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Abstract: Forest fires have frequently occurred and caused great harm to people’s lives. Many
researchers use machine learning techniques to predict forest fires by considering spatio-temporal
data features. However, it is difficult to efficiently obtain the features from large-scale, multi-source,
heterogeneous data. There is a lack of a method that can effectively extract features required by
machine learning-based forest fire predictions from multi-source spatio-temporal data. This paper
proposes a forest fire prediction method that integrates spatio-temporal knowledge graphs and
machine learning models. This method can fuse multi-source heterogeneous spatio-temporal forest
fire data by constructing a forest fire semantic ontology and a knowledge graph-based spatio-temporal
framework. This paper defines the domain expertise of forest fire analysis as the semantic rules of the
knowledge graph. This paper proposes a rule-based reasoning method to obtain the corresponding
data for the specific machine learning-based forest fire prediction methods, which are dedicated to
tackling the problem with real-time prediction scenarios. This paper performs experiments regarding
forest fire predictions based on real-world data in the experimental areas Xichang and Yanyuan
in Sichuan province. The results show that the proposed method is beneficial for the fusion of
multi-source spatio-temporal data and highly improves the prediction performance in real forest fire
prediction scenarios.

Keywords: forest fire prediction; knowledge graph; spatio-temporal data; machine learning; multi-source
heterogeneous data fusion

1. Introduction

Forest fires are one of the major interference factors in forest ecosystems, which
affect biodiversity, species composition, and ecosystem structure [1]. They threaten forest
resources and the safety of lives and property [2]. Thus, the prediction of forest fires plays an
important role in disaster risk analysis. This paper proposes a spatio-temporal knowledge
graph framework that can improve machine learning-based forest fire prediction methods.
The proposed framework can deeply extract and analyze features of a large amount of
historical spatio-temporal data, particularly for the rapid changes in fire information and
incomplete fire data.

Commonly used approaches include fire indices and mechanism models for forest fire
predictions that consider the closely related occurrence factors of forest fires. Salavatiet et al. [3]
conducted research in the city of Sanandaj, located in the west of Iran. In this study, fire
risk potential is assessed using Weights of Evidence (WoE) and Statistical Index (SI) models.
Chen et al. [4] considered precipitation as an important factor affecting the probability of
forest fire occurrence. In their work, they present a method for better representing the effect
of precipitation on predicting forest fires. Ge et al. [5] proposed a comprehensive index
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of forest fire drivers for forest fire predictions using a hierarchical analysis considering
topographic, vegetation, meteorological, and human activity factors.

Recently, quite a few studies have shown that machine learning-based methods can
discover more complex data patterns for forest fires than the traditional mechanism- or
statistic-based models. Jaafari et al. [6] employed WoE Bayesian modeling to investigate
the spatial relations between historical fire events in the Chaharmahal-Bakhtiari Province
of Iran. Sakr et al. [7] presented a forest fire risk prediction algorithm based on Support
Vector Machines (SVM). To predict forest fires, Binh Thai Pham et al. [8] compared the
ability of Bayes Network (BN), Naive Bayes (NB), Decision Tree (DT), and Multvariate
Logistic Regression (MLP) to map fire susceptibility in Phu Mat National Park, Ninh An
Province, Vietnam. Ma et al. [9] built a forest fire probability model based on the Logistic
model and the Random Forest (RF) model with the forest thermal anomaly data monitored
by satellites from 2010 to 2017. The model analyzes the driving factors of forest fires in
the Shanxi Province of China from four aspects: meteorology, topography, vegetation, and
human activities. Singh et al. [10] utilized the RF approach for assessing the impacts of the
climatic and anthropogenic factors for influencing fire occurrence probability and mapping
the spatial distribution of fire risk. Prapas et al. [11] considered daily fire danger prediction
as a machine learning task using historical Earth observation data from the last decade to
predict the next-day’s fire danger. Their Deep Learning-based method provides nationwide
daily fire danger maps, with a much higher spatial resolution than the existing operational
solutions. The previous research provides a good foundation for forest fire prediction using
machine learning methods.

Remote sensing technology can capture a large amount of dynamic information in
large observation ranges. The forest fire prediction studies make good use of remote
sensing techniques. The MODIS (Moderate-resolution Imaging Spectroradiometer) Fire
and Thermal Anomalies data and the VIIRS (Visible Infrared Imaging Radiometer Suite)
Fire data show active fire detections and thermal anomalies [12]. Cui et al. [13] used the
Terrestrial Water Storage Change (TWSC) generated by Gravity Recovery and Climate
Experiment (GRACE) data to analyze the influence of climate change on forest fires in the
region between 2003 and 2016. Piralilou et al. [14] evaluated the effects of coarse (Landsat 8
data and SRTM data) and medium (Sentinel-2 data and ALOS data) resolution spatial data
on wildfire susceptibility prediction using models based on RF and SVM.

There are many data sources for forest fire predictions. There are barriers for data
such as time, space, type, resolution, and coordinate systems. There is a difficult critical
problem that needs to fuse the large-scale multi-source heterogeneous data related to forest
fires for deeply discovering data patterns. In particular, the spatio-temporal features and
attribute features extracted from the data need to be semantically defined. The semantics
of the fused data can be beneficial to the spatio-temporal query of data, as shown in
Table 1. In addition, the proposed forest fire prediction method requires expertise in fire
prediction, which includes forest fire occurrence factor determination, forest fire prediction
model optimization strategies, and forest fire prediction model accuracy evaluation. The
existing forest fire prediction methods rarely apply semantic descriptions for fire prediction
expertise. Therefore, we cannot directly match model parameters or hyper-parameters that
are most suited for real-world forest fire prediction scenarios. To address the above issues,
we focus on forest fire expertise modeling and rule-based semantic reasoning for forest
fire predictions.

