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Abstract: Land Use/Land Cover (LULC) maps can be effectively produced by cost-effective and
frequent satellite observations. Powerful cloud computing platforms are emerging as a growing trend
in the high utilization of freely accessible remotely sensed data for LULC mapping over large-scale
regions using big geodata. This study proposes a workflow to generate a 10 m LULC map of Europe
with nine classes, ELULC-10, using European Sentinel-1/-2 and Landsat-8 images, as well as the
LUCAS reference samples. More than 200 K and 300 K of in situ surveys and images, respectively,
were employed as inputs in the Google Earth Engine (GEE) cloud computing platform to perform
classification by an object-based segmentation algorithm and an Artificial Neural Network (ANN). A
novel ANN-based data preparation was also presented to remove noisy reference samples from the
LUCAS dataset. Additionally, the map was improved using several rule-based post-processing steps.
The overall accuracy and kappa coefficient of 2021 ELULC-10 were 95.38% and 0.94, respectively.
A detailed report of the classification accuracies was also provided, demonstrating an accurate
classification of different classes, such as Woodland and Cropland. Furthermore, rule-based post
processing improved LULC class identifications when compared with current studies. The workflow
could also supply seasonal, yearly, and change maps considering the proposed integration of complex
machine learning algorithms and large satellite and survey data.

Keywords: remote sensing; LULC; Europe; Google Earth Engine; LUCAS; Sentinel; Landsat-8

1. Introduction

Land Use/Land Cover (LULC) maps provide valuable information for defining the
terrestrial and atmospheric interactions of the Earth and providing a realistic picture of
human activities and natural environment interconnections. Policymakers require accurate
geoinformation about the interactions between human activities and the environment, to
maintain and improve sustainable development and planning strategies. In this regard,
Remote Sensing (RS) systems acquire valuable datasets, which can be efficiently applied to
various applications, such as urban planning [1-3], water management [4,5], nature conser-
vation [6-8], natural resource monitoring [9-11], habitat distribution assessment [12-14],
and LULC mapping [15,16].

Satellite imagery, along with advanced Machine Learning (ML) algorithms and cloud
computing platforms, has significantly facilitated accurate large-scale LULC mapping [17-20].

Remote Sens. 2022, 14, 3041. https://doi.org/10.3390/rs14133041

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14133041
https://doi.org/10.3390/rs14133041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5310-5859
https://orcid.org/0000-0002-2318-8216
https://orcid.org/0000-0002-1541-1393
https://orcid.org/0000-0001-8406-683X
https://orcid.org/0000-0002-9495-4010
https://orcid.org/0000-0003-2505-6855
https://doi.org/10.3390/rs14133041
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133041?type=check_update&version=3

Remote Sens. 2022, 14, 3041

2 of 27

Due to the availability of various types of Earth Observation (EO) data, numerous LULC
products in the range from 10 m to 1 km spatial resolutions have been generated over different
parts of the world. To this end, various satellite datasets, such as the Copernicus Programme
(Sentinel) [19-26], Earth Resources Technology Satellite of National Aeronautics and Space
Administration (NASA)/United States Geological Survey (USGS) program (Landsat) [27-30],
AVHRR instrument of National Oceanic and Atmospheric Administration [31-33], and the
Moderate Resolution Imaging Spectroradiometer of NASA (MODIS) [34-36] have been em-
ployed. It is worth noting that although RS has many advantages for LULC classification,
in situ data plays a significant role in obtaining high classification accuracy from supervised
classification methods.

Powerful cloud computing platforms are required when the objective is large-scale
LULC mapping of analysis RS data over a long period. In this regard, various big data
processing platforms, such as Google Earth Engine (GEE), NASA Earth Exchange, Ama-
zon’s Web Services, and Microsoft’s Azure have been developed [37]. In this regard, [38,39]
illustrated the advantages and applications of GEE, including the fact that the number of
publications is significantly increasing [39—41], GEE has been implemented on 70% of the
world’s countries, and broad subjects have been studied [39]. So far, numerous studies
have utilized GEE for LULC classification. For instance, Li et al. [42] exploited Sentinel-2
and Landsat-8 images to generate a 10 m map of the entire continent of Africa by a Ran-
dom Forest (RF) classifier. Ghorbanian et al. [43] also leveraged Sentinel data to classify a
large-scale area using RF at a 10 m spatial resolution and 13 LULC classes.

Currently, two European maps are available at a 10 m spatial resolution [19,25] (see
Table 1). In [19], which was the first publication that classified the European continent at a
spatial resolution of 10 m, multi-temporal Sentinel-2 images were only utilized for training
an RF classifier. The LULC map was produced for the year 2017 in 14 classes. Despite the
higher Overall Accuracies (OA) being obtained for several countries, the OA of the entire
study area was 86%. Furthermore, ESA [44] follows a similar procedure to [19], incorporat-
ing Sentinel-1 images to provide global 10 m LULC yearly maps consisting of more than
12 classes. The project was inspired by the 2017 WorldCover conference [45], with an em-
phasis on developing innovative approaches. Finally, Venter and Sydneham [25] presented
the most recent European 2018 LULC map -ELC10- using around 70,000 of the Land Use
and Cover Area frame Survey (LUCAS) reference data and Sentinel-1/2 images, acquired
in 2018. An OA of 90% was achieved using an RF classifier within the GEE platform. They
have also discussed the robustness of RF and the minimal effect of Sentinel-2 atmospheric
correction and Sentinel-1 speckle filtering to enhance the classification accuracy.

Table 1. Available 10 m LULC maps, covering the entire continent of Europe.

Overall

Name Year # Classes  Algorithm RS Data
Accuracy

FROM-GLC10 [20] 2017 10 RF 72% Landsat-8,
Sentinel-2

S2GLC [19] 2017 14 RF 86% Sentinel-2
ELC10 [25] 2018 8 RF 90% Sentinel-1, 2

Esri 2020 [26] 2020 10 CNN 85% Sentinel-2
WorldCover 10 m [24,46] 2020 11 CatBoost 74% Sentinel-1, 2

