remote sensing

Article

A Novel App

roach for Automatic Urban Surface Water

Mapping with Land Surface Temperature (AUSWM)

Yaoping Cui 12

check for
updates

Citation: Cui, Y,; Fu, Y.; Li, N.; Liu, X,;
Shi, Z.; Dong, J.; Zhou, Y. A Novel
Approach for Automatic Urban
Surface Water Mapping with Land
Surface Temperature (AUSWM).
Remote Sens. 2022, 14, 3060.
https://doi.org/10.3390/rs14133060

Academic Editors: Guangdong Li,
Sanwei He and Zhiqi Yang

Received: 3 June 2022
Accepted: 22 June 2022
Published: 25 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Yiming Fu 234, Nan Li 12, Xiaoyan Liu "2, Zhifang Shi 12, Jinwei Dong 5

and Yan Zhou 1-%*

Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River

Regions (Henan University), Ministry of Education, Kaifeng 475004, China; cuiyp@Ireis.ac.cn (Y.C.);
linan0716@henu.edu.cn (N.L.); Ixy@henu.edu.cn (X.L.); shizhifang@henu.edu.cn (Z.S.)

College of Geography and Environmental Science, Henan University, Kaifeng 475004, China;
fym0521@vip.henu.edu.cn

The First Geological Exploration Institute of Henan Bureau of Geo-Exploration and Mineral Development,
Zhengzhou 450000, China

Henan Science and Technology Innovation Center for Natural Resources (Dynamic Monitoring and Early
Warning Technology of Geological Environment), Zhengzhou 450000, China

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China; dongjw@igsnrr.ac.cn

*  Correspondence: yanzhou@henu.edu.cn

Abstract: The principal difficulty in extracting urban surface water using remote-sensing techniques is
the influence of noise from complex urban environments. Although various methods exist, there are still
many sources of noise interference when extracting urban surface water, and automatic cartographic
methods with long time series are especially scarce. Here, we construct an automatic urban surface water
extraction method from the combination of traditional water index, urban shadow index (USI), and land
surface temperature (LST) by using the Google Earth Engine cloud computing platform and Landsat
imagery. The three principal findings derived from the application of the method were as follows. (i) In
comparison with autumn and winter, LST in spring and summer could better distinguish water from
high-reflection ground objects, shadows, and roads and roofs covered by asphalt. (ii) The overall accuracy
of Automated Water Extraction Index (AWEIsh) in Zhengzhou was 77.5% and the Kappa coefficient
was 0.55; with consideration of the USI and LST, the overall accuracy increased to 96.0% and the Kappa
coefficient increased to 0.92. (iii) During 1990-2020, the area of urban surface water in Zhengzhou
increased, with an evident trend in expansion from 11.51 km? in 2008 to 49.28 km? in 2020. Additionally,
possible omissions attributable to using 30m-resolution imagery to extract urban water areas were also
discussed. The method proposed in this study was proven effective in eliminating the influence of noise
in urban areas, and it could be used as a general method for high-accuracy long-term mapping of urban
surface water.

Keywords: urban water mapping; remote-sensing techniques; water indices; Google Earth En-
gine; Landsat

1. Introduction

Urban surface water bodies are important to human activities and social development.
Mapping and monitoring of surface water bodies are also essential to the urban ecosystem
and environmental management [1]. Therefore, it is of great significance to optimize and
improve the methods for urban surface water mapping to facilitate the monitoring of the
dynamics of urban surface water bodies [2]. Especially for cities in which the process
of urbanization is accelerating, it is increasingly important to develop an appropriate
approach for surface water mapping with high accuracy in urban areas.

Based on remote-sensing big data and associated analysis methods, global surface wa-
ter system maps and techniques for remote-sensing mapping of urban surface water have
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been developed [3,4]. Although radar and optical remote-sensing data have been widely
used for mapping surface water bodies [5-9], it is necessary to use different analysis meth-
ods to extract water information from different data sources [10]. Owing to the abundance
of optical remote-sensing data sources, many algorithms have been proposed for surface
water mapping based on various kinds of multispectral images [11-13], including decision
tree [14-17], support vector machine [18-21], random forest [22,23], deep learning [24,25],
and other methods [26].