In this paper, we propose a forest fire prediction method by considering meteorological,
topographic, vegetation, and human activity factors that are closely related to forest fire
occurrence. This method builds a knowledge graph for Forest Fire Prediction (KGFFP) to
fuse heterogeneous forest fire data from multiple sources. This method differs from forest
fire predictions that are only based on machine learning methods. It formalizes the expertise
in the field of forest fire as semantic rules and obtains predicting data from KGFFP through
a rule-based reasoning method. The predicting data fit specific machine learning models
that work as cores of forest fire predictions. The proposed method builds on traditional
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machine learning-based forest fire prediction. It can fuse multi-source heterogeneous
spatio-temporal data and formalize domain expertise. The proposed method helps to
improve the efficiency of predictive analysis based on semantic inference rules. Figure 1
shows the comparison between the proposed method and the forest fire predictions based
on machine learning methods.

Table 1. Comparison between the proposed method and the commonly used data fusion methods
for forest fire prediction.

Commonly Used Methods The Method Proposed in This Paper

Through data processing, the time, space, type, resolution, and
coordinate systems of data are unified.

From the semantic point of view, the temporal, spatial, and
attribute features of the data are fused.

The spatio-temporal data is stored in a relational database and
needs to be added, deleted, queried, and changed based on the

graph database.

The spatio-temporal data is stored in the graph database and
needs to be added, deleted, queried, and changed based on the

graph database.

Multi-table joins are required for in-depth searches in relational
databases, resulting in low query efficiency.

Based on the graph database, in-depth queries can be made
from a limited space-time region. The efficiency of querying

various geographic entities and the relationship between
geographic entities in forest fire prediction scenarios is high.
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Figure 1. The comparison between this method and the forest fire prediction based on machine
learning method.

This paper has the following contributions: (1) we build a knowledge graph-based
multi-source heterogeneous data fusion method; (2) we define ontologies for modeling
domain expertise of the forest fire risk analysis as semantic rules; (3) we propose a rule-
based reasoning method for obtaining the corresponding predicting data required by the
machine learning-based forest fire prediction methods from KG according to the specific
situations; (4) we show experiments for demonstrating the benefits of the proposed method
in the aspects of multi-source heterogeneous spatio-temporal data fusion and machine
learning-based forest fire predictions.
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2. Knowledge Graph-Based Forest Fire Prediction System (KGFFP)

A knowledge graph is a semantic modeling method for data representation and
modeling through defining entities, concepts, and semantic relations. The rule-based
reasoning over knowledge graphs can analyze the entities and relations over knowledge
graphs by the specified semantic rules.

The architecture of the proposed forest fire prediction method consists of three basic
parts: KGFFP, machine learning-based forest fire prediction algorithms, and a controller
which controls rule inference and program flow. Sections 2.1 and 2.2 mainly introduce the
construction of KGFFP. The machine learning-based forest fire prediction algorithms in this
paper directly use the framework proposed by other existing papers. The controller focuses
on the rule-based reasoning for the semantic rules. Section 2.3 shows the implementation
of the proposed method.

2.1. Method Architecture
2.1.1. Conceptual Model for Forest Fire Prediction

The occurrence of forest fires is closely related to meteorological, topographical, vege-
tation, and human activity factors [15,16]. In this paper, we build a conceptual model for
forest fire prediction considering the above factors. It provides mechanism information
for forest fire prediction, including data that are used in KGFFP, as shown in Figure 2.
The data type will be a difference between the changes in the research objects and the
actual situations.
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2.1.2. Mapping between Forest Fire Prediction and KGFFP Architecture

We propose the KGFFP architecture, as shown in Figure 3, to support the fusion of
multi-source heterogeneous spatio-temporal data related to forest fires. The architecture
can match parameters and data for a specific machine learning-based forest fire predic-
tion method.

The KGFFP fuses the spatio-temporal data of forest fire by representing temporal
features, spatial features, and attribute features of spatio-temporal data. Therefore, time
ontology and space ontology need to be built for the conceptual layer of the knowledge
graph. The attribute features of spatio-temporal data strongly depend on the data type
(e.g., aspect is one of the important features of terrain data) that have specific hierarchical
relations for forest fire predictions (e.g., topographic data include slope, aspect, and eleva-
tion). The conceptual model for forest fire predictions is defined as a part of the conceptual
layer of the knowledge graph. The unstructured, structured, and semi-structured spatio-
temporal data for forest fire predictions can be modeled as a part of the instance layer of
the knowledge graph. The temporal features, spatial features, and attribute features of
the spatio-temporal data are represented based on the conceptual layer of the knowledge
graph. The concepts and actions used by the machine learning-based forest fire predictions
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are defined as an ontology. According to the concept definition in ontology, the domain
knowledge is formalized into the semantic reasoning rules of the knowledge graph.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 23 
 

 

can match parameters and data for a specific machine learning-based forest fire prediction 

method. 