Moreover, three global maps have so far been generated at a spatial resolution of 10 m.
Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC10) [20]
followed the existing 30 m resolution global land cover version [30]. An RF classifier
was employed on Sentinel-2 images within GEE, where the OA was approximately 72%.
Afterwards, an Esri 2020 LULC map was derived from Sentinel-2 images with an OA of
85% [26]. Ten LULC classes were categorized using a Deep Learning (DL) based segmen-
tation model (i.e., UNet, with a Convolutional Neural Network (CNN) architecture) and
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over 20,000 Sentinel-2 tiles on a Microsoft Planetary Computer. Following the WorldCover
project, the ESA WorldCover 10 m 2020 map has been recently released [24,46]. Sentinel-1
and Sentinel-2 images were classified into 11 classes using the algorithm proposed by
Buchhorn et al. [47]. This open-access global land cover map was generated from three sep-
arated workflows (i.e., data preprocessing, classification, and map generation), reaching a
global OA of 74%. On the other hand, various maps were generated at a European national
scale, such as Greece [48,49], France [50], Germany [51], Italy [52,53], and Belgium [54],
which were not considered to be available maps in Table 1 due to the scale of the study areas
and the spatial resolutions. Similarly, in this study, maps consisting of the entire continent
of Europe but aimed at different applications and spatial resolutions were also neglected,
such as global cropland maps [55,56], European-crop-type maps [17], pan-European land
cover maps [18], and GlobeLand30 maps [57].
In addition to studies that have prepared LULC maps at the global or European scales,
a wide range of articles have studied classification methods from pixel- and object-based
points of view. Various pixel-based and object-based ML methods [58], semi-automated
and automated classification techniques [59], along with different features retrieved from
EOs [60], were utilized to generate LULC maps. For instance, Verde et al. [48] developed
a classification workflow for fine-scale object-based land cover mapping for Greek terres-
trial territory by evaluating several classification techniques and strategies for automatic
and manual training data extraction. Previously, Stromann et al. [60] studied the impact
of dimensionality reduction strategies on object-based SVM classification. They found
that Sentinel-2 Normalized Difference Vegetation Index (NDVI), Normalized Difference
Water Index (NDWI), and Sentinel-1 VV measurements were the most relevant features
to optimize the SVM classifier and achieve higher classification accuracy. In this way,
Qu et al. [58] investigated the performance of various auxiliary features in improving the
accuracy of seven pixel-based and seven object-based RF classification models. Among
all RF classification models analyzed by Qu et al. [58], the object-based methods showed
higher overall accuracy than the pixel-based classification methods, as the best overall
accuracy was achieved when the object-based method was used with spectral data only.
Moreover, Tassi and Vizzari [61] focused on developing an object-oriented classification
approach and the Simple Non-Iterative Clustering (SNIC) technique to find spatial clusters
for creating cluster texture indices. Shafizadeh-Moghadam [62] also used SNIC and RF
algorithms to produce a 30 m LULC map of the Tigris-Euphrates basin in the Middle East
using Landsat-8 spectral and thermal bands, texture and spectral indices, and topographic
factors. The study area was divided into five climate regions and the training samples were
taken from each sub-region to increase the overall accuracy of the classification method.
This study initiated a sequential program to classify nine landmasses of 37 European
countries using Sentinel-1/2, Landsat-8, and the LUCAS dataset within the GEE platform.
So far, the integration of Sentinel-1/2 and Landsat-8 images has not been carried out to
generate 10 m LULC maps at the global and European scales. The methodology is based
on an object-based Artificial Neural Network (ANN), implemented on a large volume
satellite image, acquired from 2016 to 2021. A novel reference data preparation was also
proposed to take advantage of the least noisy samples by integrating two sources of LUCAS
data and a data refinement procedure. This dataset has been mostly utilized without
refining noisy samples in large-scale studies. In summary, the primary purpose of this
work is to develop a procedure of generating accurate continental-scale LULC maps and
addressing several issues in RS and in situ dataset preparation, leveraging European-based
repositories (e.g., Sentinel images and LUCAS), the efficiency of cloud-based platforms in
the processing of big geodata, and the state of main natural and artifact covers in Europe.
In the following, the main contributions to the present paper regarding the proposed
methodology are described:
e  We integrated all Sentinel-1/2 and Landsat-8 images since 2016 to highly leverage
spectral information and backscattering signals for generating a rich training model.
Additionally, a data preparation procedure for the LUCAS dataset was proposed
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to avoid uncertainties and misclassifications in the final map. The repository also
contained the provider raw data and previous studies’ refined LUCAS data to exploit
available reference samples thoroughly.

e A heterogenous feature map was generated from three segmented images extracted
from Sentinel-1/2 and Landsat-8 features using the SNIC algorithm to reduce the
usual LULC mapping noises and enhance the reliability of the final LULC map. The
heterogeneous feature map was created using an NDVI time series of Sentinel-2 and
Landsat-8 images and bi-monthly VV/VH images of Sentinel-1 after the preprocessing
of images.

e  We tailored an object-based ANN model in a fully connected architecture to learn
16 input features of the heterogeneous feature map and training/validation datasets
within the Google Colab. Afterwards, we implemented rule-based post-processing
using the slope and water index to reduce the associated uncertainty and increase the
accuracy of several classes through knowledge-based criteria.

This paper is structured as follows. First, a general overview of the study area, seven
European biogeographical regions, and satellite images are introduced. A comprehensive
explanation of the LUCAS dataset is then provided, including the history of this survey, the
description of nine LULC classes, the propagation of the samples, and the portion of each
class in seven ecozones. The methodology section comprehensively describes the satellite
data preparation, the reference samples preparation, the object-based image segmentation
algorithm, the classification process, the post-processing method, and accuracy assessment.
The result section consists of the 10 m European LULC map, ELULC-10, classification results
analysis, and a discussion of the outcomes. The paper ends with a general discussion of the
results, limitations, recommendations for future studies, and the conclusion.

2. Study Area and Data
2.1. Study Area

The study area included 37 countries based on European Environment Agency (EEA)
instruction, including 27 European Union member states and the United Kingdom, Liecht-
enstein, Norway, Switzerland, and six Western Balkan countries. The study area had a
high ratio of coast to landmass and significant land relief variation temperate climate
zones, divided into four topographic regions (Western Uplands, North European Plain,
Central Uplands, and Alpine Mountains). The climate varied widely across the seven main
biogeographical regions, as shown in Figure 1 (ordered from the smallest to the largest):
Steppic (0.76%), Pannonian (3.03%), Alpine (13.27%), Atlantic (17.32%), Boreal (18.2%),
Mediterranean (18.93%), and Continental (28.5%). The dominant vegetation cover was
mixed forest, and the growing season varied between 100 days and 200 days from north
to south. Moreover, Corine Land Cover (CLC) 2018 reported that the study area covered
around 6 million km? composed of 48.80% forest and semi-natural areas, 41.80% agricul-
tural areas, 4.30% artificial surfaces, 2.6% water bodies, and 2.50% wetlands (CLC 2018).
More than half of the European countries dedicated about 40% to agricultural lands, in-
cluding arable land, heterogeneous agricultural areas, pastures, and permanent crops. It is
worth noting that these statistics are based on CLC 2018, with a minimum linear element
width of 100 m [63].
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Figure 1. The number of each sample in European biogeographical regions and percentage (within
parentheses) of each class to the total number of the correspondent class, along with the area (Mm?,
%) of the biogeographical regions.

