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Abstract: Most traditional methods have difficulty detecting landslide boundary accurately, and
the existing methods based on deep learning often lead to insufficient training or overfitting due to
insufficient samples. An end-to-end, semi-supervised adversarial network, which fully considers
spectral and topographic features derived using unmanned aerial vehicle (UAV) photogrammetry, is
proposed to extract landslides by semantic segmentation to address the abovementioned problem. In
the generative network, a generator similar to pix2pix is introduced into the proposed adversarial
nets to learn semantic features from UAV-photogrammetry-derived data by semi-supervised oper-
ation and a confrontational strategy to reduce the requirement of the number of labeled samples.
In the discriminative network, DeepLabv3+ is improved by inserting multilevel skip connection
architecture with upsampling operation to obtain the contextual information and retain the boundary
information of landslides at all levels, and a topographic convolutional neural network is proposed
to be inserted into the encoder to concatenate topographic features together with spectral features.
Then, transfer learning with the pre-trained parameters and weights, shared with pix2pix and
DeepLabv3+, is used to perform landslide extraction training and validation. In our experiments,
the UAV-photogrammetry-derived data of a typical landslide located at Meilong gully in China are
collected to test the proposed method. The experimental results show that our method can accurately
detect the area of a landslide and achieve satisfactiory results based on several indicators including
the Precision, Recall, F1 score, and mIoU, which are 13.07%, 15.65%, 16.96%, and 18.23% higher than
those of the DeepLabV3+. Compared with state-of-the-art methods such as U-Net, PSPNet, and
pix2pix, the proposed adversarial nets considering multidimensional information such as topographic
factors can perform better and significantly improve the accuracy of landslide extraction.

Keywords: landslide extraction; adversarial nets; unmanned aerial vehicle photogrammetry; seman-
tic segmentation; topographic factor

1. Introduction

Landslides are typical geological disasters which may cause serious damage to peo-
ple’s lives, property, and the natural environment [1,2]. Landslides also usually cause
secondary disasters, in which a large of amount of sand and gravel deposits may be pro-
duced and can further damage houses, destroy farmland, and block rivers. Landslides
cause a large number of casualties and property losses every year globally. According to the
statistics made by Froude et al. [3], nearly 60,000 people were killed in 4862 landslides all
over the world from 2004 to 2016. Therefore, many studies have been conducted regarding
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the mechanism and potential occurrence area of landslides to reduce the harm caused by
landslides and their secondary disasters.

At present, various methods based on field investigation and remote sensing technolo-
gies are widely used in landslide extraction, potential landslide prediction, and disaster
management. Field investigation is a traditional and simple means of finding potential
landslides, collecting landslide information, and evaluating risk levels. However, it re-
quires surveyors to work close to the adjacent areas of a landslide, which may lead to risks
associated with exposing surveyors to danger during a field investigation. By contrast,
remote sensing technologies, such as high-resolution optical remote sensing, synthetic
aperture radar interferometry, and laser scanning, have already been broadly applied for
landslide identification [4,5], deformation monitoring [6,7], and disaster early warning and
prevention [8,9] because of their advantages in long-distance detection. In particular, very
high resolution (VHR) satellite or aerial remote sensing imagery has been widely used to
perform geological disaster interpretations such as landslide extraction.

Currently, landslide detection mainly depends on manual visual interpretation; it has
high identification accuracy, but the interpreters must have professional knowledge and
experience related to landslides. To accurately and automatically detect landslides from
remote sensing images with complex backgrounds, many studies have been conducted
and can be mainly classified into (1) object-based image analysis (OBIA) methods [10],
(2) change detection methods [11], and (3) deep-learning-based methods [12].

Landslide detection via OBIA methods is achieved in terms of the characteristics of
image color, texture, and spectrum, and some methods have been proposed to satisfy the
requirement of landslide detection under different geological environments or from remote
sensing data sources. Borghuis et al. [13] used SPOT-5 multispectral images to conduct su-
pervised and unsupervised classification for the detection of landslides caused by typhoons,
and the results show that unsupervised classification can identify 63% of landslide areas
and even more small-area landslides than visual interpretation. Han et al. [14] used the
segmentation scale of 25 pixels and 14 parameters of OBIA to extract landslides. However,
the difficulty in OBIA lies in setting parameters and classification rules in the process of
multiscale segmentation, which requires expert experience to adjust and optimize parame-
ters iteratively. Specifically, it has difficulty obtaining optimal landslide detection results
and is unsuitable for some special applications such as emergency monitoring. From the
perspective of classification, the setting of artificial thresholds limits the improvement in
the landslide extraction accuracy. Some methods have also been studied to detect the
changed areas between multitemporal remote sensing images, and the changed areas can
be considered landslide candidates through the change detection method. Lu et al. [15]
proposed an object-oriented semi-automatic method for multitemporal landslide change
detection, in which image texture, terrain, and spectral information for multiscale seg-
mentation and optimization was used. Martha et al. [16] developed a multiresolution
segmentation method, which combined the characteristics of spectrum, the vegetation
index, and morphology and could detect landslides from multitemporal satellite remote
sensing images. Markov-random-field-based change detection methods [17,18] have been
also proposed to detect areas of landslide from multitemporal satellite optical images or
aerial orthophotos (i.e., digital orthophoto maps (DOMs)). Unfortunately, multitemporal
remote sensing images before and after a landslide in the same place are often difficult
to obtain because the locations of landslides are not known in advance. Given that the
occurrence of a landslide in a slope sliding process is closely related to the terrain, the
abovementioned methods have difficulty distinguishing easily confused landslide areas
(e.g., bare land) only based on two-dimensional images.