The KGFFP fuses the spatio-temporal data of forest fire by representing temporal 

features, spatial features, and attribute features of spatio-temporal data. Therefore, time 

ontology and space ontology need to be built for the conceptual layer of the knowledge 

graph. The attribute features of spatio-temporal data strongly depend on the data type 

(e.g., aspect is one of the important features of terrain data) that have specific hierarchical 

relations for forest fire predictions (e.g., topographic data include slope, aspect, and ele-

vation). The conceptual model for forest fire predictions is defined as a part of the concep-

tual layer of the knowledge graph. The unstructured, structured, and semi-structured spa-

tio-temporal data for forest fire predictions can be modeled as a part of the instance layer 

of the knowledge graph. The temporal features, spatial features, and attribute features of 

the spatio-temporal data are represented based on the conceptual layer of the knowledge 

graph. The concepts and actions used by the machine learning-based forest fire predic-

tions are defined as an ontology. According to the concept definition in ontology, the do-

main knowledge is formalized into the semantic reasoning rules of the knowledge graph.  

 

Figure 3. KGFFP architecture. 

The KGFFP consists of the rule set (TBox) and the fact set (ABox). The TBox consists 

of the conceptual layer and the inference rules. The conceptual layer is the semantic basis 

for representing the hierarchical relationship of various factors regarding forest fire pre-

dictions. The inference rules are the logic basis for multi-source spatio-temporal data that 

supports semantic reasoning. The ABox constitutes the instance layer of the knowledge 

graph, which contains instances corresponding to various concepts in the concept layer. 

The ABox and the TBox together constitute the reasoning mechanism of the KGFFP.  

  

Figure 3. KGFFP architecture.

The KGFFP consists of the rule set (TBox) and the fact set (ABox). The TBox consists of
the conceptual layer and the inference rules. The conceptual layer is the semantic basis for
representing the hierarchical relationship of various factors regarding forest fire predictions.
The inference rules are the logic basis for multi-source spatio-temporal data that supports
semantic reasoning. The ABox constitutes the instance layer of the knowledge graph, which
contains instances corresponding to various concepts in the concept layer. The ABox and
the TBox together constitute the reasoning mechanism of the KGFFP.

2.2. Construction of Forest Fire Prediction Knowledge Graph

This section introduces the design of the concept layer, instance layer, and inference
rules of KGFFP. We use Ontology Web Language (OWL) as the knowledge representation
language as it is a widely used expressive language for knowledge graphs [17].

2.2.1. Design of Conceptual Layer

The conceptual layer of KGFFP defines the logical semantic relationship among multi-
source spatio-temporal data for forest fire predictions. It contains semantic concepts and
their interrelationships. It ensures the consistency of semantic concepts inherent in multi-
source spatio-temporal data related to forest fire predictions. The concept layer of KGFFP
includes time ontology, space ontology, an ontology for forest fire predictions, and machine
learning model concept ontology.

• Time ontology and space ontology

We used the time ontology of Semantic Web Rule Language (SWRL) [18] to represent
the common time concept of KGFFP. SWRL provides a uniform specification of the semantic
representation of time. It ensures the comparability and computability of the temporal
information of entities [5].
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We built a space ontology based on the extensions of Geographic Query Language
(GeoSPARQL) [19].

• Ontology for forest fire prediction

To define the conceptual model of forest fire predictions as forest fire prediction
ontology, we propose a tree-like taxonomy for the conceptual partitioning of multi-source
spatio-temporal data [5]. We constructed forest fire prediction ontology according to the
KGFFP architecture, as in Figure 4.
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• Machine learning model concept ontology

To improve the task of the machine learning-based forest fire predictions, we construct
the concept ontology of the machine learning model. It provides a conceptual framework
for the optimization and prediction of the machine learning model, as shown in Figure 5.
The architecture is applicable to different supervised machine learning models, including
but not limited to RF and Deep Forest (DF).
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In the model, f p is short for fire predict, a prefix for named entities in KGFFP. f p :
ModelOptimization is a class that represents the optimization stage of the machine learning
model. Both f p : Precision and f p : Recall denote evaluation metrics, which are objects
associated with f p : ModelOptimization. f p : ModelPredict is a class that represents the
prediction stage of the machine learning model.

f p : Model is the object of f p : ModelOptimization and f p : ModelPredict, which
represents a machine learning model. Its objects include the model name, prediction target,
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training area, and testing area. Both training and testing regions are associated with their
temporal phase, spatial geometry, regions, and properties of the analytical data to which
the model applies. The controller instantiates the above concepts when performing training
or prediction.

2.2.2. Design of Instance Layer

• Instantiation of Multi-source spatio-temporal data

Multi-source heterogeneous data in the field of forest fire prevention often have
different temporal characteristics. In this paper, multi-source heterogeneous forest fire data
are classified into dynamic data and static data according to the update frequency and
accessibility, as shown in Figure 2. Dynamic data are indexed according to the hierarchical
relationship of year, month, day, hour, minute, and second, while static data usually have
only one phase. Data with the same properties can be converted between dynamic and
static data according to the changes in update frequency and accessibility.

The data classification can facilitate data modeling with different time resolutions
and changes in time resolutions. We can query the multi-source spatio-temporal data by
considering the time resolution. Figure 6 shows a multi-source spatio-temporal data query
task. The task objective is to query the temperature, vegetation coverage, and slope in
Xichang City at 9:00 on 30 March 2020. First, it determines whether the three types of
data are dynamic data or static data. Temperature and vegetation coverage are treated
as dynamic data, and the slope is classified as static data. Then, it queries for finding a
slope with a unique phase. If it exists, the slope acquisition is successful; if it does not exist,
the slope acquisition fails. Finally, it queries the temporal resolutions for temperature and
vegetation coverage, respectively. When the time resolution of the temperature is an hour,
the temperature on 30 March 2020 at 9:00 are obtained. When the temporal resolution of
vegetation coverage is month, and the vegetation coverage in March 2020 are obtained.
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• Instantiation of machine learning-based forest fire prediction model

When the controller performs the optimization and prediction of the machine learning-
based forest fire prediction method, instances of the concept ontology of the machine
learning model are built, as shown in Figure 7.