2.2. Datasets
2.2.1. Sentinel-1

The Sentinel-1 mission operates a dual-polarization C-band synthetic aperture radar
(SAR) imaging during day and night, enabling them to acquire imagery regardless of the
weather. In 12 days, Sentinel-1 revisits the same coverage as Sentinel-2, while the repeat
cycle is 6 days over Europe. The GEE database provides processed Sentinel-1 Ground Range
Detected (GRD) scenes in three instrument modes of IW (Interferometric Wide Swath),
EW (Extra Wide Swath), and SM (Strip Map), which contain either one of three spatial
resolutions (10, 25 or 40 m) and one or two out of four band combinations (Vertical-Vertical
(VV): single co-polarization, Horizontal-Horizontal (HH): single co-polarization, VV + VH:
dual-band cross-polarization, and HH + HV: dual-band cross-polarization), depending
on the instrument’s polarization settings. The Sentinel-1 GRD products were already
ortho-rectified and converted to the backscattering coefficient (¢°, dB). They underwent
five steps: (1) orbit correction, (2) GRD border noise removal, (3) thermal noise removal,
(4) radiometric calibration, and (5) terrain correction, the detail of which are provided
in [64]. For this study, 18,740,310 m Sentinel-1 images were used to cover the study area.
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2.2.2. Sentinel-2

The Copernicus Sentinel-2 systematically covers more than 90% of the world, including
all continental land surfaces (including inland waters) between the latitudes of 56° South
and 84° North, all coastal waters up to 20 km from the shore, all islands greater than
100 km?, all EU islands, the Mediterranean Sea, and all closed seas (e.g., the Caspian Sea).
The twin satellites of Sentinel-2 regularly revisit all continental land surfaces with a high
revisit frequency of five days. The optical instrument payload of Sentinel-2 consists of
13 spectral bands: four bands at a 10 m spatial resolution (Blue (2), Green (3), Red (4), and
NIR (8)), six bands at 20 m (Red edgel (5), 2 (6), and 3 (7), Narrow Near Infrared (8A),
SWIRT1 (11), and SWIR2 (12)), and three bands at 60 m (Aerosols (1), Water vapor (9), and
Cloud mask (10)) spatial resolution. In this study, 138,441 images at bands 2, 3, 4, and 8
from 2016 to 2021 were used.

2.2.3. Landsat-8

Landsat-8 is a multi-spectral satellite launched by the United States Geological Survey
(USGS) in 2013. This study utilized Landsat-8-calibrated surface reflectance products with
11 spectral bands. The spectral bands included 30 m coastal aerosol (band 1), 30 m visible
(band 2—4), 30 m Near Infrared (NIR, band 5), 30 m Shortwave Infrared (SWIR, band 6-7),
15 m panchromatic (band 8), 15 m cirrus (band 9), and 100 m thermal infrared (band 10-11)
bands. Overall, 9331 Landsat-8 images were extracted in this study to mainly derive various
spectral indexes for the LULC mapping task. Figure 2 shows the number of Sentinel-1/2
and Landsat-8 images from 2016 to 2021 above the entire continent of Europe, utilized as
input data in the proposed methodology.

Sentinel-1
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Figure 2. The number of Sentinel-1/2 and Landsat-8 images over the study area.

2.2.4. ASTER and SRTM

Digital Elevation Model (DEM) data was also incorporated with three other remote
sensing data sources to enhance the final classification results. A DEM is a raster-based
data source in which each pixel value represents the corresponding altitude above sea level,
which is considered to be a primary attribute of the Earth’s surface. In this paper, DEM data
from two remote sensing sources were employed. The first DEM has been derived from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The ASTER
instrument has the capability of acquiring images through its back-ward-looking telescope
and thus can provide along-track stereo pairs. These pairs are processed using standard
photogrammetric approaches and a detailed camera model to produce DEM data with
approximately 30 m spatial resolution [65]. The second DEM data has been produced from
the Shuttle Radar Topography Mission (SRTM). The SRTM has been generated through
the Interferometry of Synthetic Aperture Radar (InSAR) technique with dual antennas
during the same pass [66]. Here, the SRTM version 3 data with approximately 30 m spatial
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resolution, which has been subjected to void-filling approaches for quality enhancement,
was used.

2.2.5. LUCAS Reference Data Repository

Land Use and Cover Area frame Survey (LUCAS) provides harmonized information
on land use, land cover, and environmental parameters to provide European-wide agri-
culture, environment, and countryside analysis, and validate RS-based LULC maps [51].
Every three years since 2006, the European Statistical Office (Eurostat) has carried out
LUCAS surveys. LUCAS 2018 was the latest survey conducted in the spring-summer
of 2018 over 28 EU countries (including the United Kingdom), following five principles:
spatial consistency, temporal consistency, compatibility with existing systems (e.g., Farm
Structure Survey (FSS), European Classification of Economic Activities (NACE), Food
and Agriculture Organization (FAO), and Infrastructure for Spatial Information in Europe
(INSPIRE)), independence from observation methods, and no gaps and no overlaps. The
LULC conditions of the LUCAS sampling approach dataset assess in situ on a relatively
high-density grid, while the Copernicus program (CORINE) focuses on RS approaches.
LUCAS in situ samples were extensively employed in relevant disciplines, such as CORINE
validation [67,68], area estimation in geographic units [69], the validation of available
reference data over EU [70] and Greece [71], the differentiation of cropland and grassland
over Germany [72], the generation of a new LULC product for Germany [51], automated
LULC classification over EU with open geodata [73], and mapping EU land cover using
spectral-temporal metrics [18].

The latest LUCAS survey, conducted in 2018 [74], was selected in this study to train
and validate the produced European LULC map. Among six open-access pan-European
geodata sets (i.e., CORINE, Natura 2000, Riparian Zones, Urban Atlas, OpenStreetMap,
and LUCAS), it has the largest and most comprehensive land cover database in Europe [69].
The LUCAS surveys separate classification systems for land cover (the physical cover
of the Earth’s surface) and land use (the socio-economic function of the land) into eight
main categories (i.e., artificial land, cropland, woodland, shrubland, grassland, bare land
and lichens/moss, water areas, and wetlands). It provides observations at 337,854 points
surveyed in the EU Member States from March 2018 to November 2018. In 2018, the
LUCAS survey was carried out in 28 European countries, where LUCAS points were either
visited by field surveyors or photo-interpreted in the office. For the statistical sample of
the LUCAS survey, a regular 2 km grid with over 1,100,000 points was overlaid on the EU
territory. Since LUCAS is a point survey, the size of the point in the real world needed to be
defined. Therefore, a circle with a variable radius from 1.5 m to 20 m was specified as the
sampling unit. A harmonized version of the LUCAS dataset has also been provided [75]
to overcome several drawbacks in the original datasets, such as inconsistencies between
legends and labels, as well as missing internal cross-references. Finally, a multi-year
harmonized database was created using the five surveys (in 2006, 2009, 2012, 2015, and
2018) [75].