Various semantic segmentation methods, as inspired by the great success of deep
learning in image feature extraction and classification, have been studied to significantly
improve the performance of landslide detection by image segmentation. Multisource data
such as topographic factors were introduced to perform landslide extraction together, and
various methods considering specific data (e.g., the vegetation index, the digital elevation
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model (DEM), slope, and aspect) have been also proposed [19,20]. Ji et al. [21] used an
attention-enhanced convolutional neural network (CNN) to detect landslides from remote
sensing images and the DEM. Shi et al. [22] combined a CNN and change detection to
quickly identify landslides in Lantau, Hongkong. Ghorbanzadeh et al. [23] compared
the performance of landslide detection using traditional methods (i.e., support vector
machine and random forest) and deep-learning-based methods, and they concluded that
CNN-based methods have great potential in landslide detection. Qi et al. [24] improved U-
Net [25], namely ResU-Net, to extract landslides from remote sensing images with complex
backgrounds (e.g., river valleys, beaches, and non-planted terraces). Asadang et al. [26]
combined faster R-CNN and a classification decision tree to detect landslides from satel-
lite images. Yu et al. [27] constructed an end-to-end semantic segmentation model and
used multisource data (e.g., the vegetation index and the DEM) for landslide extraction.
Liu et al. [28] proposed an improved U-Net semantic segmentation model, in which terrain
factors such as the digital surface model (DSM), slope, and aspect were added to detect land-
slides after earthquakes. Xia et al. [29] proposed a fully convolutional spectral–topographic
fusion network, which considered terrain factors (i.e., slope and aspect) and the normalized
difference vegetation index, to detect landslides. In most cases, the scale of a landslide is
small, and the distribution is fine and discrete. Although topographic factors used can
effectively improve the robustness of landslide detection, the existing methods mainly
depend on satellite images and low-precision topographic factors, which still do not satisfy
the requirement of accurate and fine landslide characterization. In the aforementioned
methods, the additional DEM is required if non-stereoscopic satellite-based remote sensing
is used, and the DOM and DEM are inconsistent because of nonsynchronous acquirement.

In recent years, low-altitude photogrammetry (LAP) based on unmanned aerial vehicle
(UAV) mapping has become a popular technical means to capture VHR aerial images
for remote sensing detection due to its significant advantages such as higher resolution,
lower cost, and faster response than satellite images. Synchronously, high-precision and
dense three-dimensional point clouds can be intuitively derived from overlapped UAV
images through dense matching (e.g., semi-global matching), and the geometric structure
information of a landslide’s surface is much richer than that derived by satellite-based
mapping. LAP can also be an effective supplement to satellite remote sensing, especially
in landslide extraction applications. However, the richer details brought by UAV images
also lead to more complex image backgrounds, which greatly increase the difficulty of
automatic landslide interpretation from UAV images. The commonly used CNNs or U-Net
for landslide extraction are the typical discriminative networks. The training of these
networks requires a large number of pixel-level labels, while reducing the number of labels
may degrade their performance. Collecting a large number of landslide training samples is
difficult because of the uncertainty of landslide occurrence. In contrast to the discriminative
network, a generative adversarial network (GAN) is an unsupervised or semi-supervised
network and requires a small number of samples to train. Therefore, GANs have also been
widely used in the field of remote sensing object detection. For example, a conditional
GAN called pix2pix [30] was used for remote sensing change detection [31,32].

In this study, an end-to-end, semi-supervised adversarial network based on mul-
tisource data fusion is proposed to perform landslide extraction to fully utilize high-
resolution and high-precision three-dimensional information derived by UAV photogram-
metry. A transfer learning generative network similar to the architecture in pix2pix, namely
a generator, which considers visible spectra and topographic factors derived by UAV pho-
togrammetry, is proposed to learn the semantic features by semi-supervised operation
to reduce the training samples. These features are then used to separate landslides from
complex backgrounds. In particular, topographic factors such as the DSM, slope, and aspect
are selected to characterize the terrain closely related to the occurrence of landslides. To
avoid CNN training from scratch, a state-the-of-art network with atrous spatial pyramid
pooling (ASPP), namely DeepLabV3+ [33] (i.e., discriminator), is used to obtain pre-trained
parameters of transfer learning for further fine-tuning. ASPP is helpful for multiscale
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semantic segmentation from spectral information to characterize landslides, and high-
precision topographic factors from UAV-photogrammetry-derived data are used to extract
geometric structure information from landslides. DeepLabv3+ mainly focuses on the se-
mantic segmentation of natural images, in which the object’s overall structure and location
information of a certain type can be extracted. However, DeepLabv3+ cannot characterize
the relationship between two ground objects because of complex ground object distribution
in remote sensing images. Therefore, DeepLabv3+ is improved by introducing multilevel
skip connection architecture to characterize the spatial relationship among ground objects
and retain the boundary information at all levels, and end-to-end mapping between input
and output can be established through the generative and discriminative networks. Sub-
sequently, multidimensional low- and high-level semantic multiscale features, which are
learned from the proposed adversarial nets, are utilized to perform automatic landslide
identification and boundary detection.