In the model optimization phase, first, it selects a machine learning model, instan-
tiates f p : ModelOptimization, and instantiates f p : Model; next, it instantiates f p :
ModelName, f p : PredictTarget, f p : TrainArea and f p : TestArea; then, it determines
f p : PNSampleRatio (the ratio of positive samples and negative samples) and optimizes
the model; finally, it instantiates f p : Precision and f p : Recall according to the test accuracy.
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In the model prediction stage, first, it selects a machine learning model, instantiates
f p : ModelPediction, and instantiates f p : Model; next, it instantiates f p : ModelName and
f p : PredictTarget; finally, it determines f p : PNSampleRatiofor model predictions.
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2.2.3. Design of Inference Rules of Forest Fire Predictions

This section introduces methods for representing forest fire prediction expertise as
semantic inference rules in knowledge graph.

There is a lot of expertise used in forest fire predictions. Domain knowledge includes
data types related to forest fire prediction, data preprocessing and fusion methods, and
prediction strategies of machine learning models. Usually, it is necessary to determine
whether the existing situation satisfies the predetermined triggering conditions. If yes, the
system will take corresponding response actions. Response actions will, in turn, generate
new trigger events. For example, when a historical fire point is detected by the controller, it
requires the land cover types corresponding to the spatio-temporal range where the fire
point is located. If the land cover type is a built-up area, the fire point is rarely possible
recognized as a forest fire. Therefore, we formalize domain expertise as a set of rules,
each of which is described in the form of RuleObject. A schedule object defines the events
that need the triggers and the actions. Class is entitled by the event name and action
name. Classes are related to each other through defined data properties or object properties.
Figure 8 shows the syntax of RuleObject.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

��: ��������� , ��: ������������� , ��: ���������  and ��: �������� ; then, it deter-

mines ��: ������������� (the ratio of positive samples and negative samples) and op-

timizes the model; finally, it instantiates ��: ��������� and ��: ������ according to the 

test accuracy. 

In the model prediction stage, first, it selects a machine learning model, instantiates 

��: ��������������, and instantiates ��: �����; next, it instantiates ��: ��������� and 

��: �������������; finally, it determines ��: �������������for model predictions. 

2.2.3. Design of Inference Rules of Forest Fire Predictions 

This section introduces methods for representing forest fire prediction expertise as 

semantic inference rules in knowledge graph. 

There is a lot of expertise used in forest fire predictions. Domain knowledge includes 

data types related to forest fire prediction, data preprocessing and fusion methods, and 

prediction strategies of machine learning models. Usually, it is necessary to determine 

whether the existing situation satisfies the predetermined triggering conditions. If yes, the 

system will take corresponding response actions. Response actions will, in turn, generate 

new trigger events. For example, when a historical fire point is detected by the controller, 

it requires the land cover types corresponding to the spatio-temporal range where the fire 

point is located. If the land cover type is a built-up area, the fire point is rarely possible 

recognized as a forest fire. Therefore, we formalize domain expertise as a set of rules, each 

of which is described in the form of RuleObject. A schedule object defines the events that 

need the triggers and the actions. Class is entitled by the event name and action name. 

Classes are related to each other through defined data properties or object properties. Fig-

ure 8 shows the syntax of RuleObject. 

 

Figure 8. Syntax of rule definition. 

We extracted actions, sequences between actions, and trigger relations between ac-

tions from expertise. The controller defines the trigger events and actions of the RuleObject 

based on the above information. The principles of rule definition include (1) Expressive-

ness: Representing the association between different actions and different rule objects; (2) 

Reusability: Designing rules using defined data attributes and object attributes as many 

as possible. Figure 9 shows the rules of data extraction for machine learning models from 

multi-source spatio-temporal data (partial). 
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We extracted actions, sequences between actions, and trigger relations between actions
from expertise. The controller defines the trigger events and actions of the RuleObject based
on the above information. The principles of rule definition include (1) Expressiveness: Rep-
resenting the association between different actions and different rule objects; (2) Reusability:
Designing rules using defined data attributes and object attributes as many as possible.
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Figure 9 shows the rules of data extraction for machine learning models from multi-source
spatio-temporal data (partial).
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2.3. Implementation of Spatio-Temporal Knowledge Graph for Forest Fire Prediction

This section shows the implementation of the proposed forest fire prediction method.
Figure 10 shows the architecture.

The architecture consists of four basic layers. In the data resource layer, large-scale
heterogeneous spatio-temporal data are collected from different data sources. In the
knowledge extraction layer, we provide different automatic knowledge extraction methods
respectively for the data with different structures. The structured data, semi-structured
data, and unstructured data are automatically converted into GeoJSON format. In the
knowledge storage layer, the conceptual framework of forest fire prediction ontology is
constructed by the Protégé tool according to relations of data for forest fire prediction in
the conceptual layer. The ontology data are stored by GraphDB. Based on the forest fire
prediction ontology, the forest fire data are converted into triples for building the instance
layer. The instance layer is stored by the Key-Value databases. In the analysis service
layer, with the help of the KGFFP, it provides services of forest fire prediction by using the
spatio-temporal semantic query technology.

