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Abstract: Maintaining the ecological security of arid Central Asia (CA) is essential for the sustainable
development of arid CA. Based on the moderate-resolution imaging spectroradiometer (MODIS)
data stored on the Google Earth Engine (GEE), this paper investigated the spatiotemporal changes
and factors related to ecological environment quality (EEQ) in CA from 2000 to 2020 using the remote
sensing ecological index (RSEI). The RSEI values in CA during 2000, 2005, 2010, 2015, and 2020
were 0.379, 0.376, 0.349, 0.360, and 0.327, respectively; the unchanged/improved/deteriorated
areas during 2000–2005, 2005–2010, 2010–2015, and 2015–2020 were about 83.21/7.66%/9.13%,
77.28/6.68%/16.04%, 79.03/11.99%/8.98%, and 81.29/2.16%/16.55%, respectively, which indicated
that the EEQ of CA was poor and presented a trend of gradual deterioration. Consistent with the
RSEI trend, Moran’s I index values in 2000, 2005, 2010, 2015, and 2020 were 0.905, 0.893, 0.901, 0.898,
and 0.884, respectively, revealing that the spatial distribution of the EEQ was clustered rather than
random. The high–high (H-H) areas were mainly located in mountainous areas, and the low–low
(L-L) areas were mainly distributed in deserts. Significant regions were mainly located in H-H and
L-L, and most reached the significance level of 0.01, indicating that EEQ exhibited strong correlation.
The EEQ in CA is affected by both natural and human factors. Among the natural factors, greenness
and wetness promoted the EEQ, while heat and dryness reduced the EEQ, and heat had greater
effects than the other three indexes. Human factors such as population growth, overgrazing, and
hydropower development are important factors affecting the EEQ. This study provides important
data for environmental protection and regional planning in arid and semi-arid regions.

Keywords: ecological environment quality; Central Asia; remote sensing; MODIS; Google Earth
Engine; RSEI

1. Introduction

Ongoing rapid climate change and intensifying human activities have significant
impacts on the global ecosystem, especially in vulnerable dryland ecosystems [1–3]. There-
fore, the environment in arid and semi-arid areas has received significant attention [4–7].
Ecological environment quality (EEQ) evaluation is an important tool to quantitatively
evaluate the environment and also serves as a criterion for formulating sustainable plans
or measures for regional environmental management.

Numerous methods have been used to evaluate the EEQ in recent years [8–14]. How-
ever, methods that use only one indicator in the evaluation of the EEQ usually fail to include
the complexity and diversity of the eco-environment and make the evaluation incompre-
hensive [15]. To achieve a comprehensive understanding of the EEQ, composite indicators
have been widely used in the evaluation of the EEQ in recent years [16–18]. Among these
composite indicators, the environmental index based on remote sensing information [17],
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named the remote sensing ecological index (RSEI), has been widely accepted and used for
ecological monitoring and evaluation [19–23]. The RSEI reflects the regional environment
by integrating the greenness, humidity, heat, and dryness of the eco-environment through
principal component transformation, which overcomes the limitation of using a single
index and can quickly realize the comprehensive evaluation of regional environments [17].
However, it is complex and time consuming when applying the RSEI to large-scale envi-
ronments and long-term changes. Therefore, previous studies on the RSEI mostly focused
on small areas within a short time range [19–23].

The Google Earth Engine (GEE), a free cloud platform that can quickly process massive
images, has become a good choice in recent years for large-scale and long-time calculation
of the RSEI, and it has been found to be effective in different regions and ecosystems [24–26].
For example, based on the GEE platform, Yang et al. analyzed the spatiotemporal change
of the EEQ of the Yangtze River Basin (1.8 × 106 km2) in China in the past 20 years
(2001–2019) [24]; Yang et al. analyzed the EEQ in the Yellow River Basin (0.8 × 106 km2)
in China during 1990–2019 [25], and Ji et al. analyzed the EEQ of the whole of China
(9.6 × 106 km2) during 2001–2020 [26]. Therefore, it is feasible to calculate the RSEI for
large-scale and long-time EEQ evaluation based on the GEE platform.