In this study, 206,147 field samples were included in nine classes from the latest-
released version of LUCAS 2018, in February of 2020, and the harmonized version in
November 2020 (see Table 2). These datasets were used to carry out a validation ANN pro-
cedure, as described in the methodology section. Since the GPS precision of 100,120 samples
was not reported, in this study those points were removed from the analysis. In total, 70%
of the in situ reference repository was randomly divided into training samples to train the
ML algorithm. Moreover, Figure 1 presents each class number in different biogeographical
regions and their ratio to the total number of correspondent classes. It also contains the
area of biogeographical regions and the percentage of each region over the study area.
Continental and Steppic regions contain the most and least training and test samples.
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Table 2. The description and number of nine LUCAS classes and subclasses.

Propagation LULC Class LUCAS Description # Sub Classes # Samples (%)

Areas characterized by an artificial and

Artificial Land often-impervious cover of constructions and 5 6447
(3.13)
pavement (A00).
of & Areas where crops are planted and 74,963
: Cropland cultivated (BOO). 137 (36.36)
Areas covered by trees with a canopy of at least 62,651
Woodland 10%. In addition, woody hedges and palm trees 21 3 0’ 39)
are included in this class (C00). ’

Areas dominated (at least 10% of the surface)

£ by shrubs and low woody plants that are 9789
s i Shrubland normally not able to reach more than 5 m in 2

i . . . (4.75)

height. It may include sparsely occurring trees

with a canopy below 10% (D00).
Land predominantly covered by communities
of grassland, grass-like plants and forbs.
This class includes permanent grassland and
permanent pasture that is not part of a crop
rotation (normally for 5 years or more), which
can be used to grow grasses and other

herbaceous forage naturally (self-seeded) or 46,795

Grassland through cultivation (sown). (22.70)

It may include sparsely-occurring trees within a
limit of a canopy below 10% and shrubs within
a total limit of cover (including trees) of 20%.
These can, themselves, also be grazed, provided
that grasses and other herbaceous forage
remain predominant as well (E00).

Areas with no dominant vegetation cover on at
Barren least 90% of the area or areas covered by 4
lichens/moss (F00).

4487
(2.18)




Remote Sens. 2022, 14, 3041 9 of 27

Table 2. Cont.

Propagation LULC Class LUCAS Description # Sub Classes # Samples (%)

Inland or coastal areas without vegetation and

covered by water and flooded surfaces, or likely
to be so over a large part of the year. If

temporarily dry, the outlines of the water areas

have to be clearly visible on the orthophotos. 207
Temporarily submerged islands and sandbanks (0.10)
are to be assigned in FXX classes, with a remark

“temporarily flooded” (G00). In this study, 23

samples of Glaciers, Permanent Snow (G50)
were moved to Sea/Ice class.

Water

Wetlands are areas that fall between land and
water. These are areas that are wet for long
enough periods that the plants and animals

living in or near them are adapted to, and often
dependent on, wet conditions for at least part of
their life cycle (HO00).

Wetland Wetlands are defined as land that is: (a) 5
Inundated with water on a temporary or
permanent basis, (b) Inundated with water that
is usually slow moving or stationary, (c)
Inundated with water that is shallow, or (d)
Inundated with water that may be fresh,
brackish or saline.

785
(0.38)

“Glaciers, Permanent Snow” (G50) is a sub class
of Water. These areas are covered by glaciers 23
(generally measured at the time of their greatest (0.01)
expansion in the season) or permanent snow.

Snow /Ice

3. Methodology

Figure 3 presents the flowchart of the proposed classification method for continental
Europe LULC mapping. Each step is also explained in detail in the following subsections.

3.1. Data Preparation
3.1.1. Satellite Data Preprocessing

As stated earlier (see Section 2.2), three types of satellite datasets were employed to
produce the continental scale map of Europe. The preprocessing steps applied to each
satellite data are explained below.

A Sentinel-1 GRD dataset at IW mode, accessible within GEE through the snippet
of ee.ImageCollection (“COPERNICUS/S1_GRD”), was employed to generate SAR features.
All Sentinel-1 images were grouped into six two-month intervals (see Table 3) and then
were aggregated using the mean reducer function to produce bi-monthly SAR features. This
step allowed the production of SAR features with lower susceptibility to image acquisition
conditions. It also reduced speckle noise from the mosaicked images [76]. Consequently,
12 SAR features (i.e., six bi-monthly VV and six bi-monthly VH) were generated for further
processing. It is worth noting that incorporating bi-monthly SAR features could beneficially
contribute toward separating different classes in the study area by preserving temporal
features [77,78].
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Figure 3. The flowchart used for generating the ELULC-10 map (GT: Ground Truth as LUCAS refer-
ence samples, ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer, SRTM:
Shuttle Radar Topography Mission, DEM: Digital Elevation Model, NDVI: Normalized Difference
Vegetation Index, NDWI: Normalized Difference Water Index, SNIC: Simple Non-iterative Clustering,
SD: Standard Deviation, ANN: Artificial Neural Network, and LULC: Land Use Land Cover).
Table 3. The number of satellite images from 2016 to 2021 (e.g., Sentinel-1, -2, and Landsat-8) utilized
for providing features after the preprocessing procedure.
Satellite Datasets
Month Sentinel-1 Sentinel-2 Landsat-8
Features # Image Features # Image Features # Image
! January VV-1, VH-1 30,709 x x x x
2 February X X X X
3 March VV-2, VH-2 31,871 x x X x
4 April
5 May VV-3, VH-3 24,579 NDVI-1 55,388 NDVI-1 3987
6 Jun
Z A{l ulzs . VV-4, VH-4 34,159
5 Sept B NDVI-2 83,053 NDVI-2 5344
10 October VV-5, VH-5 34,530
11 November VV-6, VH-6 31,555 X X X X
12 December X X X X
Total 6VV,6 VH 2 NDVI 2 NDVI

Sentinel-2 level-2A products, accessible within GEE through the snippet of ee.ImageCollection
(“COPERNICUS/S2_SR”), were utilized for the classification task. These products provide
surface reflectance values, and are derived from the Sentinel-2 level-1C dataset by applying the
Sen2Cor prototype processor [79]. This processor performs atmospheric, terrain, and cloud (i.e.,
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cirrus) corrections, and creates Sentinel-2 level-2A products with ready-to-use data for different
applications. Furthermore, due to the sensitivity of optical data to the presence of clouds,
all Sentinel-2 images with cloud cover higher than 10% were excluded from further analysis.
Additionally, the quality band of each image was incorporated to eliminate invalid observations
and produce cloud-free optical images. Afterwards, the red and NIR bands of Sentinel-2 images
were incorporated to calculate the NDVI for all considered images. Subsequently, the generated
NDVI images were grouped into two intervals (see Table 3), and the median reducer function was
then applied to downscale Sentinel-2 NDVI images. The median reducer allowed the generation
of homogenous optical data over the study area in which cloudy, very bright, and very dark
pixels were removed [43,80]. Consequently, two NDVI images from Sentinel-2 level-2A datasets
were considered for further processing.