2.3.1. Data Resource Layer

This layer is composed of multi-source heterogeneous raw data in the field of forest
fire prediction. Forest fire prediction requires multi-source heterogeneous spatio-temporal
data whose structures are different. Specifically, meteorology (temperature, humidity, wind
direction, etc.) has structured data; fire point distribution and land cover type have semi-
structured data; and professional knowledge (text) has unstructured data. The topographic
data are static data with the lowest updating frequency. Vegetation data and vegetation
coverage data need to be updated according to seasonal changes. The update frequency of
land cover data is low. The shorter the time difference between the update time and the
forecast time, the closer the land cover data are to the actual data. Meteorological data are
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usually updated frequently, which can influence the time interval of forest fire prediction.
Besides, the update frequencies of other data are low.
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It is necessary to collect data according to the characteristics and update the frequency
of the data in order to provide accurate and stable data resources for KGFFP.

2.3.2. Knowledge Extraction Layer

We used Protégé to design ontology for the conceptual layer, including time and space
ontology. New concepts can be created including the hierarchical relations of classes, object
attributes, and the data attributes of classes. The constructed ontology is stored as an
RDF file.

We designed different triple transformation methods for different types of multi-source
heterogeneous spatio-temporal data for forest fire predictions. It needed to be transformed
to a unified coordinate system.

The commonly used vector data format in geographic information can be converted
into a GeoJSON format using GDAL library. The time, space, and attribute information
contained in GeoJSON can be converted into triples using the Arcpy [20] or GDAL library. It
can respectively convert data from a raster gray value to an attribute in the vector data, and
from vector format to GeoJSON format. Certain original data of discrete point distribution,
e.g., weather station data are inconvenient for comparison with the distribution patterns of
other spatial phenomena. Therefore, it uses an appropriate spatial interpolation model to
generate raster-type interpolation results according to the distribution of point data. Then,
the results are converted into GeoJSON format.
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We built a converter that transforms Geometry in GeoJSON into a triple predicate
and transforms Geometry values into objects that conform to the GeoSPARQL format
specification; the keys of properties in GeoJSON correspond to the predicate, and the values
correspond to the object of the predicate.

2.3.3. Knowledge Storage Layer

We used GraphDB to store knowledge. GraphDB is a highly efficient, robust, and
scalable RDF database that can perform semantic reasoning at scale for massive loads,
queries, and reasoning in real time.

2.3.4. Analysis Service Layer

We built the spatio-temporal semantic reasoning rules (RuleObject) according to the
expertise and prediction algorithms. The rules are stored as triples. We used SPARQL
for the spatio-temporal semantic query. In this way, it can realize the logical reasoning in
ActionObject by the quantitative calculations of the query results.

3. Forest Fire Prediction Experiment Using KGFFP

This section presents experiments of KGFFP-based forest fire predictions through case
study. These investigations show that the proposed method is beneficial for multi-source
spatio-temporal data fusion, expertise formalization, and forest fire prediction.

3.1. Area of Experiment

We selected Xichang City and Yanyuan County in Liangshan Yi Autonomous Prefec-
ture of China’s Sichuan Province for a dynamic prediction experiment of forest fire disasters.

Xichang City is the capital of Liangshan Yi Autonomous Prefecture. It is located
between 101◦46′–102◦25′ east longitude and 27◦32′–28◦10′ north latitude, with an area of
2882.9 square kilometers. Xichang City has high vegetation coverage and a dry climate,
which is prone to forest fires. Historically, there have been forest fires in Xichang, which
have caused casualties of rescuers. Therefore, we used Xichang City as the research
area. Yanyuan County is adjacent to Xichang City. Yanyuan County is located between
100◦42′09′ ′–102◦03′44′ ′ east longitude and 27◦06′31–28◦16′31′ ′ north latitude, with a total
area of 8398.6 square kilometers. There is rich vegetation and many shrubs in the area. The
forest fire disasters are easily caused by inducing factors such as low rainfall. Therefore,
for Yanyuan country, effective forest fire predictions can significantly reduce the damage
caused by forest fire. Table 2 shows the sources and details of the experimental data.

Table 2. Sources and details of experimental data.

Data Sources Spatial Resolution Temporal Resolution Satellite Sensor

Fire Fire Map–NASA [12] About 0.375 km × 0.375 km;
about 1 km × 1 km

Mid-latitudes will
experience 3–4 looks a day

VIIRS S-NPP; VIIRS
NOAA-20; MODIS/Aqua;

MODIS/Terra

Meteorological ERA5-Land hourly data
from 1950 to present [21]

0.1◦ × 0.1◦; Native
resolution is 9 km Update hourly None

Terrain Shuttle Radar Topography
Mission DEM [22] 30 m × 30 m Acquired

11–22 February 2000 STS Endeavour OV-105

Land cover Esri_2020_Land_Cover_V2
ImageServer [23] 10 m × 10 m Released in 2020 Sentinel-2L2A/B

Vegetation

“One Map” of Forest
Inspection and Forest

Resource Management in
2020 [24]

2 km × 2 km Released in 2020 None

Normalized Difference
Vegetation Index

(NDVI)

China Quarterly
Vegetation Index (NDVI)

Spatial Distribution
Dataset [25]

1 km × 1 km Updated quarterly SPOT; VEGETATION;
MODIS
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3.2. Predictive Model

We applied RF in the experiment that respectively builds decision trees for samples
that are extracted by using the bootstrap resampling method. According to The Law of
Large Numbers, RF has less overfitting [26–28]. The dependent variable of RF prediction
represents whether the forest fire occurs. The value of 1 represents forest fire occurrence,
while value of 0 represents no occurrence. Therefore, forest fire predictions with RF can be
treated as a binary classification task.