Central Asia (CA) is one of the largest arid and semi-arid regions in the Northern
Hemisphere [27] and also contains some of the most vulnerable and sensitive terrestrial
ecosystems in the world [28,29]. In recent years, climate change and anthropogenic activities
have caused unprecedented damage to the ecosystems there, threatening environmental
sustainability [30–33]. As one of the world’s greatest ecological disasters, the Aral Sea crisis
in CA, in which the Aral Sea shrunk and largely disappeared after water was diverted
for irrigation, led to desertification, and the resulting reduction in biodiversity has caused
serious damage to the surrounding ecosystem [34,35]. Therefore, maintaining ecological
security is of great significance to the ecological environment construction of arid CA and
even the world. On the above basis, the objectives of this study were: (1) to construct
the RSEI efficiently by MODIS sensing data based on the GEE platform; (2) to monitor
spatial–temporal changes of the EEQ in CA from 2000 to 2020; and (3) to explore the spatial
autocorrelation and identify the driving factors of the EEQ in CA. Our study provides a
practical and economical approach for assessing spatial–temporal changes of the ecological
environment quality based on RSEI and GEE.

2. Study Area

The CA region (46.50◦E–87.35◦E and 35.10◦N–55.45◦N) consists of the Xinjiang Uygur
Autonomous Region (XJ) in northwest China and the five post-Soviet Union republics,
namely, Kazakhstan (KAZ), Kyrgyzstan (KGZ), Tajikistan (TJK), Turkmenistan (TKM), and
Uzbekistan (UZB). These nations and regions have a total area of 5.63 × 106 km2 and share
the same ecological systems (Figure 1). Far from oceans, the CA region is characterized by a
typical continental arid and semi-arid climate [36]. The annual average precipitation varies
from 155 mm to 270 mm, whereas the annual average evaporation is between 900 mm and
1500 mm [37].
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Figure 1. Central Asian region. The world and country borders are from the National Platform for
Common Geospatial Information Services (https://www.tianditu.gov.cn/, accessed on 4 May 2022;
GS(2021)5443), the lake outlines are from the Natural Earth Data (http://www.naturalearthdata.com/,
accessed on 4 May 2022).

3. Data and Methodology
3.1. Data Collection

The products of MOD09A1 V6, MOD11A2 V6, and MOD13A1 V6 covering CA from
June to September of 2000, 2005, 2010, 2015, and 2020 were obtained to map the RSEI. The
Global Reservoir and Dam Database (GRanD) v1.3 (http://globaldamwatch.org/grand/,
accessed on 8 May 2022), the Gridded Population of the World (GPW) v4 (https://doi.org/
10.7927/H4F47M65, accessed on 8 May 2022), and the utilization intensity index of the main
grazing grasslands in Eurasia (https://www.chinageoss.cn/geoarc/2021/index.html, accessed
on 8 May 2022) were used to analyze the influence caused by associated driving factors.

3.2. Methods

The study workflow is shown in Figure 2. The process used was as follows: (1) based
on the GEE, four remote sensing indicators were calculated, namely, the land surface tem-
perature (LST), the normalized difference impervious surface index (NDBSI), the normal-
ized difference vegetation index (NDVI), and the wetness (WET); (2) spatial and temporal
distributions of RSEIs for CA in 2000, 2005, 2010, 2015, and 2020 were generated using
the principal component analysis (PCA) module in GEE; and (3) spatial auto-correlation
analysis was applied to analyze the spatial correlation, and the geographical detector model
(GDM) was used to quantitatively analyze the driving factors.
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3.2.1. Methods of RSEI

As a recently developed comprehensive ecological index, the RSEI is specifically used
to assess the EEQ with remote sensing data because it can reflect the pressures on the
environment caused by human activities (i.e., urbanization), changes in the environmental
state (i.e., vegetation coverage), and the climate change responses (i.e., temperatures and
humidity) [11]. In this process, we calculated four component indicators (heat (LST),
dryness (NDBSI), greenness (NDVI), and wetness (WET)) using MODIS data [38] and the
GEE cloud platform.

The MODIS data were preprocessed to remove clouds and mask the water body before
being processed. The NDVI was selected from the MOD13A1 product, the LST was selected
from the MOD11A2 product, and the WET and NDBSI were calculated by the MOD09A1
image band [38].

Considering that the units and magnitudes of above indicators are not uniform, these
indicators are normalized by Equation (1) before PCA, and their values are normalized
to [0, 1]. After normalization, the four indicators were synthesized into new images, and
the initial RSEI0 was calculated by Equation (2). To facilitate the comparison of the four
indicators, RSEI0 can also be normalized with Equation (3) [17]. Equations (1) through (3)
are as follows:

NIi= (I i − Imin)/( I max − Imin) (1)

RSEI0= 1 − PC1[ f (Greenness, Wetness, Dryness, Heat)] (2)

RSEI = (RSEI 0 − RSEI0min)/(RSEI 0max
− RSEI0min ) (3)

where NIi is the image standardization result of the indicator, Ii is the i pixel value of the
indicator, Imax is the maximum value of the indicator in the target year, Imin is the minimum
value of the indicator in the target year, PC1 is the first principal component, f is the
forward normalization of the four indicators, and RSEI0max and RSEI0min are the maximum
and minimum values of RSEI0 for the target year, respectively.