Water indexes derived from the calculations between different bands of remote sens-
ing data are the most commonly used methods for surface water mapping [27]. Many
such indexes are used to enhance the differences between surface water and background
features. Early studies mainly used single-band threshold methods for water extraction,
which have strong operability but cannot produce ideal results because of limitations
associated with complex urban ground coverage [28]. In comparison with the single-band
threshold approach, the multiband spectrum relationship method represents considerable
improvement and consequently, and it has been used widely [29-31]. The water indices-
and thresholds-based water-body-mapping algorithms have experienced a process of evolu-
tion. Here, we mainly introduced several widely used water indices- and thresholds-based
algorithms for open surface water mapping by referring to previous studies. The Tasseled
Cap Wetness (TCW) index is derived from the tasseled cap transformation based on six
bands and separates water bodies and non-water objects by setting a threshold of 0 [32].
The Normalized Difference Water Index (NDWI) uses the normalization of the bands of
green and near-infrared (NIR) to distinguish water (> 0) and non-water (< 0) objects by
using the threshold of 0 [33]. The Modified Normalized Difference Water Index (MNDWI),
which is based on the NDWI, replaces the band of NIR in NDWI with the band of shortwave
infrared (SWIR) to eliminate the influence of surface shadows [34,35]. Additionally, through
normalization of the bands of NIR and SWIR, Xiao et al. [36,37] proposed the Land Surface
Water Index (LSWI) which performs reasonably well in measuring the water content of soil
and vegetation. Menarguez [38] proposed a new algorithm by using the combination of
each of the three water indices (NDWI, MNWI, and LSWI) with the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The detailed information
about these water indices was shown in Table 1.

Table 1. Indexes commonly used for open surface water body mapping.

Water Indexes Algorithms References
TCW 0.1509 x Blue + 0.1973 x Green + 0.3279 x Red + [32]
0.3406 x NIR—0.7112 x SWIR1—0.4572 x SWIR2
Green—NIR
o S (N o
NIR+SWIRI
NDWI_VIs EVI <0.1 and NDWI > NDVI or MNDWI > EVI
MNDWI_VIs EVI < 0.1 and MNDWI > NDVI or MNDWI > EVI [38]
LSWI_VIs EVI <0.1 and LSWI > NDVI or MNDWI > EVI
AWEInsh 4 x (Green—SWIR1)—(0.25 x NIR +2.75 x SWIR1) [39]
AWEIsh Blue + 2.5 x Green—1.5 x (NIR + SWIR1)—0.25 x
SWIR2

Note: Blue, Green, NIR, SWIR1, and SWIR2 correspond to the bands of blue, green, near-infrared, shortwave
infrared 1, and shortwave infrared 2, respectively.

Many indexes are unable to effectively eliminate the influences associated with soil
and the shadows of urban buildings. Moreover, previous studies about surface water
mapping only considered the noises from shadows; the noises from urban high-reflection
ground objects and the asphalt-covered ground are rarely considered. In 2014, Feyisa
et al. [39] proposed the Automated Water Extraction Index (AWEI) using the bands green,
blue, NIR, and SWIR. In addition, the index was divided into two formats of AWEInsh
and AWEIsh according to whether there were terrain shadows around the surface water
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bodies. AWEIsh, which is mainly used for mapping surface water in the regions where
shadows have substantial impacts, can also reduce the impacts of snow, ice, and mountain
shadows to ensure continuity in river extraction. Therefore, it is also suitable for urban areas
where shadows from ground objects represent the main sources of noise. However, noise
associated with highly reflective ground objects or dark surfaces in cities is not considered,
which could lead to the identification of pseudo-water bodies in urban areas. The existing
water body indexes require the optimal threshold to be set manually or automatically
according to each specific situation, and how best to set the optimal threshold remains a
challenge for current research [31]. Additionally, given that water bodies often have a high
specific heat capacity and low temperature, it is theoretically possible that land surface
temperature (LST) could be applied to effectively distinguish surface water bodies from
other objects in urban areas [40]; however, the studies about mapping urban surface water
using LST are still very limited.

