are considered simultaneously,
the weights of the filter depend not only on geographic distance but also on the distance
in brightness temperature space. The advantage of the filter is that the amplified noise
in the flat regions of TTV is suppressed. At the same time, the coastal transition zone,
which represents high-frequency information of the image, is retained. Mathematically, the
Bilateral Filter output TTVBF derived from TTV is calculated as follows:

TTVBF(a) =
1

W ∑
b∈S

Gσs(‖ a− b ‖)Gσr (|TTV(a)− TTV(b)|) ∗ TTV(b) (15)

where a is the target location, S is a spatial neighborhood of a, b is the location of adjacent
sampling points in the neighborhood S. ‖ · ‖ denotes the geographic distance in Euclidean
space, |TTV(a)− TTV(b)| is the transition stopping function. Gσ denotes the Gaussian-like
kernel. σr and σs are the standard deviations of the Gaussian kernel.

Figure 4 depicts the effect of the Bilateral Filter, which is space-variant when applied
to a real MWRI scenario. The kernel is Gaussian-like when centered inside the flat land–
sea transition zone for noise reduction, while the kernel reduces to zero near the land–
sea transition zone to retain the gradient variation information. In the flat zone, it is
a complete Gaussian-like filter. In the land–sea transition zone, the filter is attenuated
and this operation is equivalent to keeping it the same as TB−18GHz−TV in this area. In
brief, besides cleaning the noise introduced by the TV reconstruction process mentioned
above, the Bilateral Filter operation preserves the high-frequency components of the steep
transition region.
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3.2.2. Bilateral Fusion

The Bilateral Filter mainly suppresses the noise in the flat zone. Due to the loss
of unrecoverable high-frequency information, the Gibbs fluctuations are complicated to
remove. Therefore, data integrity in steep transition zones does not meet the requirements
of practical meteorological applications [12].
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To further eliminate noise and fluctuations, the Bilateral Fusion technique is utilized
to further improve the accuracy of resolution-enhancing products. The proposed Bilateral
Fusion intends to fuse the gradient information of the high-resolution image instead
of the specific per-pixel values. Although the behaviors between the low- and high-
frequency channels are not exactly the same, as shown in Figure 5. Their brightness
temperature distribution characteristics are relatively similar in the terrestrial and marine
zone, respectively. The gradient of the images is calculated with the Sobel operator. Their
gradient variations are also approximate, except that the 37 GHz image has narrower
gradient transition bands. In order to give a more thorough comparison of the multichannel
distribution properties, the along-scan transects (labeled with the black dash-dotted line
in Figure 5a) of 10.65, 18.7, 23.8, and 37 GHz brightness temperature, and the value of the
land–sea mask are depicted in the Figure 5e. Their trends are analogous, with only minor
fluctuations.
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Specifically, the relationship between 18 and 37 GHz of the whole image can be defined
as the ratio R:

R =
TB37

TB18
(16)

As shown in Figure 6, the value of R is approximately constant in the terrestrial and
marine regions separately, which indicates that the brightness temperature of these two
channels is roughly linear in these two areas.

Consequently, we fuse the gradient information of the 37 GHz channel measured data,
which has higher resolution and no Gibbs fluctuations in the coastal transition zone, to
guide the Bilateral Filtering process. The Equation (15) can be modified as follows:

TTVBF+(a) =
1

W ∑
b∈S

Gσs(‖ a− b ‖)Gσr (|TA37(a)− TA37(b)|) ∗ TTV(b) (17)