3.2.2. Spatial Auto-Correlation Analysis

Spatial auto-correlation measures and tests the correlation between an element’s
attribute value and that of its adjacent space [39,40]. This reveals an attribute eigenvalue
correlation between the spatial reference unit and the adjacent spatial unit. In this paper,
we analyzed the global and local spatial correlation of the RSEI using Global Moran’s I and
Local Moran’s I separately [19].

3.2.3. GDM

The GDM integrates various statistical methods to detect the driving forces of factors,
and it has been widely used in the detection of geographical environmental or human
factors responsible for the changes of the EEQ [41–44]. In this study, the GDM was used to
quantify the impacts of the LST, NDVI, NDBSI, and WET and their interactions on the RSEI
of CA. A detailed description of the GDM was published by Wang and Xu [45].

4. Results

This paper used the GEE platform’s PCA module to quantitatively invert the RSEI for
every 5 years during 2000–2020 of CA. The PCA results of CA and its six regions (Table 1)
showed that (1) the sum of the first principal component (PC1) and the second principal
component (PC2) eigen contribution rates for CA and its six regions exceeded 80. Therefore,
the weighted superposition of the results of the first two principal components can be
represented by most features of the LST, NDBSI, NDVI, and WET; (2) the PC contribution
rate of CA was consistent with its six regions, indicating that the RSEI obtained from
MODIS images was fit for large-scale EEQ evaluation; and (3) NDVI and WET promoted
the ecological benefits; however, the NDBSI and LST do the opposite.
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Table 1. Results of PCA for four indicators.

Year Indicator CA KAZ KGZ TJK TKM UZB XJ

2000

LST −0.87 −0.71 0.97 0.94 −0.84 −0.75 −0.95
NDBSI 0.00 −0.15 0.00 0.00 −0.04 −0.05 −0.01
NDVI 0.45 0.66 0.00 0.13 0.27 0.44 0.27
WET 0.19 0.21 −0.23 −0.33 0.48 0.50 0.16
EV1 0.04 0.05 0.05 0.01 0.03 0.06 0.05
EV2 0.00 0.02 0.02 0.00 0.01 0.01 0.01

ECR1 79.51 85.67 68.30 70.54 62.95 74.12 80.35
ECR2 17.05 8.92 26.96 22.22 21.51 16.30 15.66

2005

LST −0.82 −0.70 −0.97 0.93 −0.80 −0.76 −0.92
NDBSI 0.00 −0.01 0.00 0.01 −0.01 −0.02 −0.01
NDVI 0.53 0.68 −0.07 0.12 0.32 0.47 0.34
WET 0.21 0.22 0.23 −0.36 0.51 0.46 0.21
EV1 0.04 0.05 0.06 0.01 0.03 0.06 0.05
EV2 0.00 0.03 0.02 0.00 0.01 0.02 0.01

ECR1 76.97 87.52 60.84 69.79 65.31 78.67 76.00
ECR2 19.57 8.96 34.55 23.93 19.06 13.77 18.86

2010

LST −0.87 −0.70 −0.95 0.90 −0.72 −0.70 −0.92
NDBSI 0.00 −0.12 0.00 0.01 −0.06 −0.02 0.00
NDVI 0.44 0.65 −0.15 0.23 0.32 0.53 0.33
WET 0.24 0.27 0.29 −0.37 0.61 0.48 0.21
EV1 0.03 0.05 0.07 0.02 0.04 0.06 0.04
EV2 0.00 0.03 0.03 0.00 0.01 0.02 0.01

ECR1 76.58 85.33 60.63 67.51 67.26 78.84 75.82
ECR2 19.61 10.04 33.76 26.80 20.57 14.08 19.30

2015

LST −0.83 −0.72 −0.95 0.93 −0.74 −0.70 −0.89
NDBSI 0.00 −0.03 0.00 0.01 −0.01 0.00 −0.01
NDVI 0.49 0.65 −0.04 0.12 0.35 0.51 0.38
WET 0.25 0.24 0.31 −0.34 0.58 0.50 0.24
EV1 0.04 0.05 0.06 0.02 0.04 0.06 0.05
EV2 0.00 0.02 0.02 0.01 0.01 0.02 0.01

ECR1 77.97 89.10 64.07 65.64 66.14 78.87 74.23
ECR2 18.01 7.42 29.99 27.60 22.03 13.01 20.35

2020

LST −0.78 −0.64 −0.87 −0.84 −0.55 −0.58 −0.83
NDBSI 0.00 −0.19 0.00 0.00 0.00 0.00 0.00
NDVI 0.45 0.63 −0.04 −0.07 0.27 0.43 0.39
WET 0.42 0.39 0.49 0.53 0.79 0.69 0.41
EV1 0.04 0.06 0.07 0.02 0.05 0.06 0.05
EV2 0.00 0.02 0.02 0.01 0.01 0.01 0.01

