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Abstract: The hyperspectral, multispectral, and synthetic aperture radar (SAR) remote sensing
images provide complementary advantages in high spectral resolution, high spatial resolution,
and geometric and polarimetric properties, generally. How to effectively integrate cross-modal
information to obtain a high spatial resolution hyperspectral image with the characteristics of the
SAR is promising. However, due to divergent imaging mechanisms of modalities, existing SAR and
optical image fusion techniques generally remain limited due to the spectral or spatial distortions,
especially for complex surface features such as coastal wetlands. This paper provides, for the first
time, an efficient multi-resolution collaborative fusion method for multispectral, hyperspectral,
and SAR images. We improve generic multi-resolution analysis with spectral-spatial weighted
modulation and spectral compensation to achieve minimal spectral loss. The backscattering gradients
of SAR are guided to fuse, which is calculated from saliency gradients with edge preserving. The
experiments were performed on ZiYuan-1 02D (ZY-1 02D) and GaoFen-5B (AHSI) hyperspectral,
Sentinel-2 and GaoFen-5B (VIMI) multispectral, and Sentinel-1 SAR images in the challenging coastal
wetlands. Specifically, the fusion results were comprehensively tested and verified on the qualitative,
quantitative, and classification metrics. The experimental results show the competitive performance
of the proposed method.

Keywords: remote sensing; hyperspectral; ZY-1 02D; GaoFen-5; synthetic aperture radar; data fusion;
pixel-level; coastal wetlands; classification

1. Introduction

Coastal wetlands are located at the intersection of ocean and land, which are of great
significance for resource protection, climate regulation, and maintenance of biodiversity,
with impacts on carbon stocks. In addition, coastal wetlands are typical complex surfaces,
which are significant challenges in achieving fine mapping [1]. Recently, remote sensing
(RS) technology has grown up to be a key method for wetlands survey and monitoring.
The increasing availability of RS data brings rapid advancement and interest in the field of
radar and optical data fusion [2–4]. Satellite-based optical sensors passively receive solar
electromagnetic waves reflected by ground objects for imaging with rich spatial and spectral
information [5]. Among them, multispectral images typically have high spatial resolution
and rich details [6,7]. Hyperspectral images are characterized by nearly continuous spectral
information, which is a distinguishing and popular feature for classification tasks [8].
Synthetic Aperture Radar (SAR) is an active detector, and its imaging is not affected by
meteorological conditions and sunlight levels [9,10]. Radar microwave is more sensitive
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to dielectric properties and moisture characteristics, and the cross-polarization of SAR
has a fair degree on distinguishing the vegetation canopy [11,12]. SAR can also provide
backscattering properties that are different from optical, such as the geometric structure
and surface roughness [13–16]. Therefore, how to perform pixel-level fusion of optical
and SAR images, integrating the high spatial-spectral resolution with the characteristics of
polarized backscattering, is of great significance for coastal wetlands mapping.

Due to the uncertainties inherent in the data sources, common SAR and optical image
fusion techniques can be divided into three categories: SAR and multispectral image fusion,
SAR–panchromatic–multispectral image fusion, and SAR–hyperspectral image fusion.
The fusion of SAR and multispectral images has been applied to earth with good results.
Wu et al. used the shear wavelet transform to fuse TerreSAR-X images (3 m) with Landsat-8
multispectral images to enhance the extraction of impervious surfaces [17]. Yin and Jiang
made a special calculation on SAR images to minimize distortion in spectral information
when fused RADARSAT-2 (PolSAR) with Landsat TM images [18]. Gaetano et al. used
the registered optical data as a guide map to Sentinel-1 SAR denoising by a generalized
bilateral filter, then fused SAR with Sentinel-2 MS data to improve the accuracy of land use
classification [19]. Shao et al. combined the intensity–hue–saturation (IHS) fusion technique
with gradient transfer (GTF) algorithms and described the fusion of SAR and multispectral
images as an optical image optimization process that better preserved radiation information
and spatial details [20]. Amarsaikhan et al. improved the results of land cover classification
based on wavelet transform fusion—high-resolution SAR and optical images were used as
the research data—and then compared the fusion results with Brovey transform, Ehlers
fusion, and PCA algorithms [21]. Kulkarni et al. proposed a method combining PCA with
the DWT algorithm [22], and Chen et al. proposed an algorithm using generalized IHS
combined with wavelet transform, both reducing the spectral distortion of multispectral
images [23]. Yang et al. used the Gram–Schmidt algorithm to fuse GF-1 (WFV) multispectral
images with Radarsat-2 PolSAR images, improving the classification results of coastal
wetlands in the Yellow River Estuary and increasing the accuracy of extracting mudflats
and reeds [24].

The fusion of SAR, panchromatic, and multispectral images has also been explored
in depth. Byun et al. provided two fusion ideas for SAR, panchromatic and multispec-
tral images. The first is an area-based hybrid pansharpening fusion scheme. The SAR
image is divided into active and inactive regions, and different fusion rules are designed
for the two regions. The AWT algorithm is used to fuse the SAR and the panchromatic
image, and then the multispectral image has component substitution applied to fusion
images [25]. The second is a texture-based fusion scheme. The local statistical parameters
are adaptively calculated to perform a weighted fusion of panchromatic images and SAR.
The multispectral images are fused with the generalized IHS transform [26]. Garzelli used
à-trous wavelet transform to fuse panchromatic and multispectral images, then injected
structural information from SAR images into the pansharpened images to obtain the final
fusion results [27]. Yonghonga extracted the high-pass details of SAR and panchromatic
images by á-trous wavelets, and the panchromatic detail information was modulated by
texture HPFM (high-pass filter modulation) of SAR images and then fused with multispec-
tral images, and the fused images have spectral fidelity in vegetation, bare ground, and
buildings [28].

In recent years, with the great potential of hyperspectral analysis in wetland monitor-
ing being explored, research on SAR and hyperspectral image fusion has emerged [29–32].
Chen et al. performed the IHS transformation to fuse hyperspectral data and Topographic
Synthetic Aperture radar (TOPSAR) and obtained high spectral and spatial resolution
images, solving the fuzzy classification of land cover [33]. Nasrabadi used the nonlinear
correlation between SAR and hyperspectral images to fuse and perform the Reed–Xioli
(RX) anomaly detector based on kernel learning, improving the accuracy of mine identifica-
tion [34]. Dabbiru et al. fused UAV synthetic aperture radar (UAVSAR) and hyperspectral
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images (HSI) from an airborne visible/infrared imaging spectrometer (AVIRIS) to improve
the classification of oil-contaminated coastal vegetation [35].

Overall, the fusion of optical and SAR images can integrate the rich spatial and spectral
information of optical images, as well as the backscattering polarimetric properties of SAR,
which is of great significance for the fine mapping of coastal wetlands. However, available
fusion methods for optical and SAR images have the following problems that need to be
solved urgently: (1) On the one hand, SAR and optical images have divergent imaging
mechanisms, and their image properties are quite different; the fusion is extremely likely to
result in information distortion and component destruction. (2) On the other hand, coastal
wetlands are typically a complex surface, which further poses a greater challenge to the
collaborative fusion of the optical and SAR images. (3) In addition, the existing pixel-level
fusion methods mainly focus on the synthesis of SAR and multispectral (or panchromatic)
images, and there are few studies on the fusion of SAR and satellite hyperspectral images,
especially for multi-sensor optical and SAR image fusion. To the best of our knowledge,
there are no integrated cross-modal pixel-level fusion methods for SAR, multispectral (MS),
and hyperspectral (HS) images, which are promising by combining their complementary
advantages for coastal wetlands mapping.