The simulated transect analysis explains the effectiveness of the Bilateral Fusion near
the land–sea transition zone, which is shown in Figure 7. The resolution of the reconstructed
image is enhanced at the expense of noise amplification in the flat zone and the Gibbs
fluctuations near the steep zone.
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The noise and the Gibbs fluctuations lead to the wrong land–sea zone division for
the Bilateral Filter. Fused with the information of TA37, the Bilateral Fusion properly
delineates the steep and flat zone to felicitate the maximization of noise and fluctuation
removal without the resolution reduction. The flat land–ocean and steep transition zones
are divided according to the gradient information of 37 GHz, as illustrated by the red,
green, and blue backgrounds. Notably, using the gradient information of the reconstructed
deconvolution image could result in a 1~2 pixel position offset due to the Gibbs fluctuations.
This mismatched region division affects the accuracy of the algorithm. In conclusion, fused
with the gradient information of the high-resolution image, noise and Gibbs fluctuations
are better eliminated.
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4. Results
4.1. Synthetic Scenario Evaluation

In this section, synthetic simulation data and synthetic MWRI data are used to evaluate
the performance of the proposed Total Variation Regularization Deconvolution and cascaded
Bilateral Fusion algorithms. As a demonstration, the synthetic 18.7 GHz channel antenna
temperature is generated by Equation (1), where 37 GHz channel antenna temperature is
used as the scene temperature for simulation. The classic BG algorithm is used as a reference
benchmark for contrast. The comparison between the results of TBG and our proposed
TTV , TTVBF, TTVBF+ are illustrated by evaluation metrics and visualization performance.

4.1.1. Synthetic Simulation Data

Quantitative analysis of resolution enhancement and data integrity assessment us-
ing actual MWRI data is challenging, and the non-uniform performance of the different
frequency channels aggravates the difficulties. The synthetic simulation data depicted
in Figure 8a, which has relatively regular scenes, can be alternatives. In this experiment,
the synthetic scenario is characterized by a 180K background representing the ocean area.
The three hot spots with gradually increased dimension and brightness temperature along
the cross-scan direction indicate the small isolated islands. A large hot spot representing
the continent is also generated near the small hot spots to illustrate the reconstruction
performance near the abrupt discontinuities.

The degraded image is depicted in Figure 8b. The reconstruction results obtained using
BG and our proposed method are depicted in Figure 8c–f. For a better visual evaluation,
the local areas of the three hot spot margin of the simulated continental (enclosed by a
white dash-dotted rectangle) are enlarged.

By contrasting the reconstruction results and TB, all methods have sharper recon-
structed fields than TA. The noise in the background area of the proposed TTV is less than
the BG method. The TTVBF, TTVBF+ provide noise-free images of the flat areas in visual
effects. However, the Gibbs fluctuations are presented as local over-reconstruction in a
two-dimensional (2D) image. The results of TTVBF and TTVBF+ outperform TTV and BG
since the Gibbs fluctuations near the transition zone are considerably mitigated.

Detailed analyses of the brightness temperature reconstruction performance are eval-
uated with the along-track transects (labeled with the dash-dotted line in Figure 8a), as
shown in Figure 9. The ability to reconstruct the tiny target precisely is shown in area A of
Figure 9. The sharpness and amplitude of TB are attenuated. All reconstruction methods
improve edge sharpness to a similar degree, but the amplitude of these methods is higher
than the actual value. Among them, TTVBF+ achieves the optimum reconstruction in ampli-
tude since it significantly alleviates the over-recovery phenomenon. The Gibbs fluctuations
and the resolution factor (RF) are evaluated in area B. The RF for all methods is close. In
particular, TTVBF+ obtains a slightly better result, which is shown in Table 2. Furthermore,
the TTVBF and TTVBF+ demonstrate outstanding ability to reconstruct abrupt discontinuity
for they overcome the Gibbs fluctuations. In area C, the noise amplification is illustrated
by the degree of fluctuation. TTV shows a slightly better result than BG. Moreover, TTVBF
and TTVBF+ suppress the majority of the noise. The noise amplification is quantitively
evaluated by calculating the standard variance of the data in the red dash-dotted square in
Figure 8a, as shown in Table 2.

The PSNR and SSIM are evaluated over the whole image. The noise is evaluated in
the flat area. The RF and CP are evaluated near the abrupt discontinuity. The experiments
are performed 100 times independently for statistical evaluation, and averaged indices are
shown in Table 2. Specifically, the best indices are shown in bold. The proposed TTVBF+
outperforms other methods in terms of all five indices.