ECR1 76.11 82.65 63.50 70.12 70.55 79.99 72.00
ECR2 14.71 8.73 25.29 18.84 21.83 12.38 15.91

Note: EV1: eigenvalue of Principal Component 1; EV2: eigenvalue of Principal Component 2; ECR1: contribution
rate of Principal Component 1; ECR2: contribution rate of Principal Component 2; The values correspond to
indicators is the result of eigenvectors.

4.1. Dynamic Changes in the EEQ of CA

According to the classification labels reported by Xu [17], during the monitoring
period (2000, 2005, 2010, 2015, and 2020), the EEQ levels of CA were mainly poor, fair, and
moderate (Figure 3a–f, Table 2). The RSEI in CA presented obvious spatial differentiation
(Figure 3f); fair EEQ levels were found in the largest area, accounting for 40.25% of the total
area, while moderate and poor EEQ levels accounted for 24.94% and 23.45% of the total
area, respectively. The proportion of good EEQ levels was relatively small at 10.63%, and
excellent EEQ levels accounted for only 0.73% of the total area. As shown in Table 2, from
2000 to 2020, the proportion of areas of the poor and fair was gradually increasing, and the
proportion of areas below fair was over 87%, indicating that the overall ecological level of
CA was poor and exhibited a deterioration trend.
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Table 2. Area and percentage change of each RSEI level in CA and its six regions.

RSEI Level 2000 2005 2010 2015 2020

CA

poor 20.90% 21.75% 22.16% 23.94% 28.50%
fair 37.67% 38.37% 45.56% 39.71% 39.91%

moderate 29.11% 27.00% 21.02% 23.99% 23.59%
good 11.66% 11.89% 10.27% 11.52% 7.84%

excellent 0.66% 0.99% 0.98% 0.85% 0.17%

KAZ

poor 2.99% 3.25% 5.18% 6.31% 11.66%
fair 47.22% 51.74% 66.79% 55.85% 56.11%

moderate 39.98% 34.42% 22.89% 28.18% 27.14%
good 9.25% 9.43% 4.32% 8.54% 4.85%

excellent 0.57% 1.17% 0.82% 1.11% 0.24%

KGZ

poor 0.00% 0.00% 0.00% 0.02% 0.09%
fair 10.21% 7.45% 4.49% 11.50% 11.59%

moderate 31.17% 32.88% 27.90% 34.97% 36.11%
good 55.76% 56.23% 60.99% 51.62% 51.60%

excellent 2.86% 3.44% 6.61% 1.88% 0.61%

TJK

poor 4.61% 3.02% 2.78% 4.59% 6.06%
fair 24.18% 20.28% 15.80% 20.61% 25.54%

moderate 49.93% 48.63% 42.35% 46.68% 49.84%
good 21.25% 27.84% 37.39% 28.00% 18.54%

excellent 0.03% 0.23% 1.68% 0.13% 0.02%

TKM

poor 79.86% 77.01% 82.95% 82.09% 84.83%
fair 17.89% 19.26% 13.87% 14.41% 12.70%

moderate 2.24% 3.72% 3.16% 3.46% 2.36%
good 0.01% 0.02% 0.02% 0.04% 0.10%

excellent 0.00% 0.00% 0.00% 0.00% 0.00%
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Table 2. Cont.

RSEI Level 2000 2005 2010 2015 2020

UZB

poor 48.22% 53.36% 57.85% 59.00% 63.25%
fair 35.90% 26.75% 22.48% 23.25% 19.78%

moderate 15.34% 18.36% 17.84% 16.69% 16.22%
good 0.54% 1.52% 1.83% 1.06% 0.74%

excellent 0.00% 0.00% 0.01% 0.00% 0.00%

XJ

poor 29.74% 31.72% 26.85% 30.89% 35.46%
fair 32.14% 29.69% 32.60% 29.29% 30.67%

moderate 20.71% 21.42% 21.59% 22.00% 22.45%
good 16.40% 16.13% 17.82% 16.99% 11.29%

excellent 1.01% 1.03% 1.13% 0.83% 0.13%

Among the six regions in CA (Figure 3a–f, Table 2), (1) KGZ and TJK had the best
ecological status, with high proportions of excellent, good, and moderate ecological quality
and over 68.40% of their combined total areas classified as moderate or better; (2) TKM
and UZB, located in the southwest of CA, had the worst ecological conditions, with poor
ecological quality predominating in the majority of areas and accounting for 81.35% and
56.34% of TKM and UZB, respectively; and (3) KAZ and XJ had a high proportion of fair
and moderate ecological quality areas, lending them overall moderate ecological status.