The main contribution of this work focuses on the design of an adversarial network
framework for landslide extraction from UAV-photogrammetry-derived data. In this
study, multisource data fusion enables semantic spectral and geometric features related
to landslides to be extracted from complex VHR remote sensing image backgrounds. The
generative network used is helpful in significantly reducing the training samples by semi-
supervised operation. Improved DeepLabv3+ with multilevel skip connection architecture
offers the possibility to capture low- and high-level features for landslide extraction via
multiscale semantic segmentation.

The remainder of the paper is organized as follows: Section 2 describes the details of
the proposed framework for landslide detection. Sections 3 and 4 present the comparative
experimental results in combination with a detailed analysis and discussion. Section 5
concludes this study and discusses possible future work.

2. Methods
2.1. Overview of the Proposed Method

The workflow of the proposed method focuses on landslide extraction. For this pur-
pose, the multisource data fusion model and adversarial nets were proposed in this study.
The framework of landslide extraction mainly included three stages, namely adversarial
net training, multisource data derived by UAV photogrammetry, and landslide extraction,
as shown in Figure 1. In the adversarial net training stage, VHR remote sensing images
of some typical landslides and their topographic factors were selected and labeled as
examples to train the proposed adversarial nets including generative and discriminative
networks. In the multisource data generation stage, UAV overlapping images were used
to generate the DOM and DSM through several indispensable steps such as distortion
correction, image matching, structure from motion (SfM), and bundle adjustment [34]; then,
some topographic factors (e.g., slope and aspect) and the gamma-transform green leaf
index (GGLI) were derived based on the previous studies [35]. In the landslide extraction,
multisource data derived from the second stage were used to perform landslide extraction
through the discriminative network trained in the first stage.



Remote Sens. 2022, 14, 3059 5 of 20Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. Workflow of the proposed method. (a) Data preparation; (b) Adversarial networks in-
cluding generator and discriminator; (c) Landslide extraction from UAV-photogrammetry-derived 
data. 

2.2. Proposed Adversarial Nets 
In this study, we attempted to conduct CNN-based semantic segmentation for 

landslide extraction using adversarial networks. In most cases, training a very deep 
CNN is difficult because a large number of parameters need to be adjusted. In particular, 
collecting a large number of high-precision UAV data in a landslide area is a tedious 
task due to the unpredictability of landslide occurrence. Therefore, in our networks, we 
used the generator referred to as pix2pix to reduce the requirement of training samples. 
However, the limitation of pix2pix is that the region of interest is extracted by multi-
convolutional operation, which usually leads to computational redundancy and diffi-
culty obtaining a clear boundary contour of landslide. Thus, we performed semantic 

Figure 1. Workflow of the proposed method. (a) Data preparation; (b) Adversarial networks including
generator and discriminator; (c) Landslide extraction from UAV-photogrammetry-derived data.

2.2. Proposed Adversarial Nets

In this study, we attempted to conduct CNN-based semantic segmentation for land-
slide extraction using adversarial networks. In most cases, training a very deep CNN is
difficult because a large number of parameters need to be adjusted. In particular, collecting
a large number of high-precision UAV data in a landslide area is a tedious task due to the
unpredictability of landslide occurrence. Therefore, in our networks, we used the generator
referred to as pix2pix to reduce the requirement of training samples. However, the limita-
tion of pix2pix is that the region of interest is extracted by multiconvolutional operation,
which usually leads to computational redundancy and difficulty obtaining a clear boundary
contour of landslide. Thus, we performed semantic segmentation for landslide extraction
by introducing ASPP and an encoder–decoder architecture similar to DeepLabV3+.
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2.2.1. Multisource Data Fusion

Ideally, if a deep network is reasonable and fully trained, then vegetation information
hidden in an RGB (i.e., red, green, and blue) image may be learned directly; similarly, slope
and aspect hidden in the DSM or DEM may be derived. However, the following calculation
formula of GGLI [35], slope, and aspect shows that it needs nonlinear implicit learning. To
accelerate the convergence of the proposed network, multisource data, including spectral
(RGB bands and GGLI) and topographic (DSM or DEM, slope, and aspect) information,
were explicitly used in this study to feed into the proposed adversarial nets.

GGLI = 10γ·
(

2G − R − B
2G + R + B

)γ

, (1)

where γ denotes a gamma value, and R, G, and B are the three components of RGB color.

slope =
√

slope2
x + slope2

y, (2)

aspect =
slopey

slopex
, (3)

where slopex, slopey are the slopes in the direction x and y, respectively. The slope value
can be calculated based on the elevation difference and horizontal distance.

