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Abstract: Vertical green living walls (VGWs)—growing plants on vertical walls inside or outside
buildings—have been suggested as a nature-based solution to improve air quality and comfort
in modern cities. However, as with other greenery systems (e.g., agriculture), managing VGW
systems requires adequate temporal and spatial monitoring of the plants as well as the surrounding
environment. Remote sensing cameras and small, low-cost sensors have become increasingly valuable
for conventional vegetation monitoring; nevertheless, they have rarely been used in VGWs. In this
descriptive paper, we present a first-of-its-kind remote sensing high-throughput monitoring system
in a VGW workplace. The system includes low- and high-cost sensors, thermal and hyperspectral
remote sensing cameras, and in situ gas-exchange measurements. In addition, air temperature,
relative humidity, and carbon dioxide concentrations are constantly monitored in the operating
workplace room (scientific computer lab) where the VGW is established, while data are continuously
streamed online to an analytical and visualization web application. Artificial Intelligence is used to
automatically monitor changes across the living wall. Preliminary results of our unique monitoring
system are presented under actual working room conditions while discussing future directions and
potential applications of such a high-throughput remote sensing VGW system.

Keywords: artificial intelligence (AI); greenery system; hyperspectral; machine learning; nature-
based solution; remote sensing; thermal; urban vegetation; urban agriculture; urban farming; vertical
green living wall (VGW)

1. Vertical Green Living Walls (VGWs) as an Urban Nature-Based Solution (NBS)

Nature-based solutions (NBSs) refer to efforts aimed at tackling socio-environmental
challenges by the use of nature through sustainable management. As part of NBS, the
concept of “green” cities has been recommended for sustainable urban development [1,2].
The idea is to introduce vegetation into spaces within the urban fabric to reduce the heat
island effect and air pollution in the city [3]. Such a solution could also support efforts to
achieve carbon-neutral cities since plants uptake CO2 from the environment. The European
Commission has proposed such a solution, which was recently adopted by Horizon 2030
as one of the potential strategies to meet the goal of carbon-free cities [4].

Since introducing new parks and gardens in the urban fabric is not straightforward, as
free spaces are rarely found in modern cities, deploying vertical greening systems may be
the optimal solution. Introducing vertical green systems into the city where the vegetation
is grown on new or existing vertical walls has great potential as an NBS. These vertical
green living systems (VGSs) are presently found in indoor and outdoor environments
through a plethora of growing techniques [5–7]. However, the main challenge of such NBSs
is understanding how these VGSs respond to and affect the urban environment. Another
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challenge is the management of such systems, which requires a different approach than the
conventional management of horizontal green systems.

Since the VGS term also includes vertical growing in horizontal layers (one layer on top
of the other), where the plants grow in the vertical direction, in this paper, we distinguish
such systems from systems that grow vegetation on a vertical wall, where plants grow
mostly in the horizontal direction (Figure 1a). We name such systems as vertical green wall
(VGW) systems and use this term throughout this paper.
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Figure 1. Front view of (a) the VGW with its six main species and (b) the light intensity conditions
across the wall (µmol photons m−2 s−1). Light intensity was measured perpendicular to the wall in
120 points (leaves) across the wall, with an average distance of 30 cm from each other. The vertical
map shown in (b) was generated using multilevel b-spline interpolation in QGIS.

While extensive research exists on the effects of cooling [8] and humidity regulation [9,10],
as well as the reduction in air pollutants [11–13], carbon dioxide [14], and particulate
matter [15,16], of both indoor and outdoor VGSs and VGWs, most of the studies are focused
on conventional horizontal planting systems and traditional potted plants. Since the vertical
living wall approaches are a recent innovation, little is known about the potential impacts
of such new horticultural living walls, known as VGW systems, on indoor air quality and
comfort [17]. The increased plant density of VGW systems, vertical alignment, and higher
areal and microflora exposure likely have distinct environmental impacts compared with
the traditional potted systems [18,19].