The mean values of the RSEI in CA and its six regions were calculated (Figure 4),
with the following findings: (1) the level of ecological status in CA from 2000 to 2020
was fair, and the average value of the RSEI was between 0.327 and 0.394, with a decrease
rate of 0.027/year, suggesting that the environment in CA was deteriorating (Figure 4a);
(2) the EEQ grades of KGZ (0.471) and TJK (0.551) were moderate, the EEQ grades of KAZ
(0.341), UZB (0.243), and XJ (0.373) were fair, and the EEQ grade of TKM was poor (0.175)
(Figure 4b–g); (3) in the past 20 years, the RSEI of UZB and XJ showed an upward trend
with increase rates of 0.012/year and 0.003/year, respectively, indicating that the ecological
status improved (Figure 4f–g). KAZ, KGZ, TJK, and TKM showed a decreasing trend with
decrease rates of 0.011/year, 0.020/year, 0.004/year, and 0.014/year, respectively, indicating
that the ecological status was deteriorating (Figure 4b–e).
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4.2. Spatiotemporal Characteristics of RSEI Evolution in CA

The spatiotemporal differences of the EEQ in CA were analyzed over four periods
at 5-year intervals (2000–2005, 2005–2010, 2010–2015, and 2015–2020). The proportion
of areas in which the RSEI remained unchanged in CA from 2000 to 2020 at about 80%
(Figure 5). The proportions of improved areas in 2000–2005, 2005–2010, 2010–2015, and
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2015–2020 were 7.66%, 6.68%, 11.99%, and 2.16%, respectively, showing a trend of decline.
The proportions of deteriorated areas showed an opposite trend to that of improved areas,
at 9.13%, 16.04%, 8.98%, and 16.55%, respectively. Although the overall EEQ of CA showed
an unchanged trend from 2000 to 2020, more areas exhibited deterioration than improved
areas, indicating that the EEQ of CA showed a gradual deterioration trend in recent years.
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From the spatial distribution change of EEQ, although the EEQ in CA mainly re-
mained unchanged in the four periods (2000–2005, 2005–2010, 2010–2015, and 2015–2020),
the spatial distribution showed different characteristics in various periods (Figure 6a–d,
Table 3).
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Figure 6. Spatial distribution of changes in the EEQ of CA and its six regions from 2000 to 2020 (SD,
MD, IN, MI, and SI correspond to significant degeneration, mild degeneration, invariability, mild
improvement, and significant improvement, respectively).

From 2000 to 2005, the areas of slight deterioration and slight improvement in CA
showed sporadic distribution, and the area of slight improvement was larger than slight
deterioration. The proportions of slightly deteriorated and slightly improved areas in
KAZ, KGZ, TJK, TKM, UZB, and XJ were 11.62%/7.98%, 5.40%/10.27%, 2.84%/16.92%,
1.11%/5.57%, 10.57%/10.07%, and 7.76%/6.0, respectively (Figure 6a, Table 3).

Mild deterioration mainly occurred in northern KAZ from 2005 to 2010, and the
areas of slight improvement were mainly located in KGZ, TJK, and XJ. The proportion
of slightly deteriorated and slightly improved areas in KAZ, KGZ, TJK, TKM, UZB, and
XJ was 27.78%/3.72%, 1.55%/15.36%, 0.75%/18.17%, 7.34%/0.71%, 7.27%/2.28%, and
4.05%/12.75, respectively (Figure 6b, Table 3).
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Table 3. Spatial distribution of changes in the EEQ of CA and its six regions in various periods.

Period Region SD MD IN MI SI

2000–2005

CA 0.00% 6.55% 83.97% 9.48% 0.00%
KAZ 0.00% 11.62% 80.40% 7.98% 0.00%
KGZ 0.00% 5.40% 84.33% 10.27% 0.00%
TJK 0.00% 2.84% 80.24% 16.92% 0.00%

TKM 0.00% 1.11% 93.32% 5.57% 0.00%
UZB 0.00% 10.57% 79.36% 10.07% 0.00%

XJ 0.00% 7.76% 86.16% 6.08% 0.00%

2005–2010

CA 0.00% 8.12% 83.04% 8.83% 0.00%
KAZ 0.00% 27.78% 68.50% 3.72% 0.00%
KGZ 0.00% 1.55% 83.09% 15.36% 0.00%
TJK 0.00% 0.75% 81.07% 18.17% 0.00%