Landsat-8 level-2 products, accessible within GEE through the snippet of ee.ImageCollection
(“LANDSAT/LC08/C02/T1_L2”), were used as another source of optical data. These products
included atmospherically corrected surface reflectance values, which have been derived by
applying the Land Surface Reflectance Code (LaSRC) algorithm [81,82]. Similar to Sentinel-2
images, a cloud cover filtering step was applied to remove the Landsat-8 datasets with a cloud
cover of over 20%. Later, the pixel quality band of each image was employed to remove
invalid observations and to produce cloud-free optical images. Afterwards, the NDVI images
of all considered Landsat-8 datasets were produced (see Table 3) and then were downscaled
by applying the median reducer function. The median reducer function allowed the generation
of homogenous optical data over Europe in which cloudy, very bright, and very dark pixels
were removed [43,80]. Accordingly, two NDVI images from Landsat-8 level-2 datasets were
considered for further processing.

Overall, a combination of twelve SAR features (i.e., six VV and six VH) and four NDVI
images (i.e., two Sentinel-2 NDVI images and two Landsat-8 NDVI images) were used as
input features to perform the LULC classification task (see Table 3).

3.1.2. Reference Samples Preparation

In this study, two reference datasets generated pointwise (LUCAS 2018 [74]) and
with polygon (harmonized version [75]) units were employed. As described earlier in
Section 2.2 4, the first reference dataset contained more samples in pixel units with a better
distribution across the European lands, with a portion of samples with lower reliability
that could negatively affect the classification procedure. In contrast, the second reference
dataset included fewer samples in polygon units with higher precision. Therefore, it was
inevitable to implement a preprocessing step to exclude samples with lower reliability from
the first reference dataset. Thereafter, the remaining samples of the first reference dataset
were merged with the second reference dataset to produce a consolidated reference dataset.
To this end, the first reference dataset was initially divided into five independent subsets.
Each subset was then individually applied to train and validate several independent ANN
algorithms (described ahead in Section 3.3). In this regard, five soft (i.e., output rule images
of the ANN classifier) classification results were calculated, wherein pixel values showed
the probability of occurrence of the corresponding pixel to each class (i.e., nine LULC
classes). Since the label of reference samples was already known, Equation (1) was adopted
to remove reference samples with lower reliability.

- i B
Reliability Measure = 5*71)1"1“ 1
i=1%i
in which i indicates the ith classification result from the ith subset, P1"¢ is the probability
of true class in the ith classification result, and P/"** is the maximum probability of the
corresponding pixel in the ith classification result. The value of Equation (1) reaches one
when, in all classification results, the true class probabilities are equal to the maximum
probabilities. Conversely, its value reaches to zero when the assigned class (i.e., maximum
probability) does not match the true class (i.e., probability of true class) in all five classifica-
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tion results. Finally, a threshold value of 0.2 was considered to exclude reference samples
with lower reliability. The remaining samples were preserved and merged with reference
samples of the second reference dataset for further analysis.

3.2. Segmentation

Previous studies acknowledged the higher efficiency of object-based image analysis to
improve the accuracy and quality of the generated LULC maps [83-87]. Accordingly, the
Simple Non-Iterative Clustering (SNIC) algorithm, available as a prominent segmentation
algorithm within GEE, was used to segment preprocessed satellite datasets. SNIC is a
modified version of the Simple Linear Iterative Clustering (SLIC) segmentation algorithm
that was improved by removing the iterative procedure and enforcing the connectivity
constraints from the initial step [88]. This segmentation algorithm is started by a user-
defined number of seed points scattered on a regular grid across the image space. Later, a
five-dimensional distance measure (i.e., spatial coordinates and CIELAB color space) along
with the 4/8 connectivity constraint are applied to grow each seed point region, resulting
in the final segmentation image. The implemented SNIC segmentation algorithm within
GEE includes five input parameters: size, compactness, connectivity, neighborhood size,
and seeds, the first four of which are mandatory and should be determined by the user [89].
In this study, the SNIC algorithm was applied to each preprocessed satellite dataset (see
Section 3.1.1) separately, resulting in three segmentation outputs. To this end, the input
parameters of the SNIC algorithms were set to 50 (Size), 1 (Compactness), 8 (Connectivity),
100 (Neighborhood Size), and null (Seeds), which were determined through several trial-
and-error attempts to find optimum values. Subsequently, three segmentation results were
merged through a heterogeneous feature map analysis to generate the final segmentation
result with a higher accuracy for further analysis [90]. The heterogeneous features fusion
strategy is a step to construct the final informative representation of multiple sets of satellite
images [91]. The heterogeneous features at data-level mean that various features with
inherent differences are inputted to the classification algorithm [91]. In this study, the
heterogeneous feature map was constructed with finer segments by overlaying different
coarse segments of the input bands. The performance of fusing coarse-segmented features
was previously shown in cropland classification [92]. It also demonstrated a high accuracy
in land cover time-series analysis [86]. The final segmentation results were used to average
the corresponding pixel values (i.e., in all input features) to reduce the noise (i.e., the
salt and pepper effect of the pixel-based classification) and increase the reliability of the
produced LULC map [60,92].

3.3. Classification

Inspired by the biological neurons system, ANN algorithms are among the most widely
used supervised ML algorithms [93-96]. Interconnected artificial neurons are the central
components of ANN that simulate the neural processing of the human nervous recognition
system and have a high potential to solve non-linear problems, such as classification
tasks [92,97].