The little-known fact about these systems through the few existing studies is that
indoor VGW systems can reduce formaldehyde [20] and efficiently filter indoor particulate
matter [11]. Recent studies also showed that VGW systems can reduce indoor carbon
dioxide [14]. However, most of these studies are held in small cells or tiny room spaces
under controlled conditions. High levels of indoor carbon dioxide are known to affect
working performance. For example, research conducted at the Harvard T.H. Chan School
of Public Health showed that office workers increased their cognitive performance when
exposed to a more ventilated room with lower carbon dioxide levels [21]. Thus, indoor
VGWs can potentially improve indoor air quality in workplaces, providing the required
environment for better working conditions. However, a major challenge remains the
spatiotemporally continuous monitoring of the performance of the VGW and its effect on
the surrounding environment.
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2. Using Remote-Sensing-Based Precision Agriculture Tools in VGWs

In terms of effect, the spatial dimension of the VGW system is crucial. To provide
recommendations regarding the total area of the VGW system needed to reduce carbon
dioxide in a room with a specific volume, for example, it is necessary to assess its spatial
effect, which includes knowing the response at a given planting density as well as the plant
type response to ambient and elevated CO2 conditions. While most studies explore the
effects of living systems by measuring air quality in the room, how different wall parts react
to their surrounding environment is still unknown. This effect may further change across
the wall and through time. The same plant, for example, may respond differently due to
its position in the wall because of the different exposure to local environmental conditions
(e.g., light, ventilation, water supply, etc.). This spatial information is required to monitor
and manage such systems properly.

Today, VGWs are expected to be automatically or semi-automatically maintained to
become efficient systems. In that sense, proximal sensing, using cameras that measure
the spectral and thermal signals reflected and emitted by the plants on the wall, can be
leveraged to monitor variations across the VGW as well as to effectively manage such
systems through smart decision support systems. Using proximal and remote sensing to
track the performance of VGWs in carbon dioxide and temperature reduction capacity
while associating spatial changes across the wall to variations in indoor environmental
conditions is a promising management solution for these innovative NBS systems [22].

The general idea is to deploy precision agriculture techniques developed and used in
conventional farming (horizontal vegetation systems) in VGW systems. For example, the
photochemical reflectance index (PRI), which is based on spectral data acquired from proxi-
mal or remote sensing, was found to be associated with volatile organic compounds [23], as
well as photosynthetic traits [24,25]. Thus, using spectral images of the proper wavelength
bands may allow the generation of the wall’s PRI maps through time. This information may
be beneficial to monitoring changes in CO2 uptake across the wall, helping automatically or
semi-automatically manage the VGW system and improving its efficacy in reducing indoor
carbon dioxide concentrations. Models driven by spectral-based vegetation indices [26–28]
can be used to provide a spatial assessment of the plants’ water use and carbon uptake rates
across the VGW. Thermal information, commonly used to assess water stress conditions in
crops and trees [29–31], may also be used to determine transpiration rates across the VGW
system for irrigation control purposes.

This short descriptive paper presents a first-of-its-kind high-throughput monitoring
system of an indoor VGW that includes low- and high-cost sensors, thermal and hyperspec-
tral remote sensing, and in situ gas-exchange measurements. In addition, air temperature,
relative humidity, and carbon dioxide concentrations are constantly monitored in an oper-
ating workplace room (scientific computer lab) where the VGW is established, while data
are continuously streamed online to an analytical and visualization web application. We
show preliminary results of our monitoring system under actual working room conditions,
discussing future directions and potential applications of such a sensing high-throughput
monitoring VGW system.

3. Description and First Results of the High-Throughput VGW Monitoring System
3.1. The VGW System in the Modeling and Monitoring Vegetation Systems Lab

A 15 m2 VGW system was established on April 2021 in the Modeling and Monitoring
Vegetation Systems lab (M&M-VS; http://davidhelman.weebly.com) at the Faculty of Agri-
culture, Food and Environment, in Rehovot, Israel (Figure 1a). The VGW is a hydroponic
system based on Patrick Blanc’s method in which the vegetation is directly transplanted
into several layers of clothing, which are adhered to the wall [32]. Irrigation is applied
daily (7 am) from the top of the wall via a computer-based drip irrigation system. Water is
collected at the bottom through a drainage system that streams the water back to a 200 L
tank placed behind the wall in a separate room (Figure 2). The water is pumped again from
the tank the following day after filling to 130 L at the end of the previous day. The tank is