TKM 0.00% 7.34% 91.95% 0.71% 0.00%
UZB 0.00% 7.27% 90.45% 2.28% 0.00%

XJ 0.00% 4.05% 83.20% 12.75% 0.00%

2010–2015

CA 0.00% 12.64% 81.90% 5.46% 0.00%
KAZ 0.00% 6.73% 73.57% 19.70% 0.00%
KGZ 0.00% 27.04% 72.00% 0.96% 0.00%
TJK 0.00% 21.29% 78.35% 0.36% 0.00%

TKM 0.00% 1.83% 95.05% 3.13% 0.00%
UZB 0.01% 6.26% 91.52% 2.21% 0.00%

XJ 0.00% 12.69% 80.90% 6.41% 0.00%

2015–2020

CA 0.00% 13.14% 84.42% 2.44% 0.00%
KAZ 0.00% 18.37% 79.61% 2.01% 0.00%
KGZ 0.00% 8.65% 86.01% 5.34% 0.00%
TJK 0.00% 19.40% 78.78% 1.82% 0.00%

TKM 0.00% 5.15% 93.60% 1.25% 0.00%
UZB 0.00% 7.25% 91.03% 1.73% 0.00%

XJ 0.00% 20.04% 77.49% 2.47% 0.00%

From 2010 to 2015, slight improvement was mainly concentrated in northern KAZ, and
the areas with mild deterioration were mainly located in KGZ, TJK, and XJ. In KAZ, KGZ,
TJK, TKM, UZB, and XJ, the proportions of slightly deteriorated and slightly improved
areas were 6.73%/19.70%, 27.04%/0.96%, 21.29%/0.36%, 1.83%/3.13%, 6.26%/2.21%, and
12.69%/6.41, respectively (Figure 6c, Table 3).

The spatial–temporal distribution of EEQ in CA during 2015–2020 showed similar
sporadic distribution characteristics to that from 2000 to 2005, but the areas with slight
deterioration were all larger than those with slight improvement. In KAZ, KGZ, TJK,
TKM, UZB, and XJ, the proportions of slightly deteriorated and slightly improved ar-
eas were 18.37%/2.01%, 8.65%/5.34%, 19.40%/1.82%, 5.15%/1.25%, 7.25%/1.73%, and
20.04%/2.47%, respectively (Figure 6d, Table 3).

5. Discussion
5.1. Spatial Autocorrelation Analysis of EEQ

Spatial statistical analysis helps to understand ecological patterns and regional ag-
glomerations [15,19]. In this study, the pixel size of the RSEI images from 2000, 2005, 2010,
2015, and 2020 were resampled to a 5 km × 5 km scale, and a total of 225,449 sample points
were collected to determine whether the variables were spatially correlated and their extent.
The spatial autocorrelation was analyzed using Moran’s I index and LISA diagram.

Figure 7 shows Moran’s I scatter diagram of the RSEI, which is mainly distributed in
the first and third quadrants of each year, indicating a strong positive spatial correlation
of environmental quality in the study area. Moran’s I index values for 2000, 2005, 2010,
2015, and 2020 were 0.905, 0.893, 0.901, 0.898, and 0.884, respectively, indicating that the
spatial distribution of EEQ in the whole CA was clustered rather than random over the
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years. Moran’s I value decreased gradually from 2000 to 2020, which was consistent with
the change of the EEQ grade (Figure 5).
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The local spatial correlation patterns of the EEQ were analyzed by the LISA cluster
and the LISA significance level. As shown in the LISA clustering diagram (Figure 8),
insignificant areas were mainly concentrated in the central and southern areas of KAZ and
in the edge region of XJ. The high–high (H-H) clustering regions were mainly concentrated
in the mountainous areas of KAZ, KGZ, TGK, and XJ. In 2010, the H-H distribution area
of KAZ decreased, and the EEQ was poor. From 2015 to 2020, the H-H agglomeration
area increased, and the ecological environment was good. The low–low (L-L) areas were
mainly distributed in desert areas, such as the Taklimakan Desert in XJ, the Kyzyl-Kum
Desert in UZB, and the Karakum Desert in TKM. These areas are characterized by scarce
precipitation, high evaporation, and poor EEQ. The LISA cluster map directly reflected the
spatial distribution of “H-H,” “L-L,” “high–low (H-L),” and “low–high (L-H),” and the
LISA significant level map reflected the spatial significance level of environmental quality.
The significant regions for 2000–2020 were mainly located in the H-H and L-L regions, most
of which reached a significance level of 0.01, indicating a strong correlation of EEQ.
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5.2. Impacts of Driving Factors on RSEI