This study aimed to develop a novel approach for automatic urban surface water
mapping and demonstrate its potential in investigating the spatial and temporal changes
in urban surface water bodies in big cities. To achieve this objective, we selected the urban
region of Zhengzhou City (the provincial capital of Henan in China) as the study area to
investigate the performance of the new method. Firstly, we combined the AWEIsh and
the Urban Shadow Index (USI) to suppress shadow noise and adopted the Otsu algorithm
to automatically set the threshold of the water index; secondly, we introduced LST data
to eliminate other residual noise information by assuming that the temperature of urban
surface water is lower than the LST of other urban objects; finally, we investigated the
spatial and temporal changes in surface water areas in the urban regions of Zhengzhou City
from 1990 to 2020. This study proved that the newly proposed method was also applicable
to other cities and had great potential for continuous monitoring of urban surface water
bodies over a large region.

2. Materials and Methods
2.1. Study Area

Zhengzhou is the capital of Henan Province in China. The urban area comprises a
vast number of buildings and industrial plants of various heights, and many reservoirs,
rivers, and lakes. Therefore, it can be considered a suitably typical area for conducting the
optimization and improvement in the algorithms for urban surface water mapping.

The Global Urban Boundaries vector data compiled by Li et al. [41] were used to define
the physical boundary of the urban area (http:/ /data.ess.tsinghua.edu.cn, accessed on 1 Au-
gust 2021). First, we selected the main urban area of Zhengzhou. Then, we constructed a
500 m buffer zone on the main urban boundary to smooth the more jagged urban bound-
aries, filled in holes, and removed surrounding non-adjacent urban areas (Figure 1).

2.2. Data
2.2.1. Landsat Images

We selected images of Landsat 5 TM, 7 ETM+, and 8 OLI and used the data quality
band from CFmask which is a cloud-masking algorithm to identify and remove bad-quality
observations of clouds, cloud shadows, and snow [42]. Owing to certain differences in
the spectral characteristics among the sensors of Landsat 5 TM, 7 ETM+, and 8 OLI [43], a
linear transformation of the spectral space was applied to achieve suitable coordination
in the process of synthesizing images to generate long time-series cross-sensor Landsat
images. In fact, the data from the different sensors were forcibly converted and the bands
were normalized.

In this study, all the available Landsat 5 TM /7 ETM+/8 OLI data including thermal
infrared sensor data, top-of-atmosphere reflectance data, and surface reflectance data in the
study area during April-October from 1990 to 2020 were obtained from the database of
the Google Earth Engine cloud computing platform. All the steps of masking bad-quality
Landsat observations were also carried out and completed on the Google Earth Engine
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platform. Our previous studies [44,45] have recorded the detailed steps for detecting and
removing the Landsat pixels with bad-quality observations of clouds, cloud shadows,
and snow.
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Figure 1. Geographic location of the study area. The remote-sensing imagery in the graphic was from
the data composite of Landsat 8 OLI in Zhengzhou City during June-August in 2020.

2.2.2. Data on the Total Column of Water Vapor

In the process of LST inversion, information regarding the atmospheric water vapor
content was needed to better explain the atmospheric composition observed by the thermal
infrared sensor. The total column of water vapor (TCWV) data was obtained from the Na-
tional Centers for Environmental Prediction (NCEP) and National Center for Atmospheric
Research (NCAR). Currently, TCWYV time-series data from 1948 to the present, provided by
NCEP/NCAR, are the only such data available in Google Earth Engine.

2.3. Methods
2.3.1. Water Indices- and Thresholds-Based Water-Mapping Algorithm

The TCW index proposed by Crist [32,46] used all the six bands together with coeffi-
cients empirically determined by analyzing both simulated and actual data. Considering
that water absorbs almost all incident radiant flux while the land surface reflects significant
amounts of energy in near- and shortwave-infrared bands, water bodies have much higher
reflectance in band green than land surface. Based on this theory, McFeeters [33] put
forward the NDWI using the value of the green band minus the near-infrared (NIR) band
and divided by the sum of the two bands, and water bodies have positive values while the
non-water body features have negative values. However, water bodies are often mixed
with built-up land noises in NDWI-image due to similar reflectance characteristics in the
green and NIR bands between water and built-up land. Xu [35] proposed the mNDWI
by replacing band NIR with SWIR-1 based on the above theory, achieving a satisfactory
result in suppressing built-up land noise. Xiao et al. [36] developed LSWI by considering
two bands of NIR and SWIR to estimate the water content of the land surface. AWEI
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was developed by Feyisa et al. [39] to extract surface water with improved accuracy, the
coefficients used and the combinations of chosen bands were determined based on the
critical examination of the reflectance properties of various land cover types.