In view of the above problems, this paper proposes a multi-resolution collaborative
fusion method of MS, HS, and SAR images to obtain high-quality images for practical
applications, such as coastal wetland mapping. First, the high spatial resolution images
are decomposed based on edge-preserving filters, reducing the information distortion by
simultaneous positioning in the spatial and frequency domain. Secondly, to make the
algorithm more robust, we design optical and SAR cross-modal weight in both spatial
and spectral dimensions among the fusion branch, while weighted inverse projection is
performed to provide good local fidelity. Finally, the upsampled HS images are modulated
by injecting spatial detail information and backscattering polarimetric properties without
disturbing spectral components. The main innovations of this paper are as follows:

• This paper firstly proposes a multi-modal collaborative fusion method for SAR, MS,
and HS images to obtain the fused image with high spatial resolution, abundant
spectral information, and the geometric and polarimetric properties of the SAR;

• In the proposed M2CF, the optimal spectral-spatial weighted modulation and spectral
compensation are designed to reconstruct the high-fidelity fusion images. Furthermore,
the backscattering gradients of SAR are guided to fuse, which is calculated from
saliency gradients with edge-preserving, making it more suitable for cross-modal
fusion with complex surface features;

• Fusion yields steady visible benefits, achieving the minimum spectral loss with high
PSNR while robustly improving the classification results in coastal wetlands.

The rest of the paper is arranged as follows. Section 2 focuses on the methodological
framework of the paper. Section 3 describes image preprocessing and the fusion datasets.
Section 4 evaluates the fused images in terms of quantitative and qualitative metrics, and
the classification accuracy is used to characterize the competitiveness of the fused images in
realistic applications. Section 5 draws the discussion, and Section 6 presents the conclusions
of our paper.

2. Methodology
2.1. Framework Description

Multi-resolution analysis (MRA) framework can locate in multi-frequency dimensions
with spatial and spectral separation, reducing the spectral distortion in the fusion of optical
images [36,37]. It is widely used and promoted because of its efficiency and portability,
such as the fusion of infrared and visible images [38]. More remarkably, the MRA-based
fusion images can obtain a better signal-to-noise ratio, which is beneficial for classification.
In addition, it also can be used for extensive area, in-orbit, and multi-modal fusion without
bringing the computational load. That is, MRA makes it possible to achieve the best fusion
performance in multiple modalities.
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The remote sensing image can be processed by MRA segmentation to obtain low-
frequency and high-frequency components. The high-frequency component represents
the texture details of the original image, mainly containing spatial information [39]. The
low-frequency component is the base layer after filtering, which mainly contains spectral
information [40]. The mathematical formula for MRA can be expressed as:

Ix = α× [Bx + Dx] + β (1)

where α is the scaling factor of pixel values, and β is the error term. Ix ∈ Rdx×N represents
the unfolded matrix of a three-dimensional digital image with dx channels by N pixels. X is
the number of modalities, {Ix}X

x=0. Bx ∈ Rdx×N represents the low-frequency component
of the filtered image, i.e., the base layer of the image; Dx ∈ Rdx×N represents the high-
frequency component of the original image after MRA segmentation, which is obtained by
the difference between the original image and the low-frequency component.

The traditional MRA framework is not suitable for fusion tasks with multi-modal or
heterogeneous images, which are highly dependent on correlation between modalities.
To enhance the integration ability of multi-modal images and reduce information loss,
we proposed a multi-resolution collaborative fusion algorithm. Figure 1 illustrates a
general flowchart of the multi-modal MRA collaborative fusion (M2CF) method. The
core idea of this fusion algorithm is to decompose the remote sensing image based on the
generalized multi-resolution analysis framework by applying edge-preserving filtering.
Among them, we locate the spatial and spectral dimensions of the multispectral image
and the de-speckle SAR image, and decompose the image into low-frequency (spectral)
and high-frequency (spatial) components. The histogram-matched low-frequency and
high-frequency components are weighted, and the subimages are collaboratively fused and
reconstructed according to the MRA inverter. Finally, we perform spectral compensation
on the reconstructed image to obtain the final fusion image. Accordingly, we describe some
important steps of M2CF in detail below.

Figure 1. Flowchart of the proposed method.
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2.2. Multi-Frequency Extraction of MS

Edge-preserving (EP) filters are widely used in natural image enhancement and fusion.
EP filters can be constructed by simple linear or multiple nonlinear filters. Typical EP filters
are fast bilateral filters (FBF), weighted least squares filters (WlsF), guided filters (GF), etc.
The WlsF was first proposed by Farbman et al. [41] and has become increasingly extensively
employed in natural image processing. Recently, the WlsF has also been applied to image
denoising, image tone modulation, and image detail enhancement. It is characterized by
the ability to multi-scale tone and edge detail manipulation when the image is decomposed.

In this paper, we use the WlsF-based optimization framework to decompose the
multispectral images into smooth and edge parts, respectively. The principle is to ensure
that the basic gradient of the image remains unchanged. The filtered and smoothed image
B1 is like the input MS image I1, in terms of spectral information and has distinct edge
features. The filter model can be expressed as:

min
[
‖ I1 − B1 ‖2

F +λ× f∇(I1)× ‖ I1 ‖2
F

]
(2)

where λ is a smoothing factor. f∇(I1) is the image gradient of I1, obtained by second-order
derivatives. Then, the filter model is also calculated in the least square:

min ∑
k
(I1,k − B1,k)

2 + min ∑
k

λ

(
az,k(B1)

(
∂I1

∂z

)2

k
+ at,k(B1)

(
∂I1

∂t

)2

k

)
(3)

where the subscript k represents the spatial location of the pixel. The weight coefficients
of the smoothing term are az, at, and the subscripts indicate direction. The first term of
the function represents the difference between the input and output image. The second
term is the regular term, which makes the output image smoother by minimizing the bias
derivative. The definition of the weight coefficients is:

az,k(I1) =

(∣∣∣∣∂Log(l)
∂z

(k)
∣∣∣∣δ + ε

)−1

(4)

bt,k(I1) =

(∣∣∣∣∂Log(l)
∂t

(k)
∣∣∣∣δ + ε

)−1

(5)

where log(l) is the log value of the input image intensity band l. The exponent δ (typically
between 1.2 and 2.0) determines the sensitivity to the gradients of I1. ε is the residual
difference. The filtered image B1 can be expressed as a linear matrix equation.

B1 = fλ(I1) = (Ix0 + λLk)
−1 × I1 (6)

where B1 is obtained by applying a nonlinear operator fλ(·), which depends on the gradi-
ents of I1. Ix0 is an identity matrix. Lk is a five-point spatially inhomogeneous Laplacian
matrix obtained by minimizing the partial derivatives of I1.

2.3. Multi-Frequency Extraction of SAR

SAR images also have different bands, like optical images, such as vertical send and
vertical receive (VV) polarization, vertical send and horizontal receive (VH) polarization,
etc. However, the polarization modes of SAR are distinctly different from the optical bands.
In order to achieve complementary information between different polarization of SAR
images while standardizing SAR images and reducing noise, polarization synthesis of SAR
is required. Then, to deconstruct SAR and acquire continuous detail information, we use a
guided filter (GF), which is more suitable for SAR multi-frequency extraction.