http://davidhelman.weebly.com
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completely emptied and refilled with fresh water and fertilizer on Tuesdays. Sensors in the
tank continuously monitor pH and salinity (electrical conductivity, EC) every 10 s. The pH
of the water is maintained at 6–7 and the EC at 1.4–1.6 mS cm−1.
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Figure 2. Plan view of the M&M-VS lab with its VGW monitoring system. Two air-conditioning (AC)
systems operate in the room at a fixed temperature of 25 ◦C in addition to a ventilation system (from
the top). Green indicates the location of the living wall. In red are the low-cost temperature/RH
sensors. Hollowed circles indicate inlet tubes that sample the air in the room and outside the building
(oS and oN), with the air flowing from the tube to a microswitch system and a gas analyzer behind
the wall (black rectangle). Water is supplied through an automatic drip system pumped from a tank
behind the wall (black circle). Sensors of pH, EC, and water level are connected to the tank (pink
triangle). Notice that there are additional T/RH sensors and inlet tubes near the wall (approx. 10 cm
from the wall) at different heights from the top for vertical measurements. Another T/RH sensor
(e-in) was placed inside the canopy. Data stream in real time to an interactive visualization web
application (Grafana) installed on a computer in the lab.

The water is enriched with a “Bounty1” fertilizer (Zalmanson Fertilizers ©) to a 4:2:6
NPK composition. In addition, 0.75% calcium, 0.9% magnesium, and 6% microelements in
chelation are added to the water to reach a total concentration of 2 mL L−1. The average
daily water consumption of the wall is 16.5 ± 6.4 L day−1.

Artificial light in the photosynthetic range (wavelength of 400–700 nanometer) is the
only energy source for the plants on the VGW in the room. However, light conditions are not
homogeneous across the wall, with light intensities ranging from 10 µmol photons m−2 s−1

to 190 µmol photons m−2 s−1, which allows us to examine the species’ response under
different light conditions (Figure 1b).

Six main species were planted across the 15 m2 VGW system (Figure 1a), with an
average distance of 20–30 cm between the plants. In what follows, a short description of
the six species is provided. Table 1 summarizes the main traits of each species.
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Table 1. The six species planted in the VGW.

Scientific Name Common
Name C-Pathway Native Area Optimal Growth

Temperatures (◦C)

Peperomia
obtusifolia

Baby rubber
plant C3

Mexico, South
America, and
West Indies

16–26

Tradescantia
spathacea

Moses in the
cradle or

wondering jew
C3

Southern
Mexico, Belize,

Guatemala
14–27

Chlorophytum
comosum Spider plant C3 South Africa 15–30

Spathiphyllum
wallisii Regel Peace lily C3 Central

America 15–30

Aeschynanthus
radicans

“Monalisa”

Monalisa or
lipstick plant C3 Malaysia 15–30

Philodendron
hederaceum Philodendron C3 North and

South America 15–26

3.1.1. Peperomia obtusifolia

Usually called “baby rubber plant”, “American rubber plant”, or “pepper face”, this
plant has relatively smooth and thick round leaves. Peperomia is native to Mexico, South
America, and West Indies. The plant can reach a height of 30 cm. It prefers bright indirect
light conditions. Ideal temperatures for this species range from 16 ◦C to 26 ◦C, and
pH from 6 to 8 [33]. According to the American Society for the Prevention of Cruelty to
Animals, P. obtusifolia is non-toxic for humans and animals [34].

3.1.2. Tradescantia spathacea

Also known as “Moses in the cradle”, “boat lily”, and “wandering jew”, this plant
is native to tropical areas such as Belize, Guatemala, and southern Mexico. It can be an
understory plant in coastal forests, shrublands, pinelands, hammocks, secondary forests,
cultivated grounds, and disturbed areas from sea level to low elevations [35]. T. spathacea
may reach a maximum height of 30–50 cm. It is a very fast-growing species, easy to
maintain. T. spathacea preferred conditions are warm and humid, with temperatures
ranging from 14 ◦C to 27 ◦C [36]. It can be found in indoor and outdoor growing systems.
T. spathacea can be toxic to animals and humans [37].

3.1.3. Chlorophytum comosum

Usually known as the “spider plant”, this is a perennial flowering plant native to
tropical and southern Africa but was introduced to other parts of the world, such as western
Australia [38]. It is easy to grow as a houseplant, prospering under various environmental
conditions. C. comosum is well-known for its medicinal characteristics [38]. The ideal
temperatures in which this species grow and develop range from 15 ◦C to 30 ◦C, with pH
recommended levels of 6 to 6.5. C. comosum was found by the NASA Clean Air Study to
effectively remove common household air toxins such as formaldehyde and xylene [39]. It
is not toxic to animals and humans [34].