Multisource data fusion for object detection based on deep learning can generally be
classified into layer stacking [36] and feature fusion [37,38]. However, simple layer stacking
cannot fuse spectral and topographic features, and two parallel branch networks, as shown
in Figure 2, were designed for semantic feature representation. One branch network (i.e.,
DeepLabv3+ network) was used to extract complex nonlinear features from RGB images,
and the other branch network with shallower architecture (including 15 convolutional
layers) was explored to characterize the vegetation and terrain related to landslides.
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2.2.2. Generative Network

As shown in Figure 1, the proposed adversarial net consisted of a generator and a
discriminator; the former was used to generate simulated samples such that their distri-
bution pz was as similar as the true sample data distribution pd as possible to deceive the
discriminator D. The goal of the proposed adversarial nets was to distinguish the samples
from the generator or true samples by the discriminator as much as possible and optimize
the proposed adversarial nets through iterative machine learning with a confrontational
strategy. A minimum–maximum competitive relationship existed between the generator
and discriminator, in which loss function can be expressed as

min
G

max
D

V(G, D) = Ex∼pd(x) [logD(x)] + Ez∼pz(z) [log(1 − D(G(x)))], (4)
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where x is the true samples and z is the random vector input into the generator. D(x),
D(G(x)) are the outputs of the discriminator when the input is true samples and the input
is pseudo data generated by the generator, respectively. Here, the generator similar to
pix2pix network was introduced into the proposed adversarial nets, and the architecture
is given in Table 1. The skip connection was also used in the generator similar to U-Net,
eight downsampling and upsampling steps were conducted, and a tanh activation function
was added at the end. Then, the training samples could be extended by generating pseudo
data, and the training process could be conducted via the semi-supervised operation to
reduce the requirement of the number of labeled samples.

Table 1. Detailed configuration of the used generator.

Layer Kernel Stride Padding Feature Activation

conv1 4 × 4 3 1 64 None
conv2 4 × 4 2 1 128 ReLU
conv3 4 × 4 2 1 256 ReLU

conv4-8 4 × 4 2 1 512 ReLU
dconv9-12 4 × 4 2 1 512 ReLU
dconv13 4 × 4 2 1 256 ReLU
dconv14 4 × 4 2 1 128 ReLU
dconv15 4 × 4 2 1 64 ReLU
dconv16 4 × 4 2 1 3 tanh

2.2.3. Improved DeepLabv3+ for Discriminator

Most VHR remote sensing semantic segmentation methods based on CNNs are
achieved by (1) broadening the receptive field and combining multiscale operation for
feature extraction [39–41], (2) fusing contextual information using skip connection [42], or
(3) integrating multiple networks by transfer learning [43,44].

Meaningfully, a state-of-the-art network, namely DeepLabv3+, has an added ASPP
module, which uses atrous convolutional operation to extract multiscale features in the
larger receptive fields for capturing multiscale contextual information. In the encoder
of DeepLabv3+, a deeper Xception network with separable convolutional operation is
used to extract features and is helpful for retaining location information with unchanged
semantic information. In the decoder, the low-level features are directly transmitted from
the backbone network, and high-level features are fused with low-level features after a
4× upsampling operation to obtain the output consistent with the input size. Thus, it
can be inferred that DeepLabv3+ can perform well for VHR remote sensing semantic
segmentation. However, the downsampling operation in DeepLabv3+ may weaken the
extraction performance of location information and still make obtaining a clear boundary
contour of landslide difficult.

In this study, multilevel skip connection architecture with an upsampling operation
was designed to retain the boundary information at all levels as much as possible to address
the aforementioned problem of DeepLabv3+ for landslide extraction. The architecture
of improved DeepLabv3+ is given in Figure 3. Similar to DeepLabv3+, the improved
model consisted of an encoder (Figure 3a) and decoder (Figure 3b), and the convolutional
operation for landslide feature extraction for RGB images was consistent with DeepLabv3+.
Unlike original DeepLabV3+, an architecture of topographic feature extraction, namely
the topographic CNN shown in Figure 4, was inserted into the encoder to concatenate
topographic features together with spectral features. Subsequently, low- and high-level fea-
tures were concatenated through the upsampling module shown in Figure 3c to effectively
obtain the contextual information, and it helped to transmit the detailed landslide features
from lower to higher layers. Therefore, the spatial information of the landslide weakened
by the pooling operation could be better restored, and the clear boundary contour of the
landslide may have been delineated after the decoding operation in the final prediction.
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Here, the weight training of discriminator D needed to be realized by minimizing the
cross-entropy loss function LD as

LD = −∑((1 − yn)log(1 − D(G(Xn))) + ynlog(D(Yn))), (5)

where Xn is the input, and Yn is the label corresponding to Xn. yn denotes the input source
of discriminator D, and yn = 0 and yn = 1 are the input from the output of generator G
and the true sample, respectively. The traditional GAN is different in the weight training of
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generator G with the proposed GAN for landslide extraction, and different loss functions
need to be given to obtain different weights. That is, when generator G is trained, it should
focus on the loss function calculated from the label data, and the adversarial and semi-
supervised loss functions are relatively less important. Thus, the generator G was trained
by minimizing a given multitask loss function LG as

LG = Lseg + λLadv + βLsemi, (6)

Lseg = −∑ Ynlog(G(Xn)), (7)

Ladv = −∑ log(D(G(Xn))), (8)

Lsemi = −∑ I(D(G(Xn)) > Tsemi)·Ynlog(G(Xn)), (9)

where Lseg and Lsemi correspondingly denote the loss function of generator G training with
labeled and unlabeled data, and Ladv denotes the adversarial loss function designed to
confuse the discriminator D. λ and β are the weights corresponding to adversarial and
semi-supervised loss function in multitask loss function, respectively. I(·) is an index
function to obtain the image area involved in the back propagation operation. Tsemi is an
given threshold that is usually set to less than 0.3. The values of λ and β are set based on
the following strategies: (1) the optimal λ is determined by training the generator network
G (i.e., fine-tuning the pix2pix model) and the whole G − D network using the labeled data.
(2) The λ value is fixed on the basis of (1), Tsemi is set to a certain value less than 0.3, and the
optimal β is determined by training G and G − D using half of the labeled and unlabeled
data, respectively. (3) The values of λ and β are fixed first, which is similar to (2), and the
optimal Tsemi can then be determined.