The RSEI has been widely used to evaluate the EEQ in a variety of landscapes. RSEI
values vary from landscape to landscape. Reported RSEI values include 0.18 in areas
of severe soil erosion [46], 0.24 in desert areas [47,48], 0.27–0.68 in cities [11], 0.43–0.54
in tableland regions [49], 0.45–0.61 in islands [50], 0.49–0.69 in floodplains or the basins
of large rivers [51], over 0.63 in forested/dense vegetation areas, and over 0.83 in good
farmland [52]. In the present study, the RSEI ranged from 0.327 to 0.394. This value was at
or near the values found in desert areas or cities, which correspond to the actual situation.
The mean RSEI of CA ranged from 0.327 to 0.394 during 2000–2020, which might be closely
related to changes in environmental factors and human interference.

5.2.1. Impacts of Natural Factors on RSEI

The GDM was applied to further reveal the dominant natural factors for the changes
in the EEQ. The specific operation steps were as follows: four indicator images in the
monitoring years (2000, 2005, 2010, 2015, and 2020) were resampled to 5 km × 5 km, and
225,449 points were generated in each image; the RSEI was taken as the independent
variable, and four indicators were selected as the dependent variables; factor detection,
ecological detection, interactive detection, and risk detection were carried out by matching
the RSEI points with four index factor (LST, NDBSI, NDVI, and WET) points.

Factor detection was used to calculate the p-value of each factor to explore whether
each factor had an impact on RSEI and its contribution rate [45]. According to the factor
detection results, the p-values of the four indicators in CA and the six regions were less
than 0.01, passing the significance test. The contribution rate of the LST was over 90%,
which was higher than the other three factors (about 50%). Therefore, while the NDVI,
NDBSI, LST, and WET all have significant effects on the EEQ of CA and its six regions, the
LST is the main factor.

Ecological detectors were used to determine if there was a significant difference
between two factors of the RSEI [45]. The results showed that although the difference
between the two factors was significant in different years, the spatial distributions of the
RSEI in CA and the six regions were mostly affected by the LST.

By calculating the p-value of the interaction between two natural factors, the interactive
detector analyzes whether the two natural factors interact or are independent [45]. The
interaction results of each of the two main influencing factors in CA and its six regions
exhibited two-factor enhancement, and there was no independent factor, indicating that
there was an interaction between two factors and it was not a simple superposition.

The risk detector can determine the best range partition or feature through which
different factors promote RSEI growth, with a confidence level of 95%. The risk detection
results of each factor could be divided into two parts: the statistical difference between
different regions and the mean value of the RSEI [45]. The results showed that the mean
value of the RSEI was negatively correlated with the LST and NDBSI, that is, the smaller the
range of the LST and NDBSI, the larger the RSEI value. In contrast, the RSEI was positively
correlated with the NDVI and WET; in other words, the larger the range of the NDVI and
WET, the greater the RSEI value. This was consistent with the PCA results. In addition,
statistical tests showed that the optimal region of the RSEI for each factor was significantly
different from other regions, which further demonstrated that each factor could better
promote the growth of the RSEI in the optimal region.

5.2.2. Impacts of Human Activities on RSEI

CA is typically arid and semi-arid and consists of a very fragile ecological environment,
making it particularly sensitive and vulnerable to human disturbance [53,54]. Previous
studies have shown primarily shrinkage in the Aral Sea basin due to diversion of rivers
for agricultural irrigation [55] and construction of reservoirs [56]. Wang et al. confirmed a
greater impact of human activities than climate change [57].
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In recent years, large-scale human activities in CA have had an important impact
on the local environment. For example, the population of CA and its six regions has
shown a continuous growth trend, especially TJK and UZB, with population growth rates
of 5.67 persons/km2/y and 5.17 persons/km2/y, respectively (Figure 9a). According
to the Global Reservoir and Dam Database (GranD) v1.3, more than 40 large dams and
reservoirs have been built over the last 30 years in CA (Figure 9a), significantly affecting the
surrounding ecosystem [58]. The spatial distribution of the utilization intensity index of the
main grazing grasslands in CA also showed an increasing trend. Areas with high utilization
intensity index were mainly distributed in the north and east of KAZ, and low-utilization
areas were mainly distributed in the south of KAZ, the southeast of UZB, and central TKM,
which was consistent with areas of degraded ecological quality (Figure 9b). Environmental
protection measures have played a positive role in promoting the improvement of local
EEQ. For example, the improvement of the EEQ in XJ in recent years was related to a series
of local ecological protection measures [19].
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5.3. Limitations and Future Work