3.1.4. Spathiphyllum wallisii

Usually called “peace lily”, it is a genus of more than 47 species of monocotyledonous
flowering plants from the Araceae family, which are very popular as indoor house plants.
This species is native to tropical regions of the Americas and southeastern Asia. The
evergreen herbaceous perennial plants have large leaves of 12–65 cm long and 3–25 cm
broad. The flowers are produced in a spadix, surrounded by a white, yellowish, or greenish
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spathe. Spathiphyllum requires relatively small amounts of light and water. It is also known
to remove household air toxins such as benzene and formaldehyde [39]. Recommended
pH levels for this species are 5.6 to 6.5. S. wallisii can be toxic to animals and humans [40].

3.1.5. Aeschynanthus radicans

This plant is usually named “Monalisa” and “lipstick plant” because of its beautiful,
red-colored scarlet flowers that open from buds resembling lipstick tubes. It is native to
Malaysia and may grow to a height of 1.5 m. The ideal temperature for this species is 15 to
30 ◦C, with required pH levels of 6–8. The Monalisa is non-toxic to animals and humans [34].
Its best light conditions are bright indirect light, best grown indoors.

3.1.6. Philodendron hederaceum

Philodendron is an evergreen climber plant native to North and South American tropical
areas [41]. Taxonomically, the genus Philodendron is still poorly known, with many unde-
scribed species. It can grow to a height of 3–6 m, with a temperature requirement of 15 to
26 ◦C and pH levels ranging between 4.5 and 6. The recommended light conditions are
moderate-to-bright diffusive light. P. hederaceum can be toxic to animals and humans [40].

3.2. The Working Space and Its Indoor Environmental Monitoring System

The M&M-VS lab is an Agritech workplace of approximately 46 m2, with a total
volume of about 140 m3. The lab is equipped with desktop workstations, and typically 2 to
8 students work in the lab simultaneously. Typical working hours are from 8 am to 8 pm.
Air conditioning in the room is set at 25 ◦C, and fresh air is supplied through a mixing
ventilation system (from the top) with an air exchange rate of 0.25–1.5 h−1.

The indoor conditions were continuously monitored via a set of sensors, including air
temperature and relative humidity (RH) sensors (T/RH sensors of Xiaomi, Beijing, China,
and an HMP155 sensor, Vaisala, Finland) distributed across the room in the horizontal and
vertical directions (Figure 2). In addition, a people-counting sensor was placed at the lab
entrance to monitor the number of people in the room at any given time. A series of 10 inlet
tubes injected air into a gas analyzer (Serinus 31, Ecotech Pty Ltd., Sydney, Australia),
located behind the wall, at different distances from the VGW (0.1, 0.35, 0.8, 2, and 3 m
from the wall and 0.8 m from the top) and to varying heights near the wall (at a distance of
10 cm from the wall and 0.8, 1.2, 1.9, and 2.5 m from the top) in addition to two external
inlet tubes that sample the outdoor air at the northern and southern sides of the building
(Figure 2). The eight internal and two outer tubes provided horizontal and vertical CO2
profiles across the transect from the wall towards the room’s center and from the top to the
floor, as well as outdoor CO2 conditions.

The CO2 sampling was conducted via a microswitch system that injects air from
10 inlet tubes for 3 min each. The sampled air was streamed from the inlet tube to the
gas analyzer at a constant rate using a 1 L reciprocating vacuum pump. To avoid air
contamination from the previous tube, we wrote a Python code that excludes the first
two minutes of data after the valve opens. That way, we could investigate the “clean”
air from the specific opened tube. This resulted in a 30 min cycle of the 10 sampling
tubes at different distances and heights from the VGW (see “CO2 inlet” in Figure 2). Air
temperature, RH, and solar radiation were also monitored outside the building (Figure 2).

Data were streamed to and displayed in, Grafana, a multiplatform, open-source
analytics and interactive data-visualization web application (https://grafana.com; accessed
on 1 June 2022). This enables a continuous, real-time data visualization at a relatively high
frequency, with some basic, on-the-fly analytical capabilities (Figure 3).

https://grafana.com
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the workplace.