We applied DF as one of the core machine learning models of the proposed forest fire
prediction. In recent years, in the field of computer vision, DF first uses convolutional neural
networks (CNNs) to extract deep features [29,30] and then uses RF as a classifier [31,32].

3.3. Construction of KGFFP

We built the concept layer of KGFFP using Protégé in the case study, including time
ontology, space ontology, forest fire prediction hierarchical ontology, and machine learning
model concept ontology. It provided a conceptual framework for modeling the time, space,
and attribute characteristics of data.

In addition, we constructed the instance layer of the spatio-temporal knowledge
graph. March and April are the periods that are prone to forest fires. In March 2019
and March 2020, Xichang City had a large-scale forest fire for two consecutive years. We
selected the data from March and April 2015–2020 as the research object because there
is no access to the data for these two years, i.e., the data from 2021 and 2022 are not
used as research objects. We collected multi-source heterogeneous data related to forest
fire prediction, including meteorological, terrain, vegetation, and human activity data,
in March and April 2015–2020. For the mentioned multi-source heterogeneous data, we
constructed a diversified knowledge extraction method, which converts the data into
triples according to the semantics of the concept layer. It is driven by controller, and its
functions include coordinate system conversion, vector data clipping, raster data clipping,
raster calculator, conversion from vector data to raster data, conversion from raster data
to vector data, slope calculation, aspect calculation, and relative humidity calculation.
Figure 11 shows the schematic diagram of the knowledge extraction process of the aspect.
First, we used the Arcpy library to convert the coordinate system of the elevation data
from GCS_WGS_1984 to WGS_1984_UTM_Zone_48N and cut the elevation data according
to the spatial range of the study area. Next, we used the Arcpy library to calculate the
aspect according to the elevation and convert the coordinate system of the aspect data
from WGS_1984_UTM_Zone_48N to GCS_WGS_1984. The aspect is described in positive
degrees from 0 to 360, which is measured clockwise from the north. Then, it decomposes
the aspect separately to the east-west and north-south directions. Next, we converted the
numerical range of the data from real numbers to integers using the Arcpy library. We
provided a trick for reducing the precision loss caused by the data conversion with the Arcpy
library. We multiplied the raster values by 10,000 before conversion and carried out the
reverse calculations after the conversion. Finally, we saved the final result as a JSON file.

We transformed the model optimization process into spatio-temporal semantic reason-
ing rules in the case study with the following rule sets, as shown in Figure 12.

• Definition of spatio-temporal semantic rule set 1: Extracting spatio-temporal data from
KGFFP to make labeled and unlabeled datasets.

• Definition of spatio-temporal semantic rule set 2: Inputting the data set into the machine
learning model for model training or prediction with the support of inference rules.

• Definition of spatio-temporal semantic rule set 3: Calculating the accuracy based on the
prediction results and real data and evaluating the accuracy of the prediction model.
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Figure 12. Semantic reasoning regarding model optimization.

3.4. Predicting Forest Fires

This section introduces Sensitivity analysis of the proposed method and the results of
the experiment.

3.4.1. Sensitivity Analysis

The optimal ratio of the number of non-fire points to the number of fire points is
needed for reducing the susceptibility to probability calculation errors due to unbalanced
sample numbers. We performed a sensitivity analysis method to test the ratio on the
RF-based and DF-based forest fire models from 1.0 to 2.0 with a step size of 0.1. The
performance of the model was evaluated by the metrics Precision and Recall. The closer
the difference between the metrics and 0, the smaller the precision deviation caused by the
imbalance in the number of fire samples and non-fire samples.
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3.4.2. Experimental Results

1. Experiment 1

Experiment 1 worked to predict the forest fires in Xichang City in March and April 2020
based on the fire data of Xichang City from March and April of 2015 to 2019. Figure 13a,d
show a fire map of Xichang in March and April 2015–2019 and 2020 [12].
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Figure 13. (a) Fire maps of Xichang in March and April 2015–2019. (b) Fire maps of Xichang in March
and April 2010–2019. (c) Fire maps of Xichang and Yanyuan in March and April 2015–2019. (d) Fire
maps of Xichang in March and April 2020.

Based on rule set 1, we extracted the spatio-temporal knowledge of fire, meteorol-
ogy, terrain, vegetation, and human factors from the KGFFP in 2015–2019 and 2020. We
used this spatio-temporal knowledge to produce training samples and test samples for
machine learning-based forest fire prediction models. First, the real fire point was extracted
according to the land cover type of the fire point data in March and April 2015–2020. Next,
positive samples were made based on real fire points in March and April 2015–2020, and
positive samples were constructed based on the fire point data in March and April of
2015–2020 in Xichang City. Then, negative samples were made based on unfired areas and
β in March and April 2015–2020, and negative samples were constructed in the unfired
area as a training set. After that, the samples from March and April 2015–2019 were set
as the training samples and the samples from March and April 2020 were set as the test
samples. Finally, training samples and test samples were obtained. The ratio of negative
samples to positive samples was β ∈ [1.0, 2.0].
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Based on rule set 2, we trained and tested the RF-based and the DF-based forest fire
models, respectively, with a step size of 0.1. We then obtained the predicted results of
RF-based and DF-based forest fire models.

Based on rule set 3, we compared the actual and predicted values of the Xichang
fire point in March and April 2020 and evaluated the predicted results. The meanings of
Precision and Recall are shown in Formulas (1) and (2).