Remote Sens. 2022, 14, 3492 6 of 27

2.3.1. Polarization Synthesis

The polarization modes of SAR images are normalized in the range of m to n:

S̃ =
(m− n)× (S− Smin)

Smax − Smin
(7)

where Smin is the minimum value of pixels in a SAR polarization, and Smax is the maximum
value of pixels in a SAR polarization. The polarization synthesized SAR image Smg can be
expressed by the following equation:

P =

{
p1 = 1, p2 = 0; vvij = max

{
vvij , vhij

}
;

p2 = 1, p1 = 0; vhij = max
{

vvij , vhij
}

;
(8)

Smg = p1 × S̃vv + p2 × S̃vh + S (9)

where p1 is the position weight map of the pixel vvij with a stronger backscattering value
in VV polarization above all polarization bands. Similarly, p2 is the position weight map of
the pixel vhij with a stronger backscattering value in VH polarization above all polarization.
S is the mean value of the polarization bands at a certain pixel position.

In addition, the SAR image is a grayscale image, which needs to be matched with the
optical image histogram. The standard deviation σ2 of the SAR matrix can be calculated
from the pixel values:

σ2 =

√
∑N

i=1
(
Si − Smg

)2

N
(10)

where the number of SAR pixels is N, Si is the i-th pixel of the SAR matrix i ∈ [1, N], and
Smg denotes the pixel average of the SAR matrix. Histogram matching of the SAR image
matrix is expressed as:

S∗ =
(
S− Smg

)
× σ3

σ2
+ I3 (11)

Similarly, σ3 is the standard deviation of the HS image and I3 is the pixel average of
the optical image. S∗ is the SAR matrix after histogram matching.

2.3.2. Guided Filter

The guided filter is a non-iterative filter, which belongs to the fast filter. In addition to
the speed advantage, which can maintain the image gradient excellently [42], the important
assumption of the guided filter is that there is a local linear relationship between the guided
image and the output image within the filtering window. Meanwhile, according to the idea
of MRA, the input image is composed of the base layer B2 and details layer D2 with spatial,
sharp, texture, etc. Therefore, there are:

B2,i = akGi + bk, ∀i ∈ ωk (12)

B2,i = S∗i − D2,i (13)

where k is the midpoint of the local window, so the pixels belonging to the window ωk can
be calculated using the corresponding pixels transformed by the coefficients of (ak,bk). S∗i
indicates the value of the input SAR matrix at position i; Gi is the optical guided map; B2,i
is the output matrix after guided filtering. Here, the output image can be considered as
a local linear transformation of the guided map Gi. In order to maintain the local linear
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model and minimize the value difference between the input and output images in the local
window, the equation can be expressed as:

min ∑
i∈wk

(
S∗i − B2,i

)2

argmina,b ∑
i∈wk

(
S∗i − akGi − bk

)2 (14)

Then, linear ridge regression is used with regularization parameters to fit the loss
function:

J(ak, bk) = argmina,b ∑
i∈ωk

(
(S∗i − akGi − bk)

2 − εa2
k

)
(15)

where, ε is the regularization parameter to prevent the value of ak from being too large.
Solving the above equations yields the value of a and b at the guiding window as follows:

ak =

1
|ω| ∑i∈ωk

(
S∗i × Gi − B2,i × Gk

)
σ2

k + ε
(16)

bk = S∗k − akGk (17)

where σk is the standard deviation of the guiding image Gk over the window ωk. S∗k is the
mean value of the SAR pixels within the filtering window. Gk is the mean value of the
guided image within the filtering window. After obtaining the above equation, a pair of
(ak,bk) coefficient can be calculated for each filtering window.

However, each pixel is contained in multiple operation windows, and thus multiple
(ak,bk) can be computed for each pixel position. Where the value of the output image is
obtained by the mean value of the coefficients, and the above process can be described as:

B2,i =
1
|ωk| ∑

k,i∈ωk

(akGi + bk) (18)

B2,i = aiGi + bi (19)

where ai and bi are the mean values of the coefficients calculated for all windows at the i-th
pixel position, respectively.

2.4. Weight Configuration

Fusion weights of the spectral and spatial components are calculated separately. The
hyperspectral image is selected for the primary spectral information after upsampling. It is
modulated with two low-frequency components according to the correlation coefficient
weight and the spectral transformation weight. For the high-frequency fusion branch, we
apply pixel saliency gradient and spatial information ratio to fuse spatial information. The
following subsections describe the details of the process.

2.4.1. Correlation Coefficient Weight

In the spectral information fusion branch, in order to avoid spectral distortion, it is
necessary to find the fusion band of a certain MS image corresponding to the HS image.
We find the corresponding fusion interval by calculating the correlation coefficient. The
covariance matrix is expressed as C(·), and then the correlation coefficient weight R can be
found at:

R(x1, x2) =
C(Ix1 , Ix2)√

C(Ix1)× C(Ix2)
(20)

where Ix are the independent variable matrices. R ∈ (0, 1], the higher value of |R|, the
closer relationship between the two spectral matrices.
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2.4.2. Saliency Gradient Weight

The visual weight map (VWM) based on saliency extraction is mainly used for image
fusion under multi-scale decomposition. The saliency gradient is used to design a visual
weight map, which defines the visual importance of each pixel. Pixel locations with a larger
VWM value usually correspond to the edge and texture areas, and these areas often contain
richer spatial features. The intensity contrast between different pixels of the image is used
to extract the saliency gradient. The pixel range of the image matrix Ix is [m, n], then the
saliency gradient is Vx(q):

Vx(q) = ∑n
m Cq×

∣∣Ix,k − Ix,q
∣∣ (21)

where Cq denotes the number of pixels where the pixel value is q, ∀q, k ∈ [m, n]. The
locations of the pixel with larger values on the visual weight map usually correspond to
edge and texture regions. We sum the visual weight values of all pixels and take the mean
value Vx1 . It can be approximated as the richness of the spatial information and is used to
calculate the fusion weight of the image spatial detail.

Vx1 = ∑n
m

V(q)
N

(22)

Qx1 =
∑n

m
V(q)

N
∑ Vx

(23)

where Vx1 denotes the average visual weight value of the image matrix with the number
of N pixels, and Vx is the x-th visual weight matrix. The saliency gradient weight of the
image matrix x1 is defined as Qx1 .

2.4.3. Hyperspectral Band Weight

The spatial information ratio between different bands of the HS image is precisely
proportional to its spatial optimization effect on the fused image. The intensity component
of the HS image is calculated (the average of all bands is usually considered as the intensity
value). Then, the ratio of the standard deviation of each hyperspectral band σ3,i to the
intensity band σ3,l is calculated. This ratio is used as the band weight W of HS images, it is
defined as:

W =
σ3,i

σ3,l
(24)

2.4.4. Spectral Transformation Weight

MS data can be considered as the spectral degradation of HS data. The multispectral
image I1 is correlated with the hyperspectral image I3 by:

argminT ‖ I3 − T × I1 + e ‖2
F (25)

where ‖ · ‖F is the Frobenius norm of the matrix. T ∈ Rd1×d3 denotes the spectral
transformation matrix, e is the spectral residual. Each channel vector {Ti}d3

i=1 represents
the spectral transformation matrix of the i-th HS band to multispectral image [43]. Then,
the spectral transformation function can be fitted by the least square:

argminT ∑(I3,i − Ti × I1,i + e)2 (26)

2.5. M2CF: Multi-Modal MRA Collaborative Fusion

Table 1 gives the symbols and descriptions of the variables used in the proposed M2CF
method. In the table below, the subscripts x ∈ 0, 1, 2, 3. I1, I2 and I3 represent the MS, SAR,
and HS image, respectively. I0 is a zero matrix of the same size as the hyperspectral image.
Il is the identity matrix.
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Table 1. Description of variable symbols.