3.3. Leaf Level Gas Exchange Measurements

We used LiCOR devices (LI-6800 and LI-600, LiCOR, NE, USA; Figure 4a,b) to monitor
level leaf gas-exchange rates. Measurements of leaf transpiration, CO2 assimilation, and
stomatal conductance were conducted periodically once every three weeks on average
on each of the six species to characterize their light use efficiencies and carbon uptake
capacities. A total of three leaves were sampled per species per date to maintain a minimum
interval of time between the leaf measurements and the images. In addition, the actual
transpiration was measured with the LI-600 porometer on a total of 60 to 90 random leaves
across the wall (10–15 leaves per species) every month.

Our preliminary single leaf results showed that the six species grown on the indoor
VGW had a diverse response to increasing ambient CO2 concentrations (Figure 4c).

Since intercellular CO2 concentration (Ci) can be taken as 70% of the ambient concen-
tration in C3 plants [42], the A–Ci curve can provide information regarding the effectiveness
of the species in reducing CO2 levels in the room through the process of carbon assimilation.
For example, Peperomia seemed to reach a maximum assimilation rate of ~7 µmol m−2 s−1

at 600 ppmv (light green arrow in Figure 4c). At the same time, Philodendron, which had the
lowest response to elevated CO2 with ~5 µmol m−2 s−1, reached its maximum assimilation
capacity at a much lower intercellular CO2 concentration (Ci) of only 300 ppmv (dark green
arrow in Figure 4c). This means that, under light conditions of 300 µmol photons m−2 s−1,
Peperomia was 40% more efficient in reducing indoor CO2 concentrations, with increased
assimilation up to 600 ppm. This information can help us design VGWs with specific
species at specific light conditions and at the required density and area to provide the most
efficient system that reduces indoor CO2 to meet the room’s indoor air quality requirements
and customers’ needs.

https://grafana.com
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Figure 4. The LiCOR (a) LI–6800 gas-exchange system and (b) LI–600 Porometer. (c) Response to
intercellular CO2 concentrations (Ci, measured in µmol CO2 m−2 s−1) of the six species grown on
the vertical wall in the lab. Vertical arrows in (c) indicate the intercellular CO2 level at which the
plants reach the maximum assimilation rate (Amax-C). The Ci is usually ~70% of the ambient CO2

concentrations. Measurements were conducted under cell conditions of RH of 55%, temperature of
25 ◦C, and CO2 flow rate of 300 µmol s−1. Images were taken by D. Helman.

4. Remote Sensing and Artificial Intelligence for VGWs
4.1. Creating the Spectral and Thermal Data Collections

The use of remote sensing cameras (sometimes called proximal sensing) can aid in
monitoring and managing VGW systems [22]. The idea is to apply techniques borrowed
from the precision agriculture field to monitor indoor vertical vegetation. This task often re-
quires using artificial intelligence (AI) to make sense of the high-throughput data generated
from such cameras (Figure 5).

In our VGW system, we used hyperspectral and thermal cameras to monitor the wall,
while the cameras were placed in the center of the lab in front of the living wall (Figure 2).
A SpecimIQ hyperspectral camera (Specim Ltd., Oulu, Finland; Figure 5a) [43] provided
spectral information in the 400–1000 nm range, having a total of 204 spectral bands with a
7 nm FWHM bandwidth and a field-of-view (FOV) of 0.55 by 0.55 m at 1 m with a spatial
resolution of 512 × 512 pixels. The 204 bands provided a unique spectral signature for
each leaf, plant, and species (Figure 5e). This signature could then be used, in combination
with gas-exchange data, to develop models that quantify the water use (transpiration) and
carbon uptake of the plants (e.g., [26]). These models can be used to monitor the spatial
variability across the wall for management purposes.

In addition, a thermal FLIR T560 camera (FLIR Systems, Inc., Wilsonville, OR, USA),
with a spatial resolution of 640 × 480 pixels, is used to provide the plant’s leaf surface
temperature (Figure 5b,d). Since leaf temperature is usually highly correlated with stomatal
conductance and transpiration [29,31], this information can be used to quantify changes in
the water use of the plants across the wall. It provides timely information on, for example,
stress conditions due to a failure in the irrigation system [44] or plant damage caused by
diseases or pests [45].
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Figure 5. (a) the SpecimIQ hyperspectral camera and (b) the FLIR T560 thermal camera used to
monitor the indoor VGW. (c) Illustration of multiband acquisition of the spectral images from the
SpecimIQ data (204 bands in the range of 400–1000 nanometer) and (d) a thermal image of the wall
acquired from the FLIR T560 camera. (e) Spectral signal of specific pixels from the VGW image.
Images (a,b) were taken by D. Helman.