4.1.2. Synthetic MWRI Data

However, the simulated scene in Section 4.1.1 is comparatively simple since it has
only horizontal and vertical components. To further test the performance of the proposed
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algorithm under a complicated condition, 200 images of FY3D MWRI from 1 September 2021
to 15 September 2021 are chosen. Most of these images are from the northern hemisphere.
Consequently, their geographical features include sufficient gradient variation. As indicated
in Figure 10, the proposed TTV , TTVBF, TTVBF+ all outstrip BG in terms of PSNR and
SSIM. In particular, the results of TTVBF are slightly better than TTV . Furthermore, TTVBF+
achieves the pre-eminent results.
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Table 2. The evaluation indices of the synthetic simulation scenario.

Methods PSNR (dB) SSIM Noise RF CP

TA 37.0367 0.9592 1.3262 15.1663 7
TBG 38.1755 0.9642 1.8169 26.2721 7
TTV 39.4317 0.9726 1.2427 26.1438 7

TTVBF 40.9258 0.9936 0.0881 26.7613 3
TTVBF+ 41.0187 0.9940 0.0287 27.0301 1
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Aiming to illustrate the reconstruction performance visually, a representative scenario
around the northern region of Australia and the southern region of Indonesia is selected.
The region has enough islands and a margin of mainland whose local tangent line is
perpendicular to the along-track direction. As shown in Figure 11, all the algorithms
produce clear boundaries and interfaces. Apparently, both TTV and TBG methods enhance
the resolution at the expense of noise amplification, which can be demonstrated by the
artifacts in Figure 11c,d. The results in TTVBF ameliorate this phenomenon and TTVBF+
provides the outstanding performance in which almost all the artifacts introduced by noise
and Gibbs fluctuations were eliminated.
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For more convincing analyses of the reconstruction performance, the brightness tem-
perature values are evaluated using the along-track transect (label with a white dash-dotted
line in Figure 11a), which is shown in Figure 12. The transect is perpendicular to the local
coastal line in Australia. The Australia coastal transition zone is enlarged to elaborate the
ability to handle the Gibbs fluctuations.

The image sharpness of all methods’ results is approximately the same, whereas
the TTVBF+ provides the best performance with the elimination of Gibbs fluctuations.
In addition, the fluctuation of TTVBF+ in the flat zone is suppressed as well. Thus, the
reconstructed TTVBF+ produced the most satisfactory data in accordance with spatial
resolution and data integrity.

A metric analysis similar to that in Section 4.1.1 is performed, which is shown in Table 3.
The TTVBF+ still attains the most desirable results in PSNR, SSIM, RF, and CP. It is essential
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to note that the RF and CP calculation is marginally imprecise due to irregular geographic
image patterns. Nonetheless, it does not affect the demonstration of the superiority of our
algorithm. Therefore, these results demonstrated our methods’ effective spatial resolution
and data integrity enhancement ability in practical use.
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Table 3. The averaged evaluation indices of the 200 synthetic MWRI scenarios.