Notation Description Dimensions

Ix The x-th remote sensing image. dx × N
Bx Low-frequency components of the original image. dx × N
Dx Obtained by the difference between the Ix and Bx. dx × N
‖ A ‖F The Frobenius norm of A, ‖ A ‖F=

√
tr(AT A). 1× 1

S̃ The normalized SAR images, obtained by Equation (7). 1× N
S∗ SAR under synthesized and histogram matched. 1× N
Rx The correlation coefficient, obtained by Equation (20). dx × d3
Vx Visual weight of the x-th image matrix. 1× N
Qx Saliency gradient weight of the x-th image matrix. 1× 1
W Band weight of the hyperspectral image. d3 × 1
T Spectral transformation weight for MS image. d1 × d3

fup (Ix) Indicates upsampled Ix image. dx × N
Spatial penalty term to balance the equation. 1× 1

gl/gh The fusion coefficients of subimages. 1× 1
Iy The final fusion image after spectral compensation. d3 × N

The modalities after multi-resolution decomposition are integrated according to the
fusion weight based on the multi-resolution analysis inversion. Fusion rules are very
important but difficult. Here, the low-frequency component FL and the high-frequency
component FH of the fused image can be obtained by the weighting operation:

FH = I0 + ghW × [Qx × Rx × Dx × (1 + V1)], x ∈ 1, 2 (27)

FL = fup (I3) + glW × [(T + R1)× B1 + R2 × B2] (28)

where gl and gh are the fusion coefficients of low-frequency and high-frequency information,
respectively. Qx is the saliency gradient weight. fup (·) indicates upsampling operation. I0
is a zero matrix of the same size as the HS image after upsampling. Then, the preliminary
fusion image Y can be represented as:

Y = FL + FH (29)

where ∈ (0, 1] is the spatial penalty term to balance the importance of different terms.
However, inverse reconstruction inevitably produces spectral residuals. Meng et al.

introduced the concept of spectral compensation to improve the spectral fidelity [44].
Similarly, we obtain the spectral compensation matrix by calculating the difference between
the original low-resolution hyperspectral image and the preliminary fused image, and then
the spectral loss of the fused image is compensated. The spectral compensation process can
be expressed as:

Iy = Y + f [I3 − fdown ( fMTF (Y))]up (30)

where fMTF(·) and fdown (·) denote MTF blurring and down-sampling, respectively. I3 is
the low-resolution hyperspectral image. Iy denotes the final fused image.

3. Study Area and Datasets
3.1. Study Area

Owing to the complicated and heterogeneous distribution of wetland features, the
coastal wetlands are also known for their typically complex and challenging surfaces.
The study area includes the Yellow River Estuary, Yancheng, and the South Shore of
Hangzhou Bay coastal wetlands (Figure 2). These wetlands are often used as study areas
for hyperspectral image processing or wetland mapping [24,45–48]. The Yancheng is in
the east of Jiangsu Province, China. It is a typical silty mudflat coast, the largest coastal
wetland on the edge of the Asian continent. The study area has formed a complex wetlands
ecosystem and mainly contains salt marshes, culture ponds, and natural vegetation. The
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Yellow River Estuary, an alluvial delta plain formed by the accumulation of river sediment,
is in the northeast of Shandong Province, China. There is an ecological protection area with
a national nature reserve. It has abundant resources, and mainly contains paddy fields,
potholes, and reeds. The Hangzhou Bay National Wetland (Hangzhou Bay for short) is in
the northwestern part of Hangzhou Bay, Zhejiang Province, China. The wetland is rich in
flora and fauna with numerous semiaquatic plants, such as Spartina alterniflora, Tamarix,
Suaeda salsa, etc.

Figure 2. Coastal wetlands study area. (a) Yellow River Estuary; (b) Yancheng; (c) Hangzhou Bay.

3.2. Preprocess and Datasets

In this fusion experiment, ZY-1 02D and GaoFen-5B (AHSI) hyperspectral images,
Sentinel-2 and GaoFen-5B VIMI multispectral images, and Sentinel-1A SAR are multi-
resolution RS datasets. The European Space Agency (ESA) provides worldwide Sen-
tinel Series RS data services (https://scihub.copernicus.eu (accessed on 1 February 2022)).
Gaofen-5 provides 30 m ground sample distance, 5 nm spectral resolution with 150 bands in
VNIR (400–1000 nm), and 10 nm spectral resolution with 180 bands in short-wave infrared
(1000–2500 nm). The acquisition dates or satellite perigee passing time of Sentinel-1A
SAR and optical images are nearly identical, which ensures that the ground type remains
unchanged. Sentinel-1A SAR offers a dual polarization mode with short revisit times. We
selected four 10 m spatial resolution bands in Sentinel-2A, including three visible bands
and a near-infrared band.

SAR images are preprocessed in Sentinel Application Platform (SNAP) 6.0, mainly
including thermal noise removal, terrain correction, and de-speckle. Among them, the
SAR artificial de-speckle filter is used to suppress the noise in homogeneous regions
and improve the edge features. Here, the Redefined Lee filter is chosen to remove the
speckle noise with a window size of 5 × 5. The final resampled SAR image has 10 m
spatial resolution with 1500 × 1500 or 1800 × 1800 pixels (Table 2). Optical images are
preprocessed based on ENVI 5.3, mainly including radiometric calibration and the Fast
Line-of-Sight Atmosphere (FLAASH) correction. The global digital elevation model (DEM)
data at 30 m was used to correct the optical and SAR images (https://asterweb.jpl.nasa.
gov/gdem.asp (accessed on 14 December 2021)). Then, the Global Digital Elevation Model

https://scihub.copernicus.eu
https://asterweb.jpl.nasa.gov/gdem.asp
https://asterweb.jpl.nasa.gov/gdem.asp
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(DEM) is applied to the surface reflectance products for orthorectification correction. HS
images also require eliminating the bad bands, including overlapping bands, blurred or
damaged bands, etc. Accurate registration, a process of geometric alignment of SAR and
optical imagery, is the foundation of image fusion. Manual selection of control points on
the SAR and optical images is laborious and time-consuming, and it is difficult to calibrate
the corresponding points between different modalities [49]. To address the above issues,
the following registration process is designed for cross-modal images: The preprocessed
Sentinel-2 MS image is used as the reference image. The SAR and HS images are registered
separately from the reference image. In this way, the multi-modal registration is reduced to
optical registration and Sentinel series registration. Among them, the control points are
artificially assisted to realize the coordinated registration. We selected the geometric angle
and boundary as reference points and apply the registration module in the ENVI5.3 to
alignment. The registration accuracy of the experimental datasets approaches the sub-pixel
level (RSE ≈ 0.34).

Table 2. Specific information of the experimental datasets.