Precision =
TP

(TP + FP)
(1)

Recall =
TP

(TP + FN)
(2)

where TP (True Positive) means that the prediction is correct and the sample is positive;
FP (False Positive) means that the prediction is wrong and the sample is predicted to be
positive, but the sample is actually negative; FN (False Negative) means that the prediction
is wrong and the sample is predicted to be negative, but the sample is actually positive.

For the RF model, when β = 1.3, the difference between Precision and Recall reaches
the minimum value. Moreover, the values of Precision and Recall are relatively high, which
is satisfactory. The definition of the metric F1 is shown in Formula (3). The result of the F1
of the RF-based forest fire model is 0.7839. For the DF-based forest fire model, when β = 1.5,
the difference between Precision and Recall reaches the minimum value, and F1 = 0.7957.
Figure 14 shows the experimental results. Table 3 shows the statistical information of
samples. Figure 15 shows the probability map of forest fire risk for March and April 2020
for Experiment 1. The prediction results of between the prediction methods with RF and
with DF are not drastically different because both are decision tree-based machine learning
models. The prediction methods with both models are significantly different from the
prediction results with SVM. In our experiment, we select RF and DF for forest fire models
because they have relatively high prediction accuracies.

F1 =
2

1
P + 1

R
= 2× P× R

P + R
(3)

where F1 is the harmonic mean of Precision and Recall, P indicates Precision, and R
indicates Recall. The larger the metric F1, the better the overall performance of the model.
High F1 value means both Precision and Recall are good.
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Figure 14. The training set is from March and April of 2015–2019 in Xichang City and the test set
is from March and April of 2020 in Xichang City. The symbol “H” denotes the difference between
Precision and Recall reaches the minimum value.

Table 3. The number of samples, when the training set is from March and April of 2015–2019 in
Xichang City, the test set is from March and April of 2020 in Xichang City.

β
Training Data Test Data

Positive Sample Negative Sample Positive Sample Negative Sample

1.3 73 94 45 58
1.5 73 109 45 67
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Figure 15. Probability map of forest fire risk in March–April 2020 for Experiment 1 (based on fire
data in Xichang from March and April 2015 to March and April 2019). (a) Prediction based on RF.
(b) Prediction based on DF.

Based on data used by the above experiment, we added the data of Xichang City from
March and April of 2010 to 2014. Based on the fire point data of Xichang City from March and
April of 2010 to 2019, it can predict the forest fires of Xichang City in March and April of 2020.
Figure 13b,d show the fire map of Xichang in March and April 2010–2019 and 2020 [12].

Positive samples (quantity is 659) are constructed based on the fire point data in
March and April of 2010–2019 in Xichang City, and negative samples are constructed in
the unfired area as a training set. Positive samples (quantity is 45) are constructed based
on the fire data of Yanyuan County in March and April 2020, and negative samples are
constructed in the unfired area as a test set. Figure 16 shows the metric F1 and the accuracy
of the RF model and the DF model. Table 4 shows the statistical information of samples.
Figure 17 shows the probability map of forest fire risk for March and April 2020 based
on the data of Xichang City from March and April of 2010 to 2019. The prediction results
between the prediction methods with RF and with DF are less different because both are
decision tree-based machine learning models. The prediction methods with both models
are significant different from the prediction results with SVM. In our experiment, we select
RF and DF for forest fire models because they have relatively high prediction accuracies.
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Table 4. The number of samples, when the training set is from March and April of 2010–2019 in
Xichang City, the test set is from March and April of 2020 in Xichang City.

β
Training Data Test Data

Positive Sample Negative Sample Positive Sample Negative Sample

1.1 659 724 45 49
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Figure 17. Probability map of forest fire risk in March and April 2020 for Experiment 1 (based on fire
data in Xichang from March and April 2010 to March and April 2019). (a) Prediction based on RF.
(b) Prediction based on DF.

2. Experiment 2

Since Xichang City and Yanyuan County are adjacent in space, factors such as mete-
orology, topography, and vegetation are similar, to a certain extent. In that case, the data
of Yanyuan County is used as a part of the training samples of Xichang City to predict
the accuracy of fire points in Xichang City. Figure 13c,d shows a fire map of Xichang
and Yanyuan in March and April 2015–2019 and a fire map of Xichang in March and
April 2020 [12].

Positive (quantity is 150) and negative samples were constructed in the unfired area as
a training set. Positive samples (quantity is 45) were constructed based on the fire point
data in March and April 2020 in Xichang City, and negative samples were constructed in
the unfired area as a test set. Figure 18 shows the metric F1 and accuracy of the RF model
and DF model. Table 5 shows the statistical information of samples. Figure 19 shows the
probability map of forest fire risk for March–April 2020 for Experiment 2. The prediction
results between the prediction methods with RF and with DF are not drastically different
because both are decision tree-based machine learning models. The prediction methods
with both models are significant different from the prediction results with SVM. In our
experiment, we select RF and DF for forest fire models because they have relatively high
prediction accuracies.
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Table 5. The number of samples, when the training set is from March and April of 2015–2019 in
Xichang City and Yanyuan Country, the test set is from March and April of 2020 in Xichang City.

β
Training Data Test Data

Positive Sample Negative Sample Positive Sample Negative Sample

1.2 150 180 45 54
1.3 150 195 45 58
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4. Discussion

Experiment 1 used two datasets for Xichang city. The first was fire data from March
and April 2010 to 2014, and the second added the fire data of Xichang from 2015 to 2019.
Experiment 2 was based on Experiment 1. The first dataset was used, the test set was
unchanged, and the data of Yanyuan County from 2015 to 2019 was added to the training
set of Xichang City from 2015 to 2019. Yanyuan County and Xichang City are geographically
adjacent to each other.