4.2. Remote Sensing of Gas-Exchange Parameters

Several spectral-based vegetation indices were developed to track changes in the
vegetation functioning and dynamics using remote sensing tools [46]. These indices can be
derived from sensors onboard satellites [47], drones [48], or manually handled cameras [31].

Table 2 presents a few of these indices alongside a brief description of each index and
its primary use in previous studies.

Table 2. An overview of six spectral vegetation indices that were used in this study.

Index Full Name Formula Main Characteristics and Uses

GM1 [49] Gitelson and
Merzlyak index 1

750 nm
550 nm

The GM1 was developed based on the sensitivity of the 550 nm band
to a wide range of chlorophyll variations. It is a useful index for

monitoring plant chlorophyll content and photosynthetic capacity.

ZMI [50] Zarco-Tejada and
Miller index

750 nm
710 nm

The ZMI, based on the red-edge band, was developed to assess
changes in available pigment content in leaves and over canopies.

PRI [51] Photochemical
reflectance index

531 nm − 570 nm
531 nm + 570 nm

The PRI uses the 531 nm band, which is sensitive to variations
in the dissipation of light energy via xanthophyll de-epoxidation.

It is related to the fast transition in the xanthophyll cycle,
making it a good proxy of the plant light use efficiency,

an important factor in the photosynthetic process.

Ctr1 [52] Carter index 1 695 nm
420 nm

The Ctr1 features the 695 and 420 nm bands, which are sensitive to
changes in total chlorophyll concentrations, especially under stress.

It has been used for the early detection of stresses in plants.

NDVI [53] Normalized difference
vegetation index

790 nm − 670 nm
790 nm + 670 nm

The NDVI is the most commonly used vegetation index in proximal
and remote sensing [46]. It has been used to measure the state of plant
health as well as its phenology and leaf area index. It is also a useful

index for estimating vegetation biomass and productivity [47].

Figure 6 shows that these indices had different types of relationships, from linear to
curvilinear, with assimilation rate (carbon uptake) measured in leaves of the six species
from across the VGW. These relationships could then be used to quantify the amount of
carbon dioxide removed from the room’s space and to monitor changes across the wall for
management purposes.
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Figure 6. Association between CO2 assimilation rate (An; µmol CO2 m−2 s−1), measured by the
LI–6800 system, and several spectral indices (see Table 2) calculated from the hyperspectral images,
showing linear (for NDVI and Ctr1) and curvilinear (for GM1, ZMI, and PRI) relationships. Dots
represent leaf measurements on a specific date (10 May 2021) taken from the six species grown across
the wall. Red dots are the leaf measurements of the Philodendron plants, which displayed relatively
low An (see also Figure 4), sometimes even within the detection level of the measurement system. All
models, excluding the Philodendron, were statistically significant at p < 0.05.

Here, we present two examples of the PRI, which is known to be related to photosyn-
thetic activity and, more specifically, to the light use efficiency of the plant through the
xanthophyll cycle (i.e., the plant’s ability to use the light for photosynthesis [54–56]), and
the temperature difference between the leaf surface (derived from the FLIR T560 camera)
and the surrounding air (derived from the Xiaomi sensor)—∆Tleaf-air.

Figure 7a shows that the PRI had a positive, linear relationship with carbon assimi-
lation, which is consistent when using all six species. Such a relationship was previously
reported for different types of vegetation and different scales [24,25,54,57,58]. In contrast,
∆Tleaf-air was negatively correlated to stomatal conductance, meaning that closing of the
stomata increased the leaf surface’s temperature through a reduced evaporative cooling,
which, in turn, increased ∆Tleaf-air (Figure 7b). This negative relationship was previously
observed in several tree species and wheat [29,31].
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Figure 7. Linear relationships between (a) CO2 assimilation rate (An; µmol CO2 m−2 s−1) and the
photochemical reflectance index (PRI; Table 2) and (b) stomatal conductance (gs; mol m−2 s−1) and
the temperature difference between the leaf (from the FLIR T560 camera) and the air (∆Tleaf-air; ◦C).
Each point on the graphs is the average of several leaves of a single species, while bars represent the
standard deviation.