Experiment
Datasets

Acquisition Date
(UTC + 08:00) Sensors Mode Spatial

Resolution Dimensions Bands

Yan Cheng
6 September 2020 10:56 ZY-1 02D HSI 30 (m) 500 × 500 147
5 September 2020 10:35 Sentinel-2B MSI 10 (m) 1500 × 1500 4
9 September 2020 17:54 Sentinel-1B SAR 10 (m) 1500 × 1500 2

Yellow River
Estuary

28 June 2020 11:08 ZY-1 02D HSI 30 (m) 500 × 500 117
28 June 2020 10:55 Sentinel-2A MSI 10 (m) 1500 × 1500 4
28 June 2020 18:05 Sentinel-1A SAR 10 (m) 1500 × 1500 2

Hangzhou Bay
29 December 2021 10:39 GF-5B AHSI HSI 30 (m) 600 × 600 210
29 December 2021 10:39 GF-5B VIMI MSI 20 (m) 900 × 900 6
27 December 2021 17:55 Sentinel-1A SAR 10 (m) 1800 × 1800 2

3.3. Sample Selection and Distribution

To evaluate the performance of fused images for practical applications, we perform
further classification experiments on three coastal wetlands. The random forest (RF)
classifier as an ensemble learning algorithm and the support vector machines (SVM)
classifier as a machine learning algorithm both have been widely used for RS image
classification. Among them, the SVM and RF classifiers coded in MATLAB®2020a are
used for the experiments. The SVM classifier adopts the radial basis function as the
kernel function, and the variance parameter and penalization factor are estimated via
cross-validation. The number of decision trees in the RF classifier is manually set to 500.
The main reason for choosing two classifiers is that we expect to see a performance gain
due to the fusion algorithm rather than the advanced classifier. We obtained the region of
interest (ROI) for all feature classes by using high-resolution Google Earth, field sampling,
and according to careful image interpretation (Figure 3). Except for image preprocessing
and registration, all image processing steps were performed by MATLAB®2020a coding,
including image fusion, evaluation metrics, and classification.
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Figure 3. Sample distribution and proportion. (a) Yancheng; (b) Yellow River Estuary; (c) Hangzhou
Bay; (d) Sample proportion.

4. Experimental Results

In order to verify the effectiveness of the proposed method, we conducted fusion
experiments on real RS images and compared quantitative metrics with several classical
fusion algorithms. These include component substitution methods, model-based meth-
ods, hybrid methods, etc. All the fusion codes were run on a WIN10 computer with an
Intel Core i9 processor and 128 GB RAM. The running time (in seconds) was recorded to
evaluate the computational efficiency. Further classification experiments were conducted
to characterize the practical application capability of the fused images.

4.1. Image Fusion Results

In this part, we use real RS data to evaluate the fusion algorithms in a more objective
and specific way. The Yancheng wetlands are rich in spatial detail, and the Yellow River
Estuary and Hangzhou Bay wetlands have complex spectral information. Figures 4–6
show the comparison of fusion results obtained by the proposed M2CF and other fu-
sion algorithms. The main comparison methods include CS-based, MRA-based, tensor
decomposition-based, hyperspectral super-resolution, unmixing-based, and hybrid meth-
ods [20,36,44,50]. In this, all fusion results are presented in true color with local zooms (Bot-
tom right corner). The Wald protocol is addressed as a solution to the problem of reference
image non-availability [51]. The consistency property indicates that any high-resolution
fusion image should be as close as possible to the source image after down-sampling. Exper-
iments using the original hyperspectral image as a reference and down-sampling the fused
image to evaluate the spectral distortion. Tables 3–5 describe the quantitative metrics for
image fusion methods, and the best one is shown in bold. Statistical quantitative evaluation
metrics include the peak signal to noise ratio (PSNR), the spectral angle mapper (SAM),
the correlation coefficient (CC), the root mean square error (RMSE), and the dimensionless
global error in synthesis (ERGAS).
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Figure 4. Original and fusion images of Yancheng. (a) ZY-1 02D HSI. (b) Sentinel-2A MSI. (c) Sentinel-
1A SAR. (d) Proposed M2CF. (e) IHS. (f) GS. (g) Brovey. (h) PRACS. (i) CNMF. (j) NLSTF. (k) SARF.
(l) GSA-Hysure. (m) GSA-BDSD. (n) GSA-ATWT.

Figure 5. Original and fusion images of Yellow River Estuary. (a) ZY-1 02D HSI. (b) Sentinel-2A MSI.
(c) Sentinel-1A SAR. (d) Proposed M2CF. (e) IHS. (f) GS. (g) Brovey. (h) PRACS. (i) CNMF. (j) NLSTF.
(k) SARF. (l) GSA-Hysure. (m) GSA-BDSD. (n) GSA-ATWT.
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Figure 6. Original and fusion images of Hangzhou Bay. (a) GF-5B AHSI. (b) GF-5B VIMI. (c) Sentinel-
1A SAR. (d) Proposed M2CF. (e) IHS. (f) GS. (g) Brovey. (h) PRACS. (i) CNMF. (j) NLSTF. (k) SARF.
(l) GSA-Hysure. (m) GSA-BDSD. (n) GSA-ATWT.

Table 3. Evaluation metrics of different fusion methods in Yancheng.

Fusion Methods
Quantitative Metrics

Running Time
PSNR SAM CC RMSE ERGAS

IHS 23.6280 9.6515 0.7155 0.04242 38.5805 68.9314
GS 23.7360 11.8058 0.7459 0.04789 38.1233 119.6040

Brovey 23.5187 8.9363 0.7634 0.04641 35.1931 868.6111
PRACS 24.9276 5.4016 0.76366 0.27632 84.9932 1030.0152
CNMF 25.9117 5.1363 0.8664 0.03635 26.6683 1472.3720
NLSTF 31.5899 4.6968 0.9792 0.01721 14.7011 700.5636
SARF 28.7493 6.2618 0.9629 0.02574 27.1026 144.1752

GSA-Hysure 23.6181 10.1104 0.8377 0.04544 38.4659 3686.5776
GSA-BDSD 29.9061 7.8741 0.9677 0.02918 18.4949 295.5739
GSA-ATWT 32.4186 4.9149 0.9772 0.02110 13.4138 192.6265

M2CF (Proposed) 38.1668 2.5525 0.9938 0.01149 7.0877 355.8300

Table 4. Evaluation metrics of different fusion methods in Yellow River Estuary.

Fusion Methods
Quantitative Metrics

Running Time
PSNR SAM CC RMSE ERGAS

IHS 17.9721 9.3361 0.4591 0.07252 43.9962 32.0599
GS 18.1503 9.4228 0.4497 0.07692 44.0660 47.2686

Brovey 17.8701 8.1697 0.4392 0.07590 44.2001 35.2524
PRACS 25.1538 3.5619 0.8404 0.18539 79.1565 1219.1587
CNMF 23.8400 3.6861 0.8306 0.04641 22.3898 1377.0568
NLSTF 28.3358 3.9234 0.9274 0.02911 13.0927 563.4189
SARF 19.2741 6.6625 0.8641 0.05676 25.2628 132.0532

GSA-Hysure 20.9068 5.1851 0.7879 0.05665 29.0530 2869.8089
GSA-BDSD 30.2073 3.2387 0.9757 0.02257 9.6567 255.6573
GSA-ATWT 30.5702 3.0832 0.9752 0.01888 9.3029 175.9395

M2CF (Proposed) 30.8864 1.9004 0.9782 0.01914 8.9354 138.6756
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Table 5. Evaluation metrics of different fusion methods in Hangzhou Bay.