In this study, the final mosaicked image with 16 features was employed to produce
the LULC map of Europe. As mentioned earlier (see Section 2.2.4), the consolidated
reference dataset after the preprocessing step (see Section 3.1.2) was randomly divided
into three independent subsets of training (70%), validation (15%), and test (15%) samples.
Subsequently, the training and validation samples were respectively used to train and
adjust the parameters of the ANN algorithm. Later, the independent test samples were
incorporated to perform statistical accuracy assessment and evaluate the performance of
the implemented approach. Despite the high computation capabilities and advantages
of GEE, currently, this cloud platform does not support ANN algorithms in its JavaScript
API, and thus, further analysis was applied within the Google Colab with a direct linkage
to GEE.
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ANN algorithms with different architectures have been developed to produce LULC
maps [92,94,95,97,98]. Accordingly, the first step to implement an ANN algorithm is
determining the required parameters to define the ANN architecture identically. To this
end, four parameters: (1) the number of layers, (2) the number of neurons, (3) the type of
activation function, and (4) the learning algorithm, should be determined. Accordingly, in
this study, a fully connected ANN architecture with an input layer containing 16 neurons
(i-e., equal to the number of input features), two hidden layers with 100 and 50 neurons,
respectively, and one output layer with 9 neurons (i.e., equal to the number of classes) were
employed. The activation functions in the hidden layers and the output layer were sigmoid
and SoftMax, respectively. Furthermore, the adaptive moment estimation (Adam) method
was used as the back-propagation learning algorithm [99]. Additionally, the cross-entropy
loss function was employed as the stopping criteria, and the ANN algorithm satisfied
this criterion after 200 iterations. It is worth noting that the parameter determination step
was conducted based on the visual interpretation of the results of the classification, as
well as using validation samples to have statistical measures. Finally, the trained ANN
algorithm was applied to the final mosaicked image with 16 features to produce the
European LULC map.

3.4. Post-Processing

After applying the classification algorithm (see Section 3.3), a post-processing step
was also implemented to improve the generated LULC map. This aimed to reduce the
associated uncertainty and to increase the accuracy of several classes through knowledge-
based criteria. In this regard, the Digital Elevation Models (DEM) from ASTER (northern
part of Europe) and SRTM (southern part of Europe) were first utilized to delineate high
elevation locations to enhance the classification results of the Snow /Ice class. In this regard,
two threshold values of 1300 (in Sweden and Norway) and 2100 (remnant parts of Europe)
were considered to delineate the potential locations and convert them into polygon format.
Later, a visual inspection of high-resolution images, available in Google Earth, was used
to manually refine the delineated polygons. Then, these corrected polygons were applied,
as a binary mask, to the generated LULC map to remove the wrongly classified objects
in mountainous areas with a high potential of ice and snow cover. Second, the slope (i.e.,
calculated from DEM datasets) and NDWI images were simultaneously incorporated to
enhance the quality of the Water, Barren, and Artificial Land classes. To this end, the annual
NDWI images were calculated using all Sentinel-2 images, and then, the ratio of annual
mean NDWI to the standard deviation of annual NDWI images was computed for each
object. In this ratio index, the higher values belonged to permanent water areas, while
lower values were related to other classes (i.e., Barren and Artificial Land in this case).
This was due to the fact that water pixels had high NDWI values and a low standard
deviation considering the annual NDWI images. Subsequently, two thresholds of NDWI
more than 0.8 and slope values of over 15 degrees were set to refine the classification results
of Water, Barren, and Artificial Land. In other words, these two datasets were incorporated
to reduce the misclassifications that occurred between Water and two classes of Barren and
Artificial Land.

3.5. Accuracy Assessment

Three different strategies were applied to assess the accuracy of the produced European
LULC map. First, a visual inspection was conducted to compare the final classification
results with the available very high-resolution satellite images within ArcMap for different
regions. To this end, several random locations with diverse LULC classes were considered
for comparison, assuring the high reliability of the produced LULC map. Statistical analysis
was also performed to compute the statistical accuracy measures of the produced LULC
map. Regarding the statistical accuracy assessment, different confusion matrices were
calculated, and then, several metrics, including OA, Kappa Coefficient (KC), Producer
Accuracy (PA), and User Accuracy (UA), were derived. It should be noted that the confusion
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matrices were calculated once for the whole European LULC map, as well as for seven
other different ecoregions in Europe. This procedure allowed a comprehensive evaluation
of the produced continental-scale LULC map of Europe. Finally, as the third strategy, the
produced LULC map was compared with other existing LULC maps of Europe to reveal
the applicability of the developed approach.

4. Results

Figure 4 illustrates the produced European-wide LULC map at a 10 m spatial reso-
lution using the ANN classification and LUCAS 2018 datasets in the GEE platform. The
results also demonstrate the high potential of the proposed approach within GEE to identify
LULC classes accurately in a diverse continent, like Europe. As shown in Table 4, the classi-
fication algorithm obtained 95.38% OA and 0.94 KC across Europe, where the minimum
and maximum OAs were derived in the Mediterranean (90.20%) and Alpine (97.21%),
respectively. Table 4 also provides the confusion matrix of the proposed methodology,
including the UAs and PAs of nine LULC classes. Artificial Land, Woodland, and Water
were classified with the highest accuracies (i.e., PA and UA were over 97%). Although
most of the classes were mapped with over 87% accuracies, Barren samples were confused
with those of Croplands. For example, around 27% of the Barren samples were wrongly
classified as Cropland, which could be justified as a seasonality effect. Most Cropland areas
are not cultivated for several months, generating confusion with Grassland and Barren
classes. Furthermore, Barren areas are highly distributed across Europe and cover only
1.22%, limiting the identification of Barren with a high accuracy. Moreover, thanks to
Sentinel-1 data availability, Snow /Ice was accurately detected in Alpine areas (95.65%).
The SAR polarized data made it possible to distinguish this class, along with the capability
of free cloud imaging over Snow/Ice coverages, which are masked mainly by clouds in
optical images during most days of the year.

Table 4. The confusion matrix of the post-processed ELULC 10 map, along with OAs and KCs of all
classes in seven biogeographical regions.

Predicted Samples
Classes 1 2 3 4 5 6 7 8 9 PA (%)
1 Artificial Land 6389 40 19 16 26 13 0 0 0 98.25
2 Cropland 49 71,938 487 464 1965 368 2 8 0 95.56
3 Woodland 18 202 61,174 852 487 152 3 24 0 97.24
% 4 Shrubland 3 61 496 8854 350 80 1 19 0 89.76
—g 5 Grassland 26 1078 375 361 45,012 125 3 35 0 95.74
@ 6 Barren 33 1237 38 50 43 3097 7 0 1 68.73
:_,3 7 Water 0 0 1 2 1 1 205 0 0 97.62
8 Wetland 0 4 3 5 37 49 1 720 0 87.91
9 Snow /Ice 0 0 0 0 0 1 0 0 22 95.65
UA (%) 98.03 9648 9773 8350 9393 7970 92.34 8933  95.65
Alpine Atlantic Boreal Continental Mediterranean Pannonian Steppic Europe
OA 97.21 95.85  96.09 93.98 90.20 96.46 96.09 95.38
KC 0.95 0.93 0.94 091 0.87 0.93 0.92 0.94
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Figure 4. ELULC 10 of the year 2021 produced by an object-based SNIC model and ANN models in

nine classes.