4.3. AI and Machine Learning Supervised Classification for Tracking Vegetation Dynamics

The large number of spectral bands provided by the SpecimIQ camera can be lever-
aged to automatically distinguish between the species across the VGW, tracking their
development through time.

Figure 8 shows results from a supervised classification applied to the 204-spectral
band images of the bottom left side of the VGW using a support vector machine (SVM)
algorithm [59]. The SVM was trained on the images after passing through a dimensionality
reduction to 10 bands using principal component analysis (PCA). The SVM was then run in
ArcGIS Pro using the segment attribute data of average chromaticity color, count of pixels,
compactness, and rectangularity [60].

Preliminary results of two images, one taken 30 days from planting (Figure 8a,c) and
another taken 90 days from planting (Figure 8b,d), showed the evolution and develop-
ment of the green living wall through time. Species competition was noticed through the
expansion of the plant area through the supervised classification images.

Combining spectral- and thermal-based models with the supervised classification
maps can enable the tracking of the per-species response to indoor environmental changes.
It may also be used to alert when a species is under stressed conditions, enabling better
management of the species and the whole VGW, optimizing the efficiency of the living wall
in improving indoor conditions.
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Figure 8. (a,b) RGB images of the bottom left side of the wall and (c,d) an automatic supervised
classification of the species derived from the hyperspectral data by use of the support vector machine
(SVM) algorithm; (a,c) correspond to an image taken 30 days after planting and (b,d) to an image
taken 90 days after planting. Images show the development of the wall through species competition
for space, while SVM enabled detecting such changes automatically.

5. Future Work and Implications for NBS and Urban Farming

Indoor vertical green living wall systems (VGWs) may fulfill NBS targets of air pol-
lution and carbon dioxide reductions and enhance building occupant health, well-being,
and comfort conditions [3]. Such indoor and outdoor systems may serve as potential
“green” smart city solutions in the future [1,2], especially when such systems are managed
with high-tech monitoring tools. Advancements in the Internet of Things (IoT) and cloud
technologies are excellent opportunities for leveraging the information acquired through
low-cost sensors in monitoring and managing VGWs [61]. However, significant challenges
still need to be addressed, such as the spatially continuous monitoring of the living wall,
which cannot be easily achieved with simple sensors. This is where precision agriculture
tools that include proximal and remote sensing may be combined with IoT and cloud-based
systems to provide such crucial information.

In this short paper, we described a first-of-its-kind remote sensing high-throughput
indoor VGW system that may serve as a pilot for the automatic (or semi-automatic) moni-
toring of indoor/outdoor vertical greenery systems. There is still a need for model devel-
opment to take the unprocessed remote sensing data and produce meaningful information
that will aid in managing VGWs (e.g., [26,27,62]). However, combining spectral indices,
such as those presented in this study, with gas exchange and other biophysical parameters
may help produce a spatially continuous picture of the status of the living wall. Thermal
information may also assist in detecting early stresses [22,31] or quantifying the plant’s
water use [29]. Such models can produce spatially continuous, real-time status maps of
the VGW.
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The next step is to use this information to learn about the functioning of VGWs
and their feedback and impact on the surrounding environment. Such a step is essential
to improve indoor and outdoor conditions more efficiently. Artificial intelligence (AI)
may play a critical role in this task. AI algorithms are already being used to accurately
acquire information about indoor environmental quality from low-cost sensors [63]. In
this context, AI can be combined with remote sensing to detect plant disease, which may
assist in managing VGWs [64]. Hyperspectral data can be leveraged to alert on disease
development across the living wall even before it is detected by our bare eyes or the use of
RGB images.

Anomaly detection using AI was also shown to support the predictive maintenance of
VGWs’ indoor environment [65]. The core task to achieve VGWs’ predictive maintenance
is to recognize anomalous changes as early as possible across the wall (from time series of
remote sensing images) and in the indoor environment (from low-cost sensors spread across
the room). A decision support system can then be used to control and manipulate the VGW
conditions through, for example, changing the light conditions, irrigation scheme, and room
ventilation rate. This idea of combining low-cost sensors, remote sensing imaging, and AI
in a decision support system is already being implemented in conventional agriculture
(e.g., [66–68]). However, this might require special adjustments to indoor VGW systems,
which must be guided through further research. In the meantime, more VGW monitoring
systems such as the one described in this paper may open new opportunities to develop
smart techniques for managing VGWs and study these systems under different conditions
and with various plant species and monitoring solutions.
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