Fusion Methods
Quantitative Metrics

Running Time
PSNR SAM CC RMSE ERGAS

IHS 29.8409 7.5310 0.8036 0.03450 27.2223 167.5567
GS 29.7873 4.1202 0.8206 0.02530 17.3417 129.8105

Brovey 29.6520 3.9635 0.8103 0.01618 17.3140 108.3487
PRACS 34.7274 5.7495 0.8289 0.02332 25.6469 1096.1787
CNMF 31.1619 9.3361 0.8440 0.02993 24.5317 2061.8031
NLSTF 31.6462 3.3214 0.9390 0.01790 10.3979 3982.5931
SARF 23.0536 7.1064 0.8842 0.08799 21.2838 297.1281

GSA-Hysure 35.8663 3.7498 0.9213 0.02050 12.2087 5982.9252
GSA-BDSD 37.6267 3.3107 0.9499 0.01678 7.2889 1445.8150
GSA-ATWT 39.5996 2.6122 0.9607 0.01526 9.8749 352.9102

M2CF (Proposed) 43.4879 2.5395 0.9732 0.01537 5.0824 285.8053

4.1.1. Fusion Results of Yancheng

Figure 4 shows that all fusion images are brighter than the original HS images in
visualization. Traditional component substitution (CS) methods have improved spatial
resolution compared to the reference image (ZY-1 02D). However, CS-based methods, such
as IHS, GS, and Brovey have severe spectral distortions. Specifically, the muddy water
in the upper right corner of the GS, Brovey, and PRACS has been distorted to purple on
the true-color images. CNMF and GSA-Hysure (hyperspectral super-resolution) methods
have severe spatial distortion. Constrained by the speckle noise of SAR, CNMF shows
loss of texture information, while GSA-Hysure shows obvious radar noise. Although
the combination of CS and MRA resulted in little spectral distortion, the GSA-BDSD and
GSA-ATWT fusion images still retained noticeable speckle noise. The proposed M2CF
method has minimal spectral distortion and significant spatial optimization compared
to others.

Table 3 shows the robustness of the proposed method and GSA-ATWT in the spec-
tral fidelity with spectral angle map (SAM) less than 5 and peak signal-to-noise (PSNR)
ratio greater than 30. The conventional CS-based method has superior PSNR and short
consumption time, but the spectral error is large. The CNMF and GSA-Hysure methods
are not satisfactory. Although the SAM of the NLSTF fused result is smaller, the fusion
image is blurry. In contrast, the SARF method has poorer spectral metrics, but it has better
visualization compared to CS-based fusion. The M2CF achieves the minimum loss and
has the best spectral fidelity with the effect of SAR noise cancellation while improving the
spatial resolution.

4.1.2. Fusion Results of Yellow River Estuary

Figure 5 shows the original images and fusion results of all ten methods; Table 4 lists
the quantitative metrics. This region is smooth with fewer spectral differences in features.
The fusion results generally emerge from the polarimetric backscattering properties of SAR.
Some bare lands are bright in the fused images, which have low spectral reflectance in
the optical images, and the water potholes look darker. Traditional CS-based methods
have severe spectral distortions, and hybrid methods produce spectral distortions on the
individual feature class, except for the GSA-BDSD and GSA-ATWT. CS-based methods have
some effects on cloud removal, such as the GS and IHS, where the intensity component from
the upsampled HS data is unselectively replaced by the SAR, resulting in large differences
in spectral information.

The fusion image of CNMF loses some optical details. SARF is not suitable for image
fusion with a large number of bands. The reason for this is that SARF injects spatial
details into HS data intensity components to maintain spectral fidelity. The fusion image
generated by NLSTF is rather noisy since less spatial information is considered in models.
GSA-Hysure performs image interpolation several times during the fusion process due
to the mechanism of the algorithm, which involves more strange pixels and causes more
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significant spatial distortion. Fusion images of the hybrid method have less spectral
distortion, but have less spatial improvement, which is poorly visualized.

The Yellow River Estuary RS image is smoother so that the PSNR of the fusion results
is lower, and the spatial enhancement is generally poorer. Among the evaluation metrics
of the fused images, the CS-based methods have the lowest PSNR, and the SAM is the
largest. For the MRA-based GSA-BDSD, to ensure the robustness of the spectral fidelity,
the injection weight of the high-frequency information is rationed less, and the injected
spatial details are insufficient, which limits the spatial enhancement. The performance of
the hybrid method is relatively good, and the M2CF method is the best.

4.1.3. Fusion Results of Hangzhou Bay

The spectral information (GF-5B) used in Hangzhou Bay is richer compared to the
other two study areas, and the spatial resolution is progressive between modalities. Figure 6
shows that the spectral distortion of fusion images is smaller than in the previous areas, and
the spatial optimization is weaker. It is noted that there is pseudo-noise at the intersection
of ocean and land on the original SAR image. The CS-based methods and CNMF have large
spectral distortions, and the pseudo-noise belonging to the SAR image is still clearly visible,
mainly due to their inherent processing mechanism. SARF and hybrid methods reduce the
approximation error while eliminating the speckle noise. GSA-Hysure, CNMF, and NLSTF
generate new noise in the fusion process of pixel operations, and such methods are not
suitable for the fusion of SAR and optical images. The fusion results of the hybrid method
are darker than the original GF-5 HS image. Among them, although GSA-BDSD has no
obvious SAR image artifacts, it still has a significant amount of speckle noise belonging to
the SAR image. Figure 6 shows the robustness of GSA-ATWT, GSA-BDSD, and NLSTF in
terms of spatial fidelity and underlines the potential of the proposed method.

Table 5 describes the quantitative metrics of eleven fused images in Hangzhou Bay.
The CNMF method has the most severe spectral distortion. In addition, the running
time of GSA-Hysure and NLSTF leave much to be desired. SARF has good visualization
but poor quantitative metrics, which inject radar details into HS data with the variable
gain coefficient.

According to the results from the three study areas, there is a basically identical trend in
both quantitative and qualitative comparisons. CS-based methods have the least operation
time but are highly dependent on the correlation between the source images. However,
there are spectral mismatches between different sensors and divergent properties between
modes, which can cause significant spectral distortion. The disadvantage of the PRACS
method is that the dimensionless global error is large. The observations in Tables 3–5 show
the robustness of GSA-ATWT, GSA-BDSD, and M2CF in terms of spectral fidelity. It is
interesting that PRACS has good spectral fidelity in Hangzhou Bay, whereas it suffers
serious spectral distortion in the Yancheng and Yellow River Estuary. Methods based on
unmixing and hyperspectral super-resolution are prone to spatial texture detail distortion
with a poor signal-to-noise ratio. NLSTF is prone to artifacts and a heavy computational
burden. Apparently, hybrid methods are better than CS-based methods. Nevertheless,
hybrid methods are not stable, and the algorithms are complex with long procedures. The
flexibility and accuracy of the proposed M2CF are much better than that of hybrid methods.
The proposed M2CF has the best fusion results; it promotes spatial resolution with high
spectral fidelity. Experimental results show that the proposed method is more proper for
fusing SAR, MS, and HS images.

4.2. Spectral Profiles Comparison

The reflectance at different wavelengths can be expressed in the image cube as a
spectral profile. The pure pixel spectral profiles of three typical features are compared
before and after the fusion (Figure 7), namely water, vegetation, and dry land/salt marsh.
It can be found that the overall trend of the spectral profiles is correct and fits the original
reference properly, especially in Hangzhou Bay. However, the profiles of the CS-based
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methods are mismatched in all three regions. Some fusion images even show negative
values in the water profiles, such as the GS, Brovey, and NLSTF. The unmixing-based
(CNMF) profile is mostly lower than the reference profiles in salt marshes and water. There
is no regularity in the spectral profiles of the hybrid methods, and it fluctuates within
a certain small range. Fortunately, including M2CF, the spectral profiles of GSA-BDSD
and GSA-ATWT are high-fidelity on all four typical features, indicating that the spectral
dimension was preserved well during the fusion process. Once again, the spectral fidelity
of the proposed method is relatively robust.

Figure 7. Comparison of the spectral profiles.