2.2.4. UAV Photogrammetry

In this study, UAV LAP was used to generate the DOM and DSM synchronously, that
is, RGB images and topographic factors could be derived simultaneously. On the basis
of our previous studies [35], photogrammetric technologies were used to generate the
DOM and DSM through a series of steps, such as distortion correction, image matching,
SfM, bundle adjustment, and semi-global matching. Detailed technical details were also
provided in our previously published literature [45].

3. Experiment Results and Analysis
3.1. Dataset
3.1.1. Training Dataset

In this study, the proposed adversarial nets were trained using the open-source
dataset [21], which can be downloaded at http://gpcv.whu.edu.cn/data/Bijie_pages.html
(accessed on 10 May 2022). This dataset consists of 770 samples, including optical remote
sensing images, labels, patch boundaries, and the DSM related to landslides. Non-landslide
samples were also provided and mainly composed of mountains, villages, roads, rivers,
forests, and farmlands. These samples in the dataset were cropped from VHR satellite im-
ages with the spatial resolution of about 0.8 m, and the elevation accuracy of the DSM was
about 2 m. The boundaries of landslides were delineated manually using ArcGIS software.

Although the number of these labeled samples appeared small, we increased the
number of training samples through the data augmentation strategy similar to [46]. Mean-
while, the aforementioned transfer learning with the pre-trained parameters and weights,
shared with pix2pix and DeepLabv3+, was used to perform landslide extraction training.
On the basis of the dataset, the training samples derived from optical images and the
DSM were used to generate serial patches with GGLI, slope, and aspect calculated using
Equations (1)–(3), respectively. Several examples of landslide training samples are illus-
trated in Figure 5.

http://gpcv.whu.edu.cn/data/Bijie_pages.html
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Figure 5. Examples of landslide training samples. (a) is the RGB images of seven landslides. (b–f) are
the ground truth, DSM, GGLI, slope, and aspect corresponding to (a), respectively. Notably, the gray
intensity or color rendering in (c–f) is produced by the value of DSM, GGLI, slope, and aspect, which
are normalized to 0 to 1 for the training input of the proposed adversarial nets.

3.1.2. Test Dataset

A typical landslide in mountainous terrain (located in Danba County, Sichuan Province,
China) was selected as the study area, as shown in Figure 6a,b. This landslide was located
in the southeast of the Qinghai Tibet Plateau in China, with an altitude of 1700–5820 m.
The study area belongs to a subtropical climate zone, with an annual average temperature
of 14.2 ◦C, four distinct seasons, and concentrated rainfall. The topography of the study
area includes high mountains and valleys, the geology is composed of a series of parallel
linear folds, and the crustal activity is relatively strong and results in frequent geological
disasters such as landslides.

In June 2020, heavy rainfall, mountain torrents, and debris flows in Meilong gully,
Danba County led to large-area landslides shown in Figure 6c, which brought serious
troubles to people’s lives. The test dataset in this study was acquired in Meilong gully via
UAVs in July 2020. Given the flexible operation of quadcopters, this study used a small
quadcopter (DJI Phantom 4 RTK, DJI, Shenzhen, China), which has strong stability and
can automatically plan routes and land at fixed waypoints. The maximum takeoff weight
of this UAV is 1.4 kg, the longest flight time is about 30 min, the fastest flight speed is
about 50 km/h, the equipped image sensor is a 1-inch complementary metal–oxide–semi-
conductor, the effective pixels are about 20 million, and the image storage format is JPEG.



Remote Sens. 2022, 14, 3059 11 of 20

The UAV image acquisitions were performed under good weather conditions, such as
sunny and winds <10 m/s. The relative flight height was about 200 m, and the flight speed
was 3 m/s. Figure 6c shows the UAV-photogrammetry-derived DOMs and DSMs of the
study area.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

ditions, such as sunny and winds < 10 m/s. The relative flight height was about 200 m, 
and the flight speed was 3 m/s. Figure 6c shows the UAV-photogrammetry-derived 
DOMs and DSMs of the study area. 

 
Figure 6. Study area located in Danba County, Sichuan Province, China. (a,b) show the location of 
the study area, and the DOMs and DSMs of the study area are illustrated in (c). 

3.2. Evaluation Criteria of Landslide Extraction Performance 
Four indicators, namely Precision, Recall, F1_score, and mIoU, were used to quantita-

tively evaluate the performance of the proposed network in the experiments. The four 
indicators can be calculated as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃, (10)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 , (11)

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 , (12)

Figure 6. Study area located in Danba County, Sichuan Province, China. (a,b) show the location of
the study area, and the DOMs and DSMs of the study area are illustrated in (c).