2.3.2. Estimation of LST

By referring to the study of Ermida et al. [47], the statistical mono-window algorithm
was used in the LST inversion. The algorithm was proposed based on the empirical rela-
tionships between a single brightness temperature band in the Landsat top-of-atmosphere
reflectance data and the LST, obtained by linear regression. In comparison with other LST
inversion algorithms (e.g., image-based algorithms), the advantage of the statistical mono-
window algorithm is that it does not require atmospheric correction processing of remote
sensing images. In certain cases when real-time atmospheric data cannot be obtained,
surface reflectance can be used for the inversion. First, the TCWV estimation provided by
NCEP and NCAR was reanalyzed to match the band of the Landsat top-of-atmosphere
reflectance data. Fractional vegetation coverage, which represents key process data for the
LST inversion, was calculated using the Normalized Difference Vegetation Index (NDVI)
obtained from the bands of NIR and red in Landsat images. Then, the fractional vegetation
coverage and the surface reflectance of ASTER data were calculated together to obtain
a corresponding more accurate surface reflectance. Finally, the statistical mono-window
algorithm was applied to obtain the LST based on Equation (1):

LST = A; x T?b-i-Bi X %-ﬁ-ci 1)

where Tb refers to the brightness temperature in the band of thermal infrared, e represents
the surface reflectance in the same band, and coefficients A;, B;, and C; can be calculated
from the linear regressions of radiative transfer simulations for 10 types of TCWYV, ranging
from 0-6 cm with a 0.6 cm step. It should be noted that the LST calculated in this study
does not represent the actual temperature at a certain time, just an indicator that was used
to distinguish water and non-water.

2.3.3. Water Indices Used in this Study

The water index method has always had better performance in large-scale water body
mapping. In this study, the AWEIsh was selected for extracting urban surface water bodies.
The “sh” of AWEIsh means that the index aims to eliminate shadows and improve the
accuracy of water mapping in the regions with terrain shadows and other dark surfaces.

Building shadows are the major factors affecting the performance of surface water
mapping in urban areas. Such shadows mainly comprise self-shadows and projected
shadows. To address the influences of building shadows on water mapping in urban
areas, the USI in the Two-Step Urban Water Index (TSUWI) proposed by Wu et al. [27] was
selected to further improve urban water extraction (Equation (2)).

Green NIR Blue
Red —0.57x Green —0.83 x Green

USI = 0.25 x +1.0 ()
where Blue, Green, Red, and NIR represent the reflectance values of Bands blue, green, red,
and NIR, respectively.

2.3.4. Automatic Urban Surface Water Mapping (AUSWM) Method with LST

The AWEIsh was used for preliminary extraction of urban water bodies, and the USI
was used to further reduce the shadow noise. An intersection calculation of the two results
was performed, i.e., the result of AWEIsh N USI was obtained. Then, a threshold that
is suitable for long-term analysis over a large region was determined automatically [48].
Although different thresholds could be selected according to various temporal and spatial
images, manual adjustment of thresholds consumes a lot of time. Moreover, especially
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for dispersed urban areas, it is unwise to perform a step-by-step adjustment of the thresh-
old value.

To remove the low- or high-reflection surface noise remaining in the AWEIsh N USI
result, this study used the LST for optimization. The thermal infrared band of Landsat with
a cloud cover less than 15% (Band-6 of Landsat 5/7, Band-10 of Landsat 8) was selected to
participate in the LST inversion. The obtained result was then used as a mask for the water
body data derived from the AWEIsh N USI results, from which the optimized urban water
body was obtained. In recognition of terrain elements such as mountains and hills in some
urban areas, to reduce the possible influence of mountain shadows in the water extraction
process, pixels in which the slope was greater than 10° were eliminated. A flowchart of the
process developed for urban surface water body extraction was shown in Figure 2.

s slobal Urban Urban Area
slobal Emissivity Datase . Boundaries

‘ NCEP\NCAR \ . | . . I
. Landsat-5\7\8 TOA & SR datzs
Total Column of Water Vapour J andsa I data

.
]
"
.
.
.
.
.
.
.
.
.