Figure 5 indicates PAs, UAs, Average of Producer Accuracy (APA), and Average
of User Accuracy (AUA) in all biogeographical regions and for all LULC classes except
Snow /Ice because this class only exists in the Alpine ecozone. It may be asserted that
the majority of the classes were classified accurately. Additionally, the AUAs and APAs
ranged between 60-97% and 45-94%, respectively, for the nine LULC classes. The highest
accuracy was obtained for Water (100%) in the Atlantic, Pannonian, and Steppic regions.
However, Barren and Shrubland were classified with less than 40% PA in the Boreal ecozone,
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which seemed to be due to data availability (i.e., only 1.25 and 2.9 portions of reference
samples, respectively) and land cover characteristics. On the other hand, there was no
substantial bias in classifying the most dominant biogeographical regions (e.g., Continental
and Mediterranean) and classes (e.g., Woodland and Cropland), which demonstrated the
proposed methodology’s capability to identify spectral differences.
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Figure 5. The accuracies report of all classes in all biogeographical regions, including OA, PA, UA,
Average of Producer Accuracy (APA), and Average of User Accuracy (AUA) before post-processing.

Among the classes with less than 10% coverage, Artificial Land showed the high-
est accuracies (APA = 93.50% and AUA = 97%), followed by Water (APA = 95.01% and
AUA =96.12%). Both classes were accurately identified in all seven biogeographical re-
gions. The results highlight the proposed methodology’s efficiency in distinguishing small
and heterogeneous built areas and diverse edges of water bodies, such as rivers and lakes.
Moreover, the accurate prediction of Wetland areas (PA = 96.15% and UA = 86.21%) in
Alpine, which is the most common place of wetlands, might show the impact of using SAR
images in accurate Wetland classification.

The European LULC map provides particular interests for various applications de-
manding generalized LULC details, such as agriculture, forestry, urban studies, and hy-
drology. Figure 6 highlights the extent of all classes across Europe with a 10 m binary
mask. These maps confirm that the green natural areas, Woodland (40.27%) and Cropland
(22.42%), are the most prevalent in Europe, similar to what was reported in CLC 2018. On
the other hand, the Barren and Snow /Ice classes have the least coverage. This figure also
indicates the distribution of each class. For instance, the high density of Woodland and iso-
lated Shrubland areas could be detected in the northern regions and south western regions
of Spain, respectively. Likewise, most Wetland areas were over the northern regions.
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Figure 6. The binary maps and adjusted areas of all classes computed using [100,101] es-
timations, showing the extent of each class across the entire continent of Europe using the
proposed methodology.

Figure 7 was also generated to supply more details of the distribution of LULC classes
in seven biogeographical regions. Based on the results, Woodland is the dominant land
cover across five ecozones, including Continental, Boreal, Alpine, Atlantic, and Mediter-
ranean. Over the other two ecozones, Cropland covers more than 50% and 60% of Pannon-
ian and Steppic, respectively. Moreover, the wet areas (i.e., Water and Wetlands classes)
are mostly limited to the Alpine and Boreal regions, whereas they are rarely found in the
Mediterranean region. It could be concluded that the provided results have a meaningful
correlation with previous studies [18].
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Figure 7. The portions of all nine LULC classes across the seven biogeographical regions.

A zoomed area of the final ELULC10-2021 was selected to visually investigate some of
the classification details. It should be noted that several classes of FROM-GLC10, World-
Cover 10, and S2GLC maps were reclassified to make all maps comparable (see Table Al
in Appendix A). As shown in Figure 8, our classification map can accurately distinguish
between different classes over a diverse area, significantly among easily confused classes,
such as Cropland and Grassland. Additionally, the proposed methodology correctly identi-
fied trivial details of the selected subset in urban areas and borders of classes, along with
satisfying a determined correlation to accurate existing maps, such as WorldCover 10 and
ELC-10. Furthermore, the comparison of our results with the most recent LULC maps
produced in 2020 (e.g., WorldCover 10 and Esri 2020) depicts the fact that urban and natural
areas have been accurately classified in ELULC-10. For a further visual interpretation,
the comparison of Figure 8a to Sentinel 10 m high resolution optical (Figure 8g) and SAR
(Figure 8h) images ensures the reliability of the produced map.
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Figure 8. The (a) final ELULC 10 m inventory map, (b) ESA WorldCover 10 m, (c) Esri 2020,
(d) ELC-10, (e) S2GLC, (f) FROM-GLC10, (g) Sentinel-2 MSI color composite images, and (h) Sentinel-
1 GRD grayscale of a sample area in Silbersee, Germany.

In this study, a post-processing procedure was applied to correct misclassified covers.
Figure 9 consists of the classification accuracies of ELC-10, S2GLC10, and the present study
before and after post-processing. Since ELC-10 and S2GLC10 maps were only carried out
on entire continent of Europe, the reported accuracies were considered for comparison
purposes. In total, Figure 9 shows a 4% increase in the mapping accuracy. Although the
applied rules of the post-processing procedure improved the accuracy of the Barren and
Shrubland classes, their prediction was still not accurate, when compared with OA and
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the accuracies of other classes. These rules also increased the classification of wetland
regions by more than 5%. Figure 9 also states that the prediction of most classes was
strengthened, when compared with ELC-10 and S2GLC10. The significant increase in
Snow /Ice accuracy demonstrated the quality of the LUCAS dataset, since S2GLC utilized
outdated CLC reference training data and only optical images. It is worth mentioning that
the accuracy of ELULC-10 is also promising when compared with the national-scale map
across the Europe. For instance, the most recent maps achieved 79.55%, 82%, and 90% OAs
in Greece [48], Belgium [54], and Italy [53], respectively.
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Figure 9. OAs and PAs of the nine LULC classes from the present study, ELC10, S2GLC10, and the
present study (computed using [100,101] estimations) after post-processing.

5. Discussion

Despite the comparison of accuracies, several contributions were offered in the method-
ology of this study to enhance the quality of the final LULC map. First, the object/segment-
based technique has not been proposed to generate global- or continental-scale maps. This
technique can decrease the uncertainties of the pixel-based estimation [25] and create a
map with minimum noise, such as salt and pepper. Moreover, a rich archive of Landsat-
8, Sentinel-1 & 2 was integrated to train a classifier fulfilled by spectral (Sentinel-2 and
Landsat-8) and physical (Sentinel-1) characteristics, which were not so far investigated in
available global/continental maps. Landsat-8 images can also fill the gaps of Sentinel-2
data in producing NDVI time-series features. Additionally, the customized features were
extracted from seasonal characteristics, which can improve the inter-class separability.
Finally, a LUCAS data preparation was implemented to prepare refined reference samples
from poly- and point-based datasets to decrease the uncertainties. This repository included
a comparative number of samples (i.e., more than 200 K).