4.3. Classification Results

To test the specific performance of the fusion methods, the fused images are employed
for classification, and its application ability is characterized by the accuracy rate. The
RF and SVM classifiers were trained 75 times, and then we computed three widely-used
metrics for classification results, namely Overall Accuracy (OA), Average Accuracy (AA),
and Kappa Coefficient. The classification accuracy was the mean value of 20 times to make
a quantitative performance comparison. Classification metrics for HS images and optical
(HS + MS) fusion images were included in the comparison to characterize the improvement
in classification accuracy.

4.3.1. Classification Results of Yancheng

As can be observed, ZY-1 02D HS has the worst classification result, mainly due to the
lower spatial resolution (Figure 8). In other words, HS has complete classification blocks,
but the detail differentiation is weaker. The classification accuracy of most fusion images
with high spatial and spectral resolution was enhanced. However, PRACS and CNMF
fusion images are limited by the similarities in spectral reflectance. In the classification of
the MRA-based hybrid fusion images, culture pond and salt marsh were easily misclassified.
Among them, the BDSD fused image has many misclassified pixels in dry land and paddy
field, and the boundaries in spartina alterniflora and reed are unclear.
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Figure 8. The Classification results of Yancheng. (a) RF-classifier; (b) SVM-classifier.
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Table 6 depicts the OA, AA, and Kappa of the classification in Yancheng. In quan-
titative metrics, the accuracy of the fusion images mostly exceeds that of images based
on single ZY-1 02D data. However, CNMF has lower classification accuracy than optical
fusion images in two classification experiments. Because of the spectral distortion results
in CNMF fusion, misclassification occurs when combining spatial information. Among
the accuracy metrics of the random forest classifier, the overall accuracy of Brovey, SARF,
and GSA-ATWT is lower than optical fusion image, and all other methods improved to
different degrees. PRACS has better accuracy in RF Classifier but is not as precise as ZY-1
02D in SVM Classifier.

Table 6. Classification metrics of Yancheng.

Method Index
RF SVM

AA OA Kappa AA OA Kappa

ZY-1 02D 0.7624 0.8427 0.8182 0.7946 0.8601 0.8384
MS + HS 0.8565 0.8879 0.8716 0.9230 0.9495 0.9423

IHS 0.8138 0.9194 0.8992 0.9448 0.9736 0.9673
GS 0.8136 0.9112 0.8894 0.9412 0.9713 0.9643

Brovey 0.7710 0.9063 0.8830 0.8704 0.9174 0.8979
PRACS 0.8962 0.9421 0.8350 0.7751 0.9404 0.7972
CNMF 0.6847 0.8148 0.7695 0.7159 0.8035 0.7562
NLSTF 0.8526 0.8686 0.8628 0.9244 0.9474 0.9399
SARF 0.8342 0.8502 0.8420 0.9281 0.9540 0.9484

GSA-Hysure 0.8766 0.9375 0.9224 0.9410 0.9713 0.9643
GSA-BDSD 0.8635 0.9331 0.9172 0.9513 0.9759 0.9701
GSA-ATWT 0.7357 0.8808 0.8509 0.9127 0.9579 0.9478

M2CF 0.8972 0.9484 0.9359 0.9589 0.9775 0.9721

Collectively, the proposed M2CF’s OA and Kappa were the highest among the metrics
in the Yancheng, and the AA in the RF classification experiments improved about 9%
over the classification results using HS alone; the OA and Kappa in the SVM experiments
improved by 3.80% on average, further demonstrating that image fusion can improve the
classification accuracy of the coastal wetlands. This reinforces the conclusion that the fusion
of optical and radar data is indeed able to provide valuable synergistic information.

4.3.2. Classification Results of Yellow River Estuary

Figure 9 shows the RF and SVM classification results in the Yellow River Estuary, and
Table 7 lists quantitative metrics of the classification accuracy. Similarly, the M2CF method
had better classification results. The SVM classifier shows PRACS, the hybrid method,
and the proposed method visualize better, which is more consistent with the classification
results of the Yancheng wetlands.

Table 7. Classification metrics of Yellow River Estuary.

Method Index
RF SVM

AA OA Kappa AA OA Kappa

ZY-1 02D 0.7903 0.8719 0.8504 0.8563 0.9245 0.9118
MS + HS 0.8404 0.9163 0.9023 0.9385 0.9720 0.9674

IHS 0.8791 0.9313 0.9199 0.9487 0.9759 0.9719
GS 0.8750 0.9260 0.9138 0.9444 0.9735 0.9691

Brovey 0.8016 0.8576 0.8339 0.9107 0.9427 0.9332
PRACS 0.8793 0.9309 0.9195 0.8456 0.92275 0.9096
CNMF 0.8231 0.8876 0.8690 0.8750 0.9230 0.9103
NLSTF 0.8544 0.9144 0.9069 0.9437 0.9587 0.9569
SARF 0.8342 0.8602 0.8400 0.9281 0.9540 0.9474

GSA-Hysure 0.7483 0.8509 0.8257 0.8896 0.9432 0.9338
GSA-BDSD 0.8818 0.9366 0.9261 0.9407 0.9723 0.9678
GSA-ATWT 0.8566 0.9207 0.9075 0.9363 0.9715 0.9668

M2CF 0.8964 0.9426 0.9331 0.9542 0.9789 0.9754
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Figure 9. The Classification results of Yellow River Estuary. (a) RF-classifier; (b) SVM-classifier.
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Visually, the HS image (ZY-1 02D) of the Yellow River Estuary has blurred classification
on salt marshes and culture ponds in SVM classification experiments. It is observed that for
the concerned application, both optical (MS + HS) and other fusion images are promising as
compared to the ZY-1 02D HS, except for GSA-Hysure and PRACS. With the improvement of
spatial resolution, the ability to distinguish the details was enhanced. The classification results
of CS-based methods (e.g., Brovey and GS) are quite fragmented, mainly because the fused
images retain the image details and speckle noise of the SAR. PRACS has no significant ability
to make a distinction between paddy fields and culture ponds in both sets of experiments. The
IHS and GS are misclassifications of the Yellow River in both classifiers, distinctly. For CNMF
and GSA-Hysure methods, they fail to classify the materials well due to their sensitivity to
complex noise (Figure 9). For the M2CF and three hybrid methods, the classification of salt
marshes and culture ponds is differentiated well, which has similar spectral characteristics
to optical images because SAR images are sensitive to soil moisture and geometric structure.
However, the MRA-based hybrid methods are prone to speckle misclassification in Pothole.

The quantitative metrics of classification accuracy show that GSA-Hysure has lower
classification accuracy than HS alone. It illustrates that inappropriate fusion algorithms
can even reduce classification accuracy (Table 7). The classification accuracy of NLSTF
and SAR is roughly the same as the optical fusion image (HS + MS). The best classification
accuracies were achieved for the fused images obtained by the M2CF method, and the
OA was improved by about 5% over the hyperspectral images alone. Again, proving the
superiority of our proposed fusion method over other fusion methods. The classification
experiments further illustrate that pixel-level fusion of SAR and optical images can improve
classification accuracy, especially in the identification of water bodies, bare land, and
vegetation. It indicates the importance of image fusion for coastal wetland mapping.