Methods PSNR (dB) SSIM RF CP

TA 30.2345 0.8972 26.5221 7
TBG 35.6404 0.9048 43.8413 7
TTV 36.5938 0.9361 43.7943 7

TTVBF 37.3895 0.9634 43.7260 5
TTVBF+ 42.5372 0.9924 45.4776 1

To intuitively illustrate the algorithm’s two-dimensional visual effect on complex
images, another typical scene is chosen, which includes parts of the Mediterranean, con-
tinental Europe, and Africa. In addition, the image of the Peloponnese region (enclosed
by the white dash-dotted rectangle) in the northern part of the Hellenic Republic and the
Canakkale region (enclosed by the red dash-dotted rectangle) in the western part of Turkey
is locally enlarged. In the majority of articles, the brightness temperature range of the
image is set to be relatively wide [13,22], and thus the changes in detail are not readily
visible visually. We adopt the strategy that sets the brightness temperature of the image
to a narrow range, [250 K, 300 K], which is equivalent to adding a mask to the sea surface
area. Therefore, variations in the brightness temperature of the continent can be observed
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more distinctly. As depicted in Figure 13, all algorithms provide a relatively sharp edge.
The notable example of two enlarged regions showed the exceptional ability of TTVBF+ to
reduce artifacts and over-reconstructed details at the edge of the coastline.
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the cross-track direction, the values of CP and RF are difficult to calculate. The objective 
evaluation indices of PSNR and SSIM are shown in Table 4. The indices for 𝑇 , 𝑇 , 

Figure 13. The synthetic MWRI scenario and resolution enhancement results. (a) Synthetic 18.7 GHz
scene temperature; (b) simulated 18.7 GHz antenna temperature; (c) the Backus–Gilbert enhancement
results; (d) the TV enhancement results; (e) the TVBF enhancement results; (f) the TVBF+ enhancement
results. (The image in the bottom-left corner is a partial enlargement of the white dotted square and
the image in the bottom-right corner is a partial enlargement of the red dotted square).

In this scenario, due to the lack of coastline whose tangent line is perpendicular to
the cross-track direction, the values of CP and RF are difficult to calculate. The objective
evaluation indices of PSNR and SSIM are shown in Table 4. The indices for TTV , TTVBF,
and TTVBF+ are incremental. In particular, the result obtained by TTVBF+ is substantially
ahead of other methods.
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Table 4. The evaluation indices of the synthetic MWRI scenario.

Methods PSNR (dB) SSIM

TA 29.3485 0.9045
TBG 34.4271 0.9280
TTV 35.7685 0.9316

TTVBF 36.3284 0.9612
TTVBF+ 41.3148 0.9918

4.2. Actual MWRI Measurements Evaluation

The results shown above are based on the degenerate model. The validation of the
proposed methods on actual MWRI measurements is still elusive. In this section, the
actual 18.7 and 37 GHz data with the horizontal polarization are used to demonstrate the
effectiveness of the proposed TV deconvolution and Bilateral Fusion. The scenarios with
the same geographic area as Section 4.1.1 are selected. Since the ideal TB of 18.7 GHz is
unavailable, 37 GHz data are used for reference in terms of resolution and Gibbs fluctuations
in the land–sea transition zone.

As shown in Figure 14, which shows the same area as Figure 8, all the algorithms
produce precise edges and interfaces for the 18.7 GHz channel. The sharpness of the
enhanced resolution results is comparable to that of the 37 GHz channel. It is imperative
to note that the results of both TTV and TBG introduce artifacts near the coastal transition
zone of Australia, as depicted in Figure 14c,d. TTVBF improves this artifact to some extent
and TTVBF+ provides the best Gibbs artifact removal behavior.
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Similarly, the along-track transect analysis can be applied to the actual MWRI data,
as illustrated in Figure 15. There are differences in emission characteristics of 18.7 and
37 GHz channels. Nonetheless, trends in gradient changes can be used to reference since
37 GHz offers steeper variations in the abrupt discontinuities area. All methods restore
the resolution of the 18.7 GHz image to a level comparable to or even exceeding that of
the 37 GHz image representing a significant improvement in resolution. Furthermore, the
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zoomed transition zone shows TTVBF+’s distinguished competence in eradicating the Gibbs
fluctuations compared to BG and other proposed methods.
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Figure 14).

Due to the lack of the ideal label for index calculation, PSNR and SSIM are difficult to
access. Moreover, RF and CP can only be approximately calculated. The indices are listed
in Table 5. Despite the increased resolution, the TBG method and TTV result in more sample
points being contaminated while only TTVBF+ improves both indices simultaneously.

Table 5. The evaluation indices of the actual scenario.