In this paper, the rapid and efficient comparative analysis of the regional environment
was achieved by integrating multi-source remote sensing data and using the GEE cloud
platform. This method can provide support for regional development planning and the
formulation of environmental protection measures. However, the environment in arid areas
is fragile, and the environmental quality is sensitive to changes in natural environmental
factors and human activities [57,59–63]. In addition to the LST, NDBSI, NDVI, and WET,
global warming, soil erosion, desertification, a decrease in biodiversity, population surges,
and the intensification of urbanization will all damage the environmental balance. In
addition to these factors, the Tienshan Mountains in CA, are known as the “water tower
of CA” [64]. However, the RSEI calculations did not take the effects of glacial change into
account. In addition, to prevent the interference of large areas of water with actual surface
humidity conditions, a water mask was adopted in the RSEI calculation process, as water
areas play a crucial role in the environmental development in arid areas [65–67]. Therefore,
the evaluation of the environment in CA should be conducted while considering local
conditions to obtain more comprehensive and scientific evaluation results.

6. Conclusions

Based on the GEE cloud platform and MODIS data, the RSEI was used to study the
spatiotemporal dynamics and changes of EEQ in CA and its six regions during 2000–2020
to explore the spatial correlation and the driving factors of the EEQ. The results were
as follows.

(1) The RSEI values in CA during 2000, 2005, 2010, 2015, and 2020 were 0.379, 0.376,
0.349, 0.360, and 0.327, respectively, revealing that the EEQ was at a poor level and
showed a deteriorating trend. Among the six regions of CA, although UZB and XJ had
medium EEQ grades of fair, both of these regions showed a trend of improvement.
KGZ and TJK had the best EEQ grades of moderate, KAZ had a medium EEQ grade
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of fair, and TKM had the worst EEQ grade of poor; all of these regions showed a trend
of deterioration.

(2) During 2000–2005, 2005–2010, 2010–2015, and 2015–2020, the unchanged/improved/
deteriorated areas in CA were about 83.21/7.66%/9.13%, 77.28/6.68%/16.04%,
79.03/11.99%/8.98%, and 81.29/2.16%/16.55%, respectively, indicating that the over-
all EEQ in CA gradually deteriorated in recent years. The six regions of CA exhibited
similar characteristics.

(3) Analysis from Moran’s I index indicated that the spatial distribution of the EEQ
in CA was clustered rather than random. Areas of H-H were mainly concentrated
in mountainous areas, and L-L areas were mainly distributed in desert areas; the
significant regions were mainly located in H-H and L-L areas, and most of them
reached the significance level of 0.01, indicating that environmental quality had a
strong correlation.

(4) The results of the GDM revealed the influence of natural factors on the EEQ in CA.
The findings showed that, although all factors had an impact on the RSEI in CA and
its six regions, LST was the main factor. The impacts of various factors on the RSEI
were not a simple superposition process but rather a mutual enhancement. The LST
and NDBSI had a negative correlation with the RSEI, whereas the NDVI and WET had
a positive correlation with the RSEI. In addition, human activities, such as population
growth, overgrazing, and hydropower development, had an important impact on
the EEQ.

By writing programs in the GEE platform to directly access databases for data process-
ing and analysis, the problem of low-efficiency steps such as local downloading, storage,
and pre-processing can be overcome, and index calculation can be conducted quickly in
the GEE cloud. Therefore, GEE can be used as a computing platform to evaluate the EEQ,
and its application can be extended to evaluate the EEQ by the RSEI over a large range and
long time series.
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Nomenclature

CA Central Asia
MODIS Moderate Resolution Imaging Spectroradiometer
GEE Google Earth Engine
EEQ ecological environment quality
RSEI remote sensing ecological index
H-H high-high
L-L low-low
H-L high-low
L-H low-high
XJ Xinjiang Uygur Autonomous Region
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KAZ Kazakhstan
KGZ Kyrgyzstan
TJK Tajikistan
TKM Turkmenistan
UZB Uzbekistan
LST land surface temperature
NDBSI normalized difference impervious surface index
NDVI normalized difference vegetation index
WET wetness
PCA principal component analysis
GDM geographical detector model
PC1 the first principal component
PC2 the second principal component
EV1 eigenvalue of principal component 1
EV2 eigenvalue of principal component 2
ECR1 contribution rate of principal component 1
ECR2 contribution rate of principal component 2
SD significant degeneration
MD mild degeneration
IN invariability
MI mild improvement
SI significant improvement
NIi the image standardization result of indicator
Ii the i pixel value of indicator
Imax the maximum values of indicator in the target year
Imin the minimum values of indicator in the target year
f the forward normalization of the four indicators
RSEI0max the maximum values of RSEI0 for the target year
RSEI0min the minimum values of RSEI0 for the target year
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