The LUCAS dataset offers a rich archive for LULC mapping in Europe. However, the
distribution and quality of spatial sampling creates challenges for classification accuracy.
For example, around 30% of LUCAS samples lack GPS precision, indicating misregistration
errors of the field and image, which has already been addressed by [18,75]. Moreover,
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although several sources of uncertainty were solved by d’Andrimont et al. [75], this dataset
still suffers from unequal distribution and imbalances. As shown in Section 2.2.5 and
Figure 1, a proper number of samples were not surveyed in several classes. For instance,
a limited number of wetland samples were reported in the Alpine region, which is the
most common wetland area. Additionally, there is a significant difference in the number of
samples of LULC classes, such as Water, Shrubland, and Wetland. These classes cover more
than 12% of European landscapes, but only 5% of LUCAS samples have been dedicated
to them. It is worth mentioning that Shrubland and Wetland classes were also among the
classes with the lowest accuracies in previous studies and the present work. Considering
the abovementioned points, removing the obstacles in the ongoing LUCAS dataset of 2022
should enable a reliable and robust reference source, including surveying a consistent
ratio of the number of samples to the extent of classes in all biogeographical regions, and
performing an accurate locating service.

Thanks to ESA, USGS, and Google, a rich archive of RS data and cloud computing
platforms have been provided to generate high spatial and temporal maps and address
small-scale changes. Since both Sentinel-1/-2 datasets are available from 2016, the proposed
methodology can provide yearly and seasonal maps, providing a piece of valuable informa-
tion for natural resources studies and management. Moreovet, a cross-correlation of recent
LUCAS versions in 2012 and 2018 and an ongoing survey in 2022 to Sentinel images can be
investigated to address the LUCAS uncertainties; this could provide a strongly correlated
map of the correspondent years.

The Woodland, Cropland, and Artificial Land classes show high accuracies, emphasiz-
ing the high potential of the proposed methodology to categorize their sub-classes. Various
crops, types of trees, and built areas can be classified using the sub-classes of LUCAS using
the proposed methodology. For instance, spectral analysis of Sentinel-2 images integrated
by Sentinel-1 time series [102,103] and dual-polarimetric ratios could significantly improve
the types of trees detection and forest maps at a 10 m sampling. Frequent cropland map-
ping could also be performed through the proposed methodology. Considering the 6-day
temporal resolution of Sentinel data, the methodology could propose frequent monitoring
of the extent of monthly to yearly crops, their destruction, and intensities. It could also
be implemented to frequently observe and accurately categorize croplands of more than
80 types of crops, introduced in LUCAS.

It is highly recommended to consider the present workflow for generating 10 m change
maps since 2016 to report valuable changes, such as urbanization, deforestation, and crop
expansion. In addition to generating temporal maps, the proposed workflow is able to
supply spectral indices (e.g., NDVI and NDWI) time series, which are the most common
procedure to illustrate changes by assessing positive or negative slopes of the time series.
For instance, a critical deforestation caused by urbanization may be a case of study in the
Woodland coverage of Boreal regions.

In addition to existing ensemble ML algorithms, GEE has recently developed its
platform to apply DL algorithms. Despite the proper performance of the commonly
used ML algorithms, such as RF and ANN, DL models have showed higher accuracies
in LULC mapping. However, GEE infrastructure is restricted to the limited number of
features and training samples, especially over large-scale areas. Therefore, rule-based
post-processing was performed in this study to compensate for the shortcomings of GEE in
its number of features. Furthermore, different classification algorithms have been added to
the library, improving the classification robustness, including segmentation algorithms and
all available ML models in Google AI Platform.

6. Conclusions

In addition to the freely available satellite images and ML algorithms in GEE, the
computational power of this platform enables the leveraging of continental and global-scale
LULC mapping. This study generated the most recent European LULC map by integrating
object-based supervised learning, Sentinel-1, -2 and Landsat-8 images, and a LUCAS
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reference samples dataset. A novel reference samples preparation using the ANN algorithm
was also presented to remove the least accurate and noisy samples. Consequently, Europe
was classified in a 10 m spatial resolution with the highest reported accuracy (OA = 91.18%).
The OAs also varied from 90% to 97% across seven biogeographical regions. The proposed
methodology showed that Woodland and Cropland are the most dominant LULC covers
in Europe and were mapped with high accuracies (i.e., above 90%). Barren and Snow/Ice
were found as the least representative classes, covering less than 2% of the study area.
It was also demonstrated that Shrubland and Wetland areas are mostly isolated in the
south-western and northern regions, respectively.

This study addressed two shortcomings using a novel reference sample preparation
and rule-based procedure. The preparation highly improved the reliability of LUCAS
datasets by integrating the original and harmonized versions and removing the noisy
samples. Second, a post-processed map was generated considering the limitation of GEE
in its input features. The rule-based procedures improved the quality of ELULC-10 to
more than 95% OA and 0.93 KC. Overall, this study leveraged all possible European-based
RS data since 2016 and LUCAS reference samples data collection, to generate an accurate
European LULC map. Our mapping accuracies were almost higher than all available
European and global maps. We wish to suggest that the GEE platform could improve its
functionality by inputting more features and providing a separate panel for large-scale
processing. Additionally, the LUCAS dataset may be fulfilled by validation efforts to restrict
uncertainties and make it compatible with RS monitoring.
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Appendix A

Table Al. The reclassified classes of the available 10 m maps for the comparison assessment.

ELULC-10 ELC10 GLC10 Esri ESA S2GLC
Artificial land ~ Artificial land ~ Impervious Built Area Built-up Artificial surfaces
- Cultivated areas
Cropland Cropland Cropland Crops Cropland - Vineyards
Woodland Woodland Forest Trees Tree cover ) Bro.a dleaf tree cover
- Coniferous tree cover
Shrubland Shrubland Shrubland Scrub /shrub Shrubland Sclerophyllous vegetation
- Grassland - Herbaceous vegetation
Grassland Grassland - Tundra Grass Grassland - Moors and heathland
- Bare/sparse
Barren Bare land Barren Bare ground Ve_gl\e;tg:son Natural material surfaces
and lichen
Water Water Water Water Permanent Water bodies

water bodies
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Table Al. Cont.

ELULC-10 ELC10 GLC10 Esri ESA S2GLC

- Herbaceous
Wetlands Wetland Wetland Flooded wetland - Marshes
- Peatbogs

vegetation
& - Mangroves

Snow /Ice Water Snow /ice Snow /Ice Snow and ice Permanent snow cover

Clouds Surfaces permanently covered by cloud
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