3.2. Evaluation Criteria of Landslide Extraction Performance

Four indicators, namely Precision, Recall, F1_score, and mIoU, were used to quantita-
tively evaluate the performance of the proposed network in the experiments. The four
indicators can be calculated as follows:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)



Remote Sens. 2022, 14, 3059 12 of 20

F1_score = 2 × precision × recall
precision + recall

, (12)

mIoU =
TP

TP + FP + FN
, (13)

where TP, FP, and FN denote true positive (i.e., the number of pixels correctly extracted
as belonging to landslides), false positive (i.e., the number of non-landslide pixels incor-
rectly extracted as belonging to landslides), and false negative (i.e., the number of pixels
incorrectly extracted as belonging to non-landslides). The method used in the experiments
performed better when the four values of Precision, Recall, F1_score, and mIoU were larger.

3.3. Training and Validation

In the training stage, the training samples were extended to avoid overfitting by data
augmentation [46], of which, 75% of the samples were used for training and 25% for valida-
tion. The initial learning rate of 0.001 and epoch of 200 were set to train using the Adam
optimizer, and the learning rate was gradually reduced by a multiple of one tenth when
the loss did not decrease after every 10 epochs. The resolution of landslide optical RGB
images and derived additional data (i.e., GGLI, DSM, slope, aspect) in the input data was
adjusted to 256 × 256, and the input multisource data were normalized to a floating-point
value between 0 and 1. The proposed network was trained in parallel on NVIDIA GPUs,
and the Keras-TensorFlow library was introduced to perform convolutional operation.

Meanwhile, to evaluate the performance of single-source data (i.e., RGB images) and
multisource data (i.e., RGB images, GGLI, DSM, slope, and aspect) for landslide extraction
in the proposed network, two groups of comparative experiments were conducted in
the same hardware and software conditions, and single data and multisource data were
individually used to train the proposed network. The comparative training results of single
data and multisource data for the proposed network are illustrated in Figure 7a,b, which
indicate that the multisource data used could improve the training accuracy and accelerate
the convergence of the proposed network. The use of multidata can provide additional
information (e.g., three-dimensional surface), which enriches landslide characterization and
offers opportunities for landslide extraction in complex terrains. In the proposed adversarial
nets, improved DeepLabv3+ played a key role in landslide feature extraction. Training using
the training dataset was performed to enable a comparison with the original DeepLabv3+,
and its results are illustrated in Figure 7c,d. As observed, the proposed adversarial nets with
the generator and discriminator could significantly improve the accuracy and accelerate
the convergence of training. Therefore, the semi-supervised operation, which was guided
by the generator network, could reduce the requirement of the number of labeled samples.
Thus, it helped to avoid overfitting and accelerate training convergence. In contrast to the
downsampling operation in DeepLabv3+, multilevel skip connection architecture with an
upsampling operation in the discriminator network can retain the boundary information at
all levels, which can perform better for landslide extraction than DeepLabv3+.

The prediction results obtained from the validation dataset were also compared with
the ground-truth data to quantitatively evaluate the effectiveness of the proposed network.
The aforementioned indicators were calculated through the confusion matrix, which is
shown in Table 2. The accuracy indicators (i.e., Precision, Recall, F1_score, and mIoU) ob-
tained from the proposed network with multisource data fusion were 6.22%, 4.08%, 3.83%,
and 4.80% higher than those with single data, which indicated that multisource fusion
could improve the performance of landslide extraction. Compared with DeepLabv3+, the
accuracy indicators obtained from the proposed network with multisource data fusion were
13.07%, 15.65%, 16.96%, and 18.23% higher, which implied that the proposed network for
landslide extraction using adversarial network architecture and an upsampling operation
was much better than DeepLabv3+.
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original DeepLabv3+ and the proposed network.

Table 2. Quantitative evaluation with the ground-truth data.

Network Input Precision Recall F1_Score mIoU

DeepLabv3+ Multisource 0.7552 0.6689 0.6612 0.5482

Proposed Single 0.8237 0.7846 0.7925 0.6825
Multisource 0.8859 0.8254 0.8308 0.7305

Compared with the visualization of DeepLabv3+ and the proposed network, several
examples shown in Figure 8a were selected to exhibit the experimental results shown in
Figure 8c–e. The landslide extraction effect of the proposed network based on multisource
fusion was better than that of the experiments performed based on single data. As shown in
Figure 8c, compared with the ground-truth data shown in Figure 8b, the landslide regions
obtained using DeepLabv3+ were broken, and it could not accurately characterize the
boundaries of a landslide. In contrast, the proposed network, whether using single or
multisource data, performed better in terms of region completeness and boundary accuracy,
as shown in Figure 8d,e. Especially for complex terrain conditions, as shown in Figure 8d,
the regions marked by red circles could not perfectly delineate the boundaries of landslides
by the proposed network based on single data. On the contrary, as shown in Figure 8e,
multisource data fusion combining spectral and topographical information could improve
the performance of landslide detection and the characterization of landslide boundaries.
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Figure 8. Examples of landslide extraction using DeepLabv3+ and the proposed network. White
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RGB images, and (b) is the ground-truth landslide boundaries corresponding to (a). (c–e) are the
experimental results obtained using DeepLabv3+, the proposed network with single and multisource
data, respectively. Red circle is used to highlight the comparative region.