Invalid pixel masking
' ' Cloud filtering

[ NDVI ] I FVC ]

[ AWEIsh ] [ USI ]

Statistical Canny edge
——® Mono-Window based
Algorithm Otsu Algorithm
Urban Land Mask Preliminary
. EEE—
Surface Temperature water body map

Final water map

Figure 2. Flowchart for extracting urban surface water using the automatic urban surface water
mapping (AUSWM) method based on Google Earth Engine.

2.3.5. Accuracy Assessment

The following four indicators were used to evaluate the accuracy of the algorithm
of AUSWM in urban water body mapping, namely: overall accuracy, Kappa coefficient,
producer’s accuracy, and user’s accuracy [26,49]. To verify the differences in the LST of
low- or high-reflection objects and water bodies, 720 random sample points were selected,
and each category had 240 sample points.

The overall accuracy refers to the percentage of the number of pixels correctly classified
as the number of total pixels (Equation (3)). The number of correctly classified pixels in
remote sensing classification is arranged along the diagonal of a confusion matrix:

Overall accuracy = % ®3)

where Sy, represents the number of pixels correctly classified, and 7 represents the total
number of sample points in accuracy assessment.
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The producer’s accuracy is also known as “cartographic accuracy.” It represents the
percentage between the number of pixels (diagonal values) in the entire image that the
classifier correctly classifies into class A and the total number of true references of class
A (i.e., the sum of class A columns in the confusion matrix) (Equation (4)). The user’s
accuracy represents the degree of matching between the remote-sensing classification and
the actual test data (Equation (5)).

TP
Producer’s accuracy = TP EN x100% (4)

TP
! =———%x100%
User's accuracy TP + EP x100% (5)

where TP is the number of samples correctly classified into water points, FP represents
the sample number of water points that were misclassified as non-water points, and FN
represents the sample number of non-water points that were misclassified as water points.

The Kappa coefficient is calculated from a confusion matrix, and its value ranges from
—1 to 1 (Equation (6)). Generally, the value of Kc is greater than 0.

X Y01 Sii — X1 (Sy+S:)
n? = Liq(Sy+Sz)

n
Kappa coefficient =

(6)

where 7 is the total number of pixels, S;; means the diagonal value of the i-th confusion
matrix, r is the number of rows of the confusion matrix, and S, and S represent the sum of
the observed values of the i-th row and column, respectively.

3. Results
3.1. Accuracy Assessment
3.1.1. Optimal Time for Calculating LST

Urban LST varies seasonally; therefore, an appropriate season is essential to be selected
to eliminate non-water information. Here, the best-quality remote-sensing images were
selected for each season: spring (March-May), summer (June-August), autumn (September—
November), and winter (December—February) to distinguish urban surface water bodies
and other objects in the urban area of Zhengzhou City (Figure 3).

The average LST of water bodies and low- and high-reflection objects, together with
the differences between them, are listed in Table 2. The largest LST difference between
water bodies and high-reflection surfaces was in summer, followed by spring, autumn,
and winter. The largest LST difference between water bodies and low-reflection objects
(e.g., building shadows, black roads, and roofs) also appeared in summer, followed by
spring, autumn, and winter. It indicates that LST data obtained in summer are most
suitable for noise elimination, followed by those in spring; it is not appropriate to use
remote-sensing image inversion of LST data for autumn and winter.
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Figure 3. Land surface temperature (LST) inversion in different seasons: (a) spring, (b) summer,
(c) autumn, and (d) winter, and (e) temperature differences of sample points of three urban coverage
types: water bodies and low- and high-reflection objects. The abbreviations of WB, HR, and LR in the
figure represent water bodies, high-reflectance, and low-reflectance ground objects, respectively.

Table 2. Average LST of different objects in all four seasons.

High- . Low- .
Season Water (A) Reflection Dl(f]f;lz;me Reflection Dl(féerzr)lce
Objects (B) ; Objects (C) a
Spring 28.44 39.92 11.48 32.14 3.7
Summer 30.42 46.04 15.62 34.97 6.53
Autumn 17.79 27.88 10.09 18.11 0.32
Winter 3.73 9.82 6.09 2.38 1.35
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3.1.2. Accuracy Assessment of Urban Surface Water Body Mapping

Landsat synthetic images of Zhengzhou from April 2020 to September 2020 were used
to generate the water body maps by using three kinds of algorithms, namely: AWEIsh,
AWEIsh N USI, and AUSWM. The random-sampling method and Sentinel-2A false-color
synthetic images were used to validate the accuracies of the resultant water body maps. For
each kind of water body map, a total of 750 sample points (350 ones for water and 400 ones
for non-water) were randomly selected and interpreted to calculate the confusion matrix
for accuracy assessment (Figure 4).
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Figure 4. Spatial distributions of the randomly selected samples for accuracy verification of the
annual maps of urban surface water bodies in Zhengzhou from 1990 to 2020.