The experimental results show that the F1 of the first dataset is lower than that of the
second dataset in Experiment 1. We speculate that the first training data leads to insufficient
training of the model. The experimental results show that the F1 of the RF-based forest fire
model in Experiment 2 increases more than the Experiment 1 with the first dataset, while
the F1 of the DF model decreases. Table 6 shows the result of these experiments.

Table 6. The result of the two experiments.

Experiment 1
Experiment 2

The First Dataset The Second Dataset

F1 (RF) F1 (DF) F1 (RF) F1 (DF) F1 (RF) F1 (DF)
0.7839 0.7957 0.7973 0.8191 0.7960 0.7776

The method proposed in this paper has a certain novelty in multi-source heterogeneous
spatio-temporal data fusion and formalization of domain expertise. Our method transforms
multi-source heterogeneous spatio-temporal data semantically into spatio-temporal facts in
KGFFP and fully preserves their temporal, spatial, and attribute characteristics. Compared
with conventional machine learning-based forest fire prediction methods, our method is
good at integrating multi-source data for a comprehensive analysis of historical fire points.
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It also supports obtaining relatively high-quality analytical datasets in cases where the
information is noisy and insufficient. Compared with traditional machine learning-based
forest fire prediction, our method has an advantage in that it can formalize domain expertise
as inference rules of KGFFP. For forest fire predictions, expertise-oriented data analysis can
organize multi-source heterogeneous spatio-temporal data, promote the efficient flow of the
prediction analysis process, and obtain high-quality prediction results. Comprehensively
considering the above experimental results, we conclude as follows: (1) With the RF model
and the DF model, the forest fire prediction method will improve the metric F1 when
adding different years to the training set in the case that the test set remains unchanged.
(2) With the RF model, the forest fire prediction method will improve the metric F1 to a
certain extent when adding samples from adjacent areas to the training set (samples from
Yanyuan County are added to the Xichang training set) in the case that the test set remains
unchanged. Therefore, when desiring to improve the metric F1 of the RF model, it needs to
increase the training samples of the same month and different years in the same area or the
samples of the same month and the same year in the adjacent area. (3) With the DF model,
the metric F1 of the forest fire method cannot be improved when adding samples from
adjacent areas to the training set (samples from Yanyuan County are added to the Xichang
training set) in the case that the test set remains unchanged. Therefore, when desiring to
improve the metric F1 of the DF model, it needs to increase the training samples of the
same month and different years in the same area.

It is possible to expand our method for future requirements. If we continuously
increase the samples of historical March and April to predict forest fires in March and
April of 2020, it will lead to a decrease in prediction accuracy. The main reason is that the
characteristics of the historical samples and that of 2020 are quite different. This is caused
by the passage of time and the great changes in meteorology, topography, vegetation,
and human factors. In addition, the experimental results show that it can improve the
metric F1 of the RF model-based forest fire methods by adding fire points in adjacent
regions as training samples, while the similarity of meteorology, topography, vegetation,
and human factors between regions needs to be studied. Because the similarity of these
factors represents the similarity of training and test samples, it needs a lot of experiments
to support improving the metric F1.

5. Conclusions

In this paper, we focus on the fusion of multi-source heterogeneous data and the
modeling of forest fire expertise. To address the problems, we propose a novel forest fire
prediction method for fusing multi-source heterogeneous data in the field of forest fires.
It preserves the semantics of describing spatio-temporal facts. We propose a method to
formalize domain expertise as semantic rules for knowledge graphs. It helps to obtain the
scenario-related data with spatio-temporal features from KGFFP by rule-based reasoning
for the machine learning-based forest fire prediction methods.

The main ideas of the proposed method can also be applied to other disaster predic-
tions by suitable extensions. When predicting landslide forecasting using our method,
it needs to collect spatio-temporal data closely related to the occurrence of landslides to
expand the knowledge graph. Based on the machine learning model concept ontology,
our method can support landslide prediction using machine learning models. It needs to
choose a suitable machine learning model suitable for landslide prediction. Based on the
characteristics of this machine learning model, our method enriches the machine learning
model concept ontology and inference rules. The controller triggers the inference rules to
invoke the machine learning model for landslide prediction.

However, to clearly describe the proposed method, this paper takes forest fire as an
example to introduce the new ideas. It contains mechanism, model, process, and functions
of the method that can effectively improve the forest fire predictions. The contributions of
this paper are as follows.
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(1) KGFFP integrates multi-source heterogeneous data through semantic technology from
the perspective of cross-domain data integration;

(2) This paper proposes a method to model the domain expertise. It can effectively
represent multi-source expertise with a triples form that can facilitate optimization
and prediction of the machine learning models for forest fire prediction scenarios;

(3) Relying on the proposed method, the machine learning-based forest fire prediction
methods can be optimized according to historical data with satisfied accuracies. In the
case of providing future forest fire-related data, it is expected to obtain better forest
fire prediction results.

The occurrence of forest fires is greatly affected by temporal and spatial characteristics.
The distribution of geographical data in different regions is very different. Therefore, the
applications of forest fire prediction models are often limited to a specific spatial range, and
it is difficult to transfer and reuse the method. The proposed method aims to integrate real-
world multi-source heterogeneous spatio-temporal data and improve forest fire predictions.
In the future, we will focus on domain adaptation in the field of computer vision in the
forest fire prediction process. We will build a forest fire prediction model based on domain
adaptation and multilayer perceptron. Additionally, to verify the generalization of the
method, we will conduct model transfer experiments.
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