In this study, the proposed network was designed with reference to two state-of-the-
art deep learning networks (pix2pix and DeepLabv3+), and the architectures of the two
networks were proven to be optimal in experiments [32,33]. Additionally, the architecture
of the topographic CNN included five convolutional blocks, each of which included three
convolutional layers defined through ablation studies, which were conducted by reducing
(i.e., 4 × 3 layers) or adding to (i.e., 6 × 3 layers) the number of convolutional layers in the
topographic CNN. The quantitative evaluation of the topographic CNN with the different
number of layers is given in Table 3; it can be seen that the topographic CNN with 5 × 3
convolutional layers performed better than the other two.

Table 3. Quantitative evaluation of topographic CNN with the different number of convolutional lay-
ers.

Convolutional Layer Precision Recall F1_Score mIoU

4 × 3 layers 0.8488 0.7569 0.7534 0.6631

5 × 3 layers 0.8859 0.8254 0.8308 0.7305

6 × 3 layers 0.8900 0.8024 0.7756 0.6572

3.4. Comparisons with State-of-the-Art Methods

The test dataset acquired in the study area was also used to verify the effectiveness
of landslide extraction using the adversarial nets to further evaluate the performance of
the proposed network, except for the open-source dataset. In the experiments, the whole
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remote sensing covering landslides could not be directly input into the proposed network
for prediction due to the limited memory of the computer. Thus, several patches with sizes
of 256 × 256 pixels were cropped to perform landslide extraction.

State-of-the-art methods based on deep learning, including U-Net [25], PSPNet [47],
DeepLabv3+ [33], and pix2pix [30,48], were used for comparison with the proposed method.
The comparisons of quantitative indicators of the five methods performed using the open-
source dataset are shown in Figure 9, and the experimental statistical results using the
test dataset are also given in Table 4. By contrast, U-Net, PSPNet, and DeepLabv3+ were
relatively worse than the three other methods, and pix2pix and the proposed adversarial
nets were significantly better than the three other networks in terms of Precision, Recall,
F1_score, and mIoU values. Therefore, the improvement observed in the performance of the
landslide extraction network by the generative network used in pix2pix or the proposed ad-
versarial nets was better than that without generator. Overall, the proposed adversarial nets
performed best in the open-source dataset and test data in terms of the indicators. Notably,
the indicators (i.e., Precision, Recall, F1_score, and mIoU values) of landslide extraction from
the Danba dataset were slightly lower than those obtained from the open-source dataset.
In addition, through the visual comparison between Figures 8e and 10g obtained from the
proposed network, it can be seen that Figure 8e is closer to the ground-truth landslides. The
possible reasons for this are as follows: the proposed network was trained through satellite
images rather than UAV images. Therefore, the generalization of the proposed network
was affected by modeling training using the open-source dataset produced from satellite
remote sensing images, which are different from UAV images in terms of imaging quality,
resolution, and illumination. That is, the proposed network trained through satellite images
may not be very applicable to UAV-photogrammetry-derived data.

The landslide boundaries obtained using the five methods are illustrated in Figure 10.
In this study, the researchers conducted on-site investigations and delineated the ground-
truth landslides through manual visual interpretation using ArcGIS software. The landslide
areas extracted using U-Net and PSPNet were scattered, which was different from the
ground-truth landslides. Although the landslide areas extracted using DeepLabv3+ and
pix2pix could exhibit the basic shapes of landslides, the boundaries of landslides are
not discriminative and cover many small non-landslide areas. The visual assessment
shows that, although the experimental results obtained using the proposed adversarial nets
were not perfect, the landslide regions extracted using the proposed network were highly
consistent with the ground-truth regions compared with four other methods. Moreover, the
proposed network, which is based on the integrity of spectral and topographic information,
represents strong robustness and stability under complex backgrounds. This finding is
attributed to two reasons. First, the generator with semi-supervised operation, similar
to pix2pix, could effectively avoid overfitting and improve the generalization ability of
the proposed adversarial nets. Second, multilevel skip connection architecture, which
was used in the proposed network, is helpful in offering more possibilities to capture
semantic features at all levels to clearly delineate the boundaries of landslides compared
with DeepLabv3+. Therefore, in terms of the visual assessment and quantitative evaluation,
the proposed network is useful and practicable in extracting landslides.

Table 4. Precision, Recall, F1_score, and mIoU values of U-Net, PSPNet, DeepLabv3+, pix2pix, and the
proposed method performed using the test dataset.