Methods RF CP

TA−37GHz 55.7500 3
TA−18GHz 38.7800 5

TBG 75.3224 7
TTV 77.3252 7

TTVBF 77.4811 5
TTVBF+ 78.9571 4

Moreover, the same scene in Figure 13 is also utilized to demonstrate the capability to
deal with unnatural ringing artifacts caused by over-enhancing high-frequency edges.

As shown in Figure 16, we set the color range to [240 K, 310 K] to better visually
observe the terrestrial areas. TTVBF removes most of the artifacts introduced by TV decon-
volution in the Canakkale region. Further, TTVBF+ delivers nearly flawless results. For the
Peloponnese region, TA−18GHz has a noticeably blurrier edge than 37 GHz TA and only
TTVBF+ provides a pleasing enhanced-resolution product without any artifacts. Accord-
ingly, these results demonstrated our algorithm’s superior spatial resolution enhancement
and artifact suppression abilities, representing the significantly improved data integrity in
practical applications.
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Figure 16. The actual MWRI scenario and resolution enhancement results. (a) Actual 37 GHz scene
temperature; (b) actual 18.7 GHz antenna temperature; (c) the Backus–Gilbert enhancement results;
(d) the TV enhancement results; (e) the TVBF enhancement results; (f) the TVBF+ enhancement
results. (The image in the bottom-left corner is a partial enlargement of the white dotted square and
the image in the bottom-right corner is a partial enlargement of the red dotted square).

5. Discussion

In this paper, using the proposed TVBF+ methods, the spatial resolution and the
data integrity were enhanced. Experiments under one-dimensional transect analysis and
visualization of two-dimensional brightness temperature demonstrate the validity and ef-
fectiveness of the proposed method. The reconstruction’s performance is further discussed
quantitatively through objective metrics.

Several studies in related fields have demonstrated similar antenna inversion ability [5,17,38],
but most of them do not consider the validity of the enhanced data, which are contaminated
by the Gibbs fluctuations. The LW+ and Lp-penalization methods take effect to directly
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reduce Gibbs fluctuations during the deconvolution process [20]. In contrast, our proposed
Bilateral fusion technique suppresses the Gibbs fluctuations after the deconvolution opera-
tion. High-resolution channel gradient information is used instead of pixel-level fusion [14]
to avoid the problem of different behavior in a different channel. This gradient information
is used as the complement of irreversible high-frequency information. The results in Sec-
tion 4 demonstrated the surpassing superiority and effectiveness of the proposed method
in the land–sea transition zone, which generates products with comparable resolution but
relatively fewer Gibbs fluctuations and noise compared with the prevailing methods.

In addition, the 89 GHz channel has the most satisfactory spatial resolution. Theo-
retically, the sharpest gradient information can be extracted and exploited. However, the
89 GHz brightness temperature is susceptible to atmospheric effects, which may lead to
unpredictable and unstable behavior. The tuned method of utilizing 89 GHz information
needs further research. Further development will also be devoted to utilizing the ideal
gradient information generated from Radiative Transfer for TOVS (RTTOV).

6. Conclusions

In this paper, to enhance the spatial resolution and data integrity, the TVBF+ method
based on the TV regularization deconvolution, Bilateral Filter, and data fusion technique is
proposed. The algorithm aims to improve the resolution of microwave radiometer data and
simultaneously enhance data reliability. Specifically, the TV regularization deconvolution
technique generates products with comparable resolution but relatively less noise than the
conventional BG method. In addition, the cascaded Bilateral Filter and data fusion can
ameliorate the unnatural ringing artifacts introduced by the noise and Gibbs fluctuations.

Unlike the conventional methods that mainly focus on improving the sharpness of
the deteriorated image, the data integrity in the local transition zone near the abrupt dis-
continuities is also considered. Numerous experiments conducted in simulated and actual
scenarios have substantiated the soundness of the proposed TVBF+ method, surpassing the
traditional methods in accurately reconstructing measured radiometer data. The products
produced with the proposed method have fewer contaminated sampling points. Thus,
more microwave radiometers near the land–sea interface can be utilized for geological
parameter retrieval.
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