Water noise in the urban area of Zhengzhou City was attributable mainly to industrial
plant areas and the eastern and western suburbs (Figure 5). There were many noises in the
water body information extracted using the two algorithms of AWEIsh and AWEIsh N USI,
especially in the vicinity of Ruyi Lake and Beilong Lake (Figure 5b,c) and where the surface
environment was very complex (e.g., the dense landscape of lakes, rivers, green spaces,
low-reflection roads, and high-reflection industrial areas). However, after superimposing
the LST data, the noise was eliminated effectively (Figure 5d).

Overall, the LST showed satisfactory performance in removing low- or high-reflection
objects with LST higher or lower than that of urban water bodies. The OA of the resultant
maps of surface water bodies from the algorithm of AWEIsh increased from 77.47% to
84.8% when using the AWEIsh N USI method; however, the AUSWM with the combination
of the AWEIsh N USI method and LST achieved the higher accuracy of 96.0%. Meanwhile,
the Kappa coefficient correspondingly increased from 0.55 for the AWEIsh method, to 0.70
for the AWEIsh N USI method, and finally to 0.92 for the AUSWM (Table 3).
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Figure 5. Optimization effect on urban water body extraction: (a) Sentinel-2A false-color synthetic
image of the study area in 2020, (b) AWEIsh with automatic threshold extraction, (¢) AWEIsh N USI
extraction results, and (d) AUSWM extraction results.

Table 3. Urban surface water areas and accuracies derived from multi-source and multi-resolution
remote sensing images.

Experimental Region (A) Experimental Region (B)
Water Area Accurac Water Area Accurac
(km?) y (km?) y
True 8.11 221
10m 8.04 99.14% 2.18 98.64%
30 m 7.67 94.57% 2.06 93.21%
50 m 6.81 83.97% 1.77 80.09%
100 m 5.02 61.90% 121 54.75%
250 m 2.55 31.44% 0.69 31.22%

3.2. Performance Comparison of Various Water-Body-Mapping Methods

For further comparison of the performances of different methods, five commonly used
water indexes were considered and adopted, namely: LSWI, NDWI, MNDWI, AWEIsh,
and USI. Two typical regions (orange rectangles in Figures 6 and 7) in the urban area of
Zhengzhou City were selected to conduct the comparison of the performances of water
body mapping of different methods. As can be seen, the resultant water body maps from
different water indexes and thresholds varied greatly (Figures 6 and 7). There were a
significant number of noises in the water body maps from LSWI with a threshold of lower
than 0.2. Although the shadows of ground objects substantially decreased in the water body
maps from NDWI with the threshold of higher than 0.15, some rivers still have not been
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detected. In terms of the results of MNDWI, more noises were still contained in the water
body maps at that threshold interval. In the AWEIsh results, noises were largely eliminated
at the threshold of 0.15, but some water bodies were missed. The performance of the USI
method was relatively stable, and the resultant water body map was most reliable when
the threshold was set to 0.15. The water bodies obtained using the AUSWM method are
shown in Figure 6¢. By combining the results of the AWEIsh, USI, and LST, the AUSWM
approach significantly improved the accuracy.

LSWI

a

NDWI  MNDWI

>0.2

Figure 6. Experimental area A for comparison of water body extraction methods: (a) extraction results
using different water body indexes with different thresholds, (b) real water profile, and (c) results
obtained using the automatic urban surface water mapping (AUSWM) method.
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Figure 7. Experimental area B for comparison of water body extraction methods: (a) extraction results
using different water body indexes with different thresholds, (b) real water profile, and (c) results
obtained using the automatic urban surface water mapping (AUSWM) method.