Method Precision Recall F1_Score mIoU

U-Net [25] 0.6867 0.6515 0.6140 0.4767
PSPNet [47] 0.7362 0.6299 0.6271 0.4802

DeepLabv3+ [33] 0.7421 0.6830 0.6764 0.5800
pix2pix [30,48] 0.8052 0.8102 0.7740 0.6496

Proposed 0.8490 0.8204 0.8146 0.7002
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4. Discussion 
On the basis of the experimental results of landslide extraction, the proposed net-

work can be considered a tentative and effective model for delineating landslide bound-
aries. In particular, the semi-supervised method means it is not imperative to avoid 
overfitting or convergence by a large number of labeled samples. The effectiveness of the 
proposed network can be explained by several reasons. First, VHR RGB DOM, which is 
illustrated in Figure 10a, derived from UAV LAP, can provide clear surface details, 
which offer the opportunity for the interpretation of a small landslide and its bounda-
ries. Second, multisource fusion can enrich landslide presentation with additional in-
formation such as GGLI, DSM, slope, and aspect, which couples spectral and topo-
graphic information to improve the ability of landslide characterization, as verified in 
Figure 6 and Table 2. Third, the adversarial nets, especially the generative network, can 
contribute to reducing the requirement of the number of labeled samples by the 
semi-supervised operation. It can effectively alleviate the problem of network training 
difficulty caused by insufficient landslide samples. Four, multilevel skip connection ar-
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posed network combines the advantages of the following aspects: multisource data fu-
sion, the semi-supervised adversarial model, and multilevel skip connection architec-
ture. These aspects make the network beneficial in capturing context information and 
performing semantic segmentation. Although the proposed network can obtain satis-
factory landslide extraction results, it should be noted that landslides can only be ex-
tracted in areas where vegetation is destroyed. Some landslide bodies may not be com-
plete broken, so there would still be good vegetation on the landslides, as shown in Fig-
ure 6, which makes them difficult to effectively extract because UAV photogrammetry 
cannot penetrate vegetation to obtain landslide information. 

5. Conclusions 
We presented an end-to-end, semi-supervised adversarial network based on multi-

source data fusion for landslide extraction via semantic segmentation and landslide de-
tection from UAV-photogrammetry-derived spectral and topographic data. First, multi-

Figure 10. Examples of landslide extraction using test dataset. (a) is the RGB patches for visualization
analysis, and (b) is the ground-truth landslides corresponding to (a). (c–g) are the experimental
results obtained using U-Net, PSPNet, DeepLabv3+, pix2pix, and the proposed network, respectively.

4. Discussion

On the basis of the experimental results of landslide extraction, the proposed network
can be considered a tentative and effective model for delineating landslide boundaries.
In particular, the semi-supervised method means it is not imperative to avoid overfitting
or convergence by a large number of labeled samples. The effectiveness of the proposed
network can be explained by several reasons. First, VHR RGB DOM, which is illustrated in
Figure 10a, derived from UAV LAP, can provide clear surface details, which offer the oppor-
tunity for the interpretation of a small landslide and its boundaries. Second, multisource
fusion can enrich landslide presentation with additional information such as GGLI, DSM,
slope, and aspect, which couples spectral and topographic information to improve the abil-
ity of landslide characterization, as verified in Figure 6 and Table 2. Third, the adversarial
nets, especially the generative network, can contribute to reducing the requirement of the
number of labeled samples by the semi-supervised operation. It can effectively alleviate
the problem of network training difficulty caused by insufficient landslide samples. Four,
multilevel skip connection architecture with an upsampling operation can retain the de-
tailed boundaries at all levels and improve the performance of landslide extraction, which
is at least 13% in terms of Precision, Recall, F1_score, and mIoU compared with DeepLabv3+.
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Therefore, the proposed network combines the advantages of the following aspects: multi-
source data fusion, the semi-supervised adversarial model, and multilevel skip connection
architecture. These aspects make the network beneficial in capturing context information
and performing semantic segmentation. Although the proposed network can obtain satis-
factory landslide extraction results, it should be noted that landslides can only be extracted
in areas where vegetation is destroyed. Some landslide bodies may not be complete broken,
so there would still be good vegetation on the landslides, as shown in Figure 6, which
makes them difficult to effectively extract because UAV photogrammetry cannot penetrate
vegetation to obtain landslide information.

5. Conclusions

We presented an end-to-end, semi-supervised adversarial network based on mul-
tisource data fusion for landslide extraction via semantic segmentation and landslide
detection from UAV-photogrammetry-derived spectral and topographic data. First, mul-
tisource data fusion, which was achieved by two branch networks, was proposed for
semantic feature representation from spectral and topographic information. Second, a
transfer learning network, that is, a pix2pix-based generator, was used to generate pseudo
data for semi-supervised network training by reducing the requirement of the number of la-
beled samples. Third, a DeepLabV3+-based discriminator was improved to perform further
fine-tuning by introducing ASPP and multilevel skip connection with upsampling opera-
tion to avoid CNN training from scratch. These two features contributes to characterizing
the spatial relationship among ground objects and retaining the boundary information at all
levels. End-to-end mapping between input and output could also be established through
generative and discriminative networks. Finally, multidimensional low- and high-level
semantic multiscale features, which were learned from the proposed adversarial nets, were
integrated to perform automatic landslide extraction.

Although the generator used in the proposed adversarial nets could effectively reduce
the requirement of the number of labeled samples, the quality and number of training
samples still limited the improvement in the accuracy and reliability of the deep learning
network for landslide extraction. In our experiments, the proposed network trained through
satellite images was not very applicable to UAV-photogrammetry-derived data because
nonlinear differences such as resolution, illumination, and ground object changes existed.

We currently lack sufficient UAV data related to landslides. Thus, UAV-derived data in
this study were not used to train the proposed network. In future studies, we will attempt
to collect more UAV data and improve the proposed adversarial nets by introducing UAV-
photogrammetry-derived data for training and optimizing the proposed adversarial net
parameters involved.
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