4.3.3. Classification Results of Hangzhou Bay

In general, the pixels are usually mixed on the low-resolution HS in Hangzhou Bay; it is
observed that multi-modal image fusion improves the wetlands classification to some extent.
Concretely, CNMF has mass misclassification of ocean and pothole, which pollutes the
maps. Moreover, due to the noise interference, the performance of CS-based fusion image
is not improved or even negative. The NLSTF is unsuitable for identifying the subspaces of
data in complicated areas. Hybrid methods perform well with clearer classification maps,
especially the textures between photovoltaic panels and artificial trenches. In RF Classifier,
the accuracy of optical fusion (MS + HS) is higher than that of CNMF, SARF, and GSA-
Hysure. The quality of image fusion is directly related to the accuracy and visualization of
classification results. The classification accuracy is improved through the hybrid fusion
methods (Table 8). In both RF and SVM classification images of M2CF, the boundaries of
the features are well defined and have continuity of distribution (Figure 10). To sum up,
the proposed M2CF achieves superior performance for coastal wetlands mapping.

Table 8. Classification metrics of Hangzhou Bay.

Method Index
RF SVM

AA OA Kappa AA OA Kappa

ZY-1 02D 0.8549 0.9137 0.9021 0.8863 0.9331 0.9308
MS + HS 0.9041 0.9221 0.9219 0.9278 0.9464 0.9426

IHS 0.9167 0.9392 0.9356 0.9397 0.9532 0.9514
GS 0.9196 0.9472 0.9432 0.9411 0.9543 0.9532

Brovey 0.9212 0.9469 0.9428 0.9529 0.9620 0.9607
PRACS 0.9273 0.9435 0.9407 0.9377 0.9425 0.9410
CNMF 0.8368 0.9190 0.9047 0.8306 0.9184 0.9056
NLSTF 0.9298 0.9437 0.9392 0.9339 0.9514 0.9499
SARF 0.9205 0.9526 0.9461 0.9508 0.9689 0.9657

GSA-Hysure 0.9288 0.9489 0.9434 0.9419 0.9590 0.9571
GSA-BDSD 0.9282 0.9571 0.9528 0.9547 0.9616 0.9602
GSA-ATWT 0.9375 0.9611 0.9583 0.9515 0.9636 0.9619

M2CF 0.9411 0.9675 0.9650 0.9550 0.9719 0.9705



Remote Sens. 2022, 14, 3492 22 of 27

Figure 10. The Classification results of Hangzhou Bay. (a) RF-classifier; (b) SVM-classifier.
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5. Discussion

The classification and identification of coastal wetlands have long been interesting but
challenging research in remote sensing. The increasing availability of data brings rapid
advancement in the fusion of optical and radar images [4,52,53]. Optical images, especially
for HS data, can provide rich and continuous spectral information. Radar microwaves can
distinguish differences in roughness and moisture, particularly for capturing continuous
water surfaces. The increase in the number of hyperspectral image bands at this stage has
brought great challenges to the fusion algorithm [54]. It is necessary to focus on the actual
production application of the algorithm, striving to achieve a balance between effectiveness
and efficiency. Moreover, the polarized backscatter of SAR is sensitive to the size, density,
and dielectric constant of the vegetation. Therefore, an efficient cross-modal fusion of
hyperspectral and SAR images is timely and critical for further research [55].

This research will fill a gap that focuses on developing a cross-modal, fast, and
robust fusion method of the HS, MS, and SAR images for coastal wetlands mapping. The
experiments confirm that the classification accuracy of cross-modal fusion images mostly
exceeds those based on single HS or optical fusion (MS and HS) images. It is consistent with
many fusion studies; that is, the appropriate fusion algorithm can improve the classification
accuracy [17,20,45,56]. Besides the results presented in the experiments, the following
points should be further explored. The CS fusion frameworks have advantages in high
efficiency and spatial enhancement. This is the reason why CS-based methods are most
widely used in SAR and optical image fusion. Hyperspectral super-resolution or unmixing-
based methods are better compared to CS-based methods, but they have poor performance
in cross-modal data. Hybrid methods are an available fusion option. Multi-resolution
analysis can strike a balance between spectral fidelity and spatial enhancement. It avoids
instability due to the uncertainty of a step-by-step framework. Among the experimental
results, the proposed M2CF achieves the smallest spectral loss while obtaining the highest
classification accuracy. Unfortunately, M2CF may not be suitable for fusion at large spatial
resolution ratios or mountainous topography. It is mainly limited to radar shadows caused
by foreshortening and layover. Joint classification using cross-modal RS data fusion for
wetlands mapping is promising [2,14,16,30]. Recent trends suggest that research in cross-
modal fusion is progressing towards deep learning [57]. Because of the nonlinear correlation
and inherent uncertainties in data sources, the above fusion results may not be as excellent
as iteratively optimized deep learning algorithms.

Taking Yancheng as an example, Table 9 reports more cases as the supplement to the
ablation experiment of M2CF in Yancheng. As a multi-frequency extraction experiment,
Gaussian and Low-pass filters are incorporated into the method ablation. M2CF is based
on MRA models, while M2CF is composed of edge-preserving filters. It is observed that the
SAM and RMSE of the proposed module will increase significantly when using Gaussian
and Low-pass filters to extract multi-frequency information. Specifically, the spectral
metrics of the fusion module are more distorted without the spectral compensation; it
further illustrates that the components work better together.

Table 9. Ablation experiment of Yancheng.

Fusion Methods
Quantitative Metrics Running

TimePSNR SAM CC RMSE ERGAS

Low-pass Filter 29.4262 3.9817 0.81032 0.01518 17.3140 268.9314
Gaussian Filter 33.9373 3.2910 0.96010 0.01380 12.1189 319.6040

Uncompensated 23.5187 8.9363 0.76335 0.04641 35.1931 283.6111
M2CF (Proposed) 38.1668 2.5525 0.9938 0.01150 7.0877 355.8300

In this work, two filter parameters need to be set manually, namely the smoothing
factor λ of Equation (2) and the guiding windowω of Equation (15). We applied controlled
variable experiments to verify the sensitivity of the parameters. The factor of the WlsF
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smoothing term depends on the input image. When the gradient of the input image is
relatively large, we want the constraint to be smaller to preserve the structural information
of the image; when the gradient of the image is small, this detailed information is considered
unimportant, and the constraint can naturally be larger. For the guided filter, each pixel
is contained in multiple filter windows, and the window size is directly related to the
edge-preserving of the output image. Figure 11 shows the correlation between SAM and
parameter settings. For the experiment process, the guide window (GW) is 8, and the
smoothing factor (SF) is 1.2, separately.

Figure 11. Effect of parameter settings on M2CF.

In addition, current studies often lack ground-truth and benchmark datasets at larger
spatial scales. Variations in spatial registration and radiation mismatch between the SAR
and optical are also major challenges. Periodic tide levels make remote sensing of coastal
wetlands still challenging, which also increases the variability of data fusion [58]. Therefore,
progress in this field still requires improvements in more robust fusion techniques and
systematic procedures to assess the benefits of fusion.

6. Conclusions

In this paper, a hyperspectral–multispectral–SAR image fusion algorithm, namely
multi-modal MRA collaborative fusion (M2CF), is offered. The proposed model improves
generalized MRA and allows homogeneous data to be simultaneously integrated with phys-
ically heterogeneous radar radiation. It not only utilizes spectral–spatial information of the
optical images, but also injects geometric and polarimetric properties of SAR. Fusion yields
steady visible benefits, achieving the minimum spectral loss with high PSNR. Compared to
step-by-step fusion frameworks, M2CF is more adjustable and robust. The classification
experiments also illustrate that M2CF fused images bring about +3.2% OA improvements
compared to optical fused images. Finally, we discuss two parameter settings and the
ablation experiment for reference. Optical and SAR image fusion still has great potential;
in the future, we will develop fusion algorithms using deep learning or feature learning.
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