3.3. Temporal Changes in Urban Surface Water Bodies in Zhengzhou

High-quality satellite imagery is important for water extraction. Remote-sensing
images of Zhengzhou have at least 10 effective observation pixels each year, which ensures
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the quality of water body change monitoring at the interannual scale. In this study, a total
of 730 Landsat images (Landsat 5, 7, and 8) were used for urban surface water extraction in
Zhengzhou City (Figure 8).
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Figure 8. Cumulative percentage of Landsat pixels with the good-quality observations of [0,5), [5,10),
[10,20), [20,30), [30,40), and [40,50), respectively, in Zhengzhou City during 1990-2020.

The trend in surface water area was different in the urban area of Zhengzhou City
during different periods. Specifically, the changes in surface water area were not obvious
during 1990—2017 and the trend was not statistically significant. Then, surface water area
continuously and significantly (R? = 0.93, p < 0.01) increased from 11.5 km? in 2008 to
48.7 km? in 2020 at a rate of 3.0 km?/yr (Figure 9). Spatially, regular water bodies appeared
in northern regions of the city during 1990-1995, but they began to decrease substantially
after 1995. After 2005, the Dongfeng Canal and Ruyi Lake gradually formed and the water
area in Zhengzhou began to increase obviously. Since 2008, water bodies such as Beilong
Lake, Longzi Lake, the main canal of the South-to-North Water Diversion Project, Wei River,
and Jialu River have gradually appeared on the water map. Consequently, in 2020, the
water area in Zhengzhou was nearly 4 times that in 1990 (Figure 10).
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Figure 9. Change in total surface water area in Zhengzhou during 1990-2020.
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Figure 10. Spatial patterns of changes in surface water bodies in Zhengzhou City from 1990 to
2020 (a: Dongfeng River and Ruyi Lake, b: Beilong Lake, c: Longzi Lake, d: South-to-North Water
Diversion Project transfer canal, and e: Jialu River).

4. Discussion
4.1. Comparison with Previous Studies

On a global scale, Pekel et al. [21] and Ji et al. [4] generated the long-term surface
water body maps using all the available Landsat and MODIS data, respectively. Other
studies [44,45] performed water body mapping and change analyses on regional (e.g., North
China Plain) and national scales (e.g., the United States, China, and Mongolia). However, in
comparison with the natural environment, the urban environment is particularly complex,
and urban surface water is especially affected by elements of the artificial environment,
such as low- and high-reflection objects that cause noise [39]. Therefore, some conventional
remote-sensing extraction methods are unsuitable for mapping urban surface water bodies.
Some earlier studies tried to construct new methods for the extraction of urban surface
water [27,39]. Although these methods are effective in removing the shadow of urban
buildings, they do not consider the interference from high-reflection ground objects and
dark asphalt surfaces in the urban environment, and the accuracy of water extraction is
largely dependent on the selection of appropriate thresholds [31]. Corresponding to the
two experimental areas shown in Figures 6 and 7, it can be seen that although the threshold
methods with the five water indexes have certain merits, it is not easy to determine suitable
thresholds (Figure 11).

The AUSWM method proposed in this study effectively resolves the problem of noise
interference in urban water body extraction. The new method was supported by spectral
theory and LST differences between urban surface water bodies and other urban surfaces.
In terms of spectra, the bright and dark values of water bodies and other surfaces can show
clear differences in multiple bands [50]. However, the differences between water bodies and
other objects are not obvious in thermal infrared bands, indicating that the digital number
values of thermal infrared bands cannot effectively distinguish low- and high-reflection
objects from water bodies (Figure 12). Considering the obvious LST differences between
water bodies and other surfaces [1], especially in summer (Figure 3), the LST is very suitable
for inclusion in the construction of an urban surface water extraction method.
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Figure 11. Water areas from five water indexes with various thresholds: (a) experimental area
A and (b) experimental area B. The abbreviations of LSWI, NDWI, MNDWI, AWEIsh, and USI
in the figure represent Land Surface Water Index, Normalized Difference Water Index, Modified
Normalized Difference Water Index, Automated Water Extraction Index for shadow, and Urban
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Figure 12. Value distribution of sample points of high-reflection ground objects, shadows of buildings,
and water bodies in Landsat-8 surface reflectance data.
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4.2. Scale Effect of Remote-Sensing Images with Different Spatial Resolution

In the same region and at the same time, different spatial resolutions will lead to
inconsistencies in the inversion of surface parameters using remote-sensing data [51]. In
this study, 30 m-resolution remote-sensing images were used as the data source for urban
surface water body mapping. In this process, the water body area will inevitably be affected
by the scale effect. For experimental areas A and B (red rectangles in Figures 13a and 14a),
three remote sensing images from Sentinel-2A (10 m spatial resolution), Landsat-8 (30 m
spatial resolution), and MODIS (250 m spatial resolution) acquired at similar times were
used as data sources for water extraction. The Sentinel-2A images were resampled to
resolutions of 50 and 100 m. Then, the water area extracted from the above remote-sensing
images with five different resolutions was calculated to assess the area loss caused by
the scale effect (Table 3). The results showed that the water area calculated using the
Sentinel-2A 10 m spatial resolution image had the highest accuracy, with a relative loss of
water area of lower than 2%. The accuracy achieved using the Landsat-8 30m-resolution
image was higher than 93%, while the average accuracy achieved using the Sentinel-2A
50m-resolution image was lower than 83%, although the resolution differences all are
20 m. Therefore, a resolution of 30 m could represent a critical point for urban surface
water extraction, and the area extracted using images with coarser resolution will decrease
sharply. Of course, the proportion of small urban water bodies will be different in different
cities and regions [52,53].
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Figure 13. Scale effect in experimental area A: (a) white lines in remote-sensing image indicate real
surface water boundaries, (b) water area extracted using Sentinel-2A 10m-resolution data, (c) water
area extracted using Landsat-8 30m-resolution data, (d) water area resampled to 50 m from Sentinel-
2A 10m-resolution data, (e) water area resampled to 100 m from Sentinel-2A 10m-resolution data,
and (f) water area extracted using MODIS 250-resolution data.
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Figure 14. Scale effect in experimental area B: (a) white lines in remote sensing image indicate real
surface water boundaries, (b) water area extracted using Sentinel-2A 10m-resolution data, (c) water
area extracted using Landsat-8 30m-resolution data, (d) water area resampled to 50 m from Sentinel-
2A 10m-resolution data, (e) water area resampled to 100 m from Sentinel-2A 10m-resolution data,
and (f) water area extracted using MODIS 250 m resolution data.

4.3. Uncertainties and Limitations in This Study

Although the currently proposed method of urban surface water body mapping
achieved the satisfied accuracies higher than 96.0% and could contribute to the progress
of research related to the monitoring of the dynamics of urban surface water resources,
it is notable that some uncertainties and limitations remain in the approach in this study.
Firstly, considering the smaller sizes of surface water bodies in the urban areas, water body
mapping using Landsat data with the spatial resolution of 30 m could miss some water
bodies with sizes smaller than 30 m x 30 m [44,45]. Therefore, it is inevitable that there are
some errors between the annual areas of urban surface water bodies and the true values
by using time series Landsat data. Secondly, some pixels of urban shadows may remain
in the resultant maps of surface water bodies after shadow filtering, which might bring
some uncertainties to the accuracies of urban surface water body mapping results. Finally,
there are some differences between LST inversion and the true temperature; we have to
recognize that the uncertainties brought by the accuracies of LST inversion might have led
to some errors in the resultant water body maps. In addition, we have to acknowledge
that the current approach can only detect surface water bodies; the wide application of the
approach in mapping and monitoring the variations in urban wetlands should be improved
by thoroughly considering the seasonality of the mixes of water and vegetation [44].

5. Conclusions

Mapping and monitoring the dynamics of surface water bodies are critical to the
urban ecosystem and environmental management. However, the influence of noise from
complex urban environments is the principal difficulty in mapping urban surface water
bodies using remote-sensing techniques. In this study, we put forward the automatic urban
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surface water mapping (AUSWM) approach by introducing LST using all the available
Landsat data and the Google Earth Engine cloud computing platform. The accuracy of
the resultant maps of urban surface water bodies in Zhengzhou City by using this method
reached 96.0%. Subsequent multi-annual dynamic analyses showed that the total water
area in Zhengzhou City changed slowly during 1990-2007 but increased substantially since
2008. However, considering the limitation of the 30 m spatial resolution of the source
imagery, the results might neglect or underestimate the area of small urban water bodies.
This study suggested that the AUSWM method can effectively eliminate the influence of
noise from low- and high-reflection objects in urban surface water body mapping and can
be applied to the rapid, accurate, and long-term monitoring of urban surface water bodies
over a large region.
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