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Abstract: Unmanned aerial vehicles (UAVs) have contributed considerably to forest monitoring.
However, gaps in the knowledge still remain, particularly for natural forests. Species diversity, stand
heterogeneity, and the irregular spatial arrangement of trees provide unique opportunities to improve
our perspective of forest stands and the ecological processes that occur therein. In this study, we
calculated individual tree metrics, including several multispectral indices, in order to discern the
spectral reflectance of a natural stand as a pioneer area in Mexican forests. Using data obtained by
UAV DJI 4, and in the free software environments OpenDroneMap and QGIS, we calculated tree
height, crown area, number of trees and multispectral indices. Digital photogrammetric procedures,
such as the ForestTools, Structure from Motion and Multi-View Stereo algorithms, yielded results
that improved stand mapping and the estimation of stand attributes. Automated tree detection
and quantification were limited by the presence of overlapping crowns but compensated by the
novel stand density mapping and estimates of crown attributes. Height estimation was in line with
expectations (R2 = 0.91, RMSE = 0.36) and is therefore a useful parameter with which to complement
forest inventories. The diverse spectral indices applied yielded differential results regarding the
potential vegetation activity present and were found to be complementary to each other. However,
seasonal monitoring and careful estimation of photosynthetic activity are recommended in order to
determine the seasonality of plant response. This research contributes to the monitoring of natural
forest stands and, coupled with accurate in situ measurements, could refine forest productivity
parameters as a strategy for the validity of results. The metrics are reliable and rapid and could
serve as model inputs in modern inventories. Nevertheless, increased efforts in the configuration of
new technologies and algorithms are required, including full consideration of the costs implied by
their adoption.

Keywords: index vegetation; UAV; natural forest; estimation attributes; forest productivity; crown
delineation; automated tree detection

1. Introduction

Accurate forest ecosystem monitoring has become a constant among the requirements
of large-scale environmental projects [1]. For example, the scientific community seeks
improved inputs for models of monitoring greenhouse gases [2] and estimation of carbon
and biomass storage [3], among others, including reducing emissions from deforestation
and forest degradation (REDD) [4].

Remote sensing technology has become more flexible in recent years and offers a
promising perspective [5]. At present, it is not only possible to obtain a greater spatial
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resolution of attributes that are visible to the naked eye, but also to detect multispectral
attributes beyond the visible spectrum [6–8]. For example, experimentation with radiation
emitted by the multispectral indices is crucial to further our understanding of ecological
mechanisms that remain unclear, particularly in heterogeneous forests [9]. To this end, the
application of drone technology has been rapidly extended at small and medium scales [10],
including in the acquisition of highly accurate estimates at the individual tree level that
serves to improve forest management [11,12]. As a result, direct and destructive estimates,
which are normally so time-consuming, have been substituted by indirect estimates, such
as those obtained by using unmanned aerial vehicles (UAV), with the opportunities offered
by near-real-time monitoring with multiple sensors [13].

The Mexican Sierra Madre Occidental is known to occupy a special place in forest
diversity [14], where different conifer and broadleaf species coexist within a small site.
These areas constitute natural laboratories for gathering scientific knowledge regarding
dendroecological attributes, including the use of multispectral indices since these can reflect
different ecological inter-relationships [15]. For example, the estimation of structural at-
tributes to individual tree levels, such as height and crown area, is of great utility for forest
inventories and the determination of biomass and carbon values [3]. For their part, the
multispectral indices are indicators of crown vigor, phenology, structural characteristics, de-
foliation risk and photosynthesis rates, among other variables of forest productivity [16,17].
Monitoring of these variables in complex, unevenly aged and mixed forests can therefore
offer new elements for decision-making on the part of forest managers [18], considering
that these systems are the greatest reservoirs of carbon and are widely representative of the
Mexican forests.

Although different studies have estimated the structural attributes of heterogeneous
forests [19], few have integrated the evaluation of spectral attributes [20]. Moreover,
estimation of aerial structures in natural forests remains a challenge [11].

For this reason, a complete census of the trees in a pilot site was conducted in order to
evaluate the capacity of a UAV to (1) calculate the metrics of tree height, crown area and the
number of trees, and (2) examine the applicability of multispectral indices for monitoring in
a mixed and heterogeneous stand of conifer and broadleaf species in northern Mexico. We
hypothesized that the UAV will provide reliable information pertaining to the attributes of
individual trees, thus serving to improve our future perspective of the vegetation properties.

2. Materials and Methods

The study site is found in the area known as “El Cordoncito” in Mesa de Pawiranachi,
in the municipality of Guachochi, in the Sierra Madre Occidental mountain range of
northern Mexico (27◦80′5700N, 107◦60′4100W; 2400 masl) (Figure 1).

Located in the region of the Holarctic and Neotropical transition, the zone presents a
great complexity of ecosystems predominated by pine and oak forests, as a consequence
of the variables of physiography and climatic units. This region supplies more than 25%
of the timber production in Mexico, and is one of the most important timber reserves in
the country, provides a wide variety of environmental services and has a predominantly
indigenous population [21]. The vegetation includes forests of pine-oak species, such as
Pinus engelmannii Carr., P. arizonica Engelm., P. leiophylla Schiede ex Schltdl. &; Cham.,
Quercus arizonica Sarg., Q. crassifolia Humb. &; Bonpl. and Q. durifolia Seemen ex Loes.,
as well other broadleaf species including Arbutus arizonica (A. Gray) Sarg.; A. bicolor S.
González, M. González &; P.D. Sørensen; Juniperus deppeana Steud. There are also patches of
tropical montane cloud forest and communities such as chaparral (primary and secondary)
and forest clearing vegetation [14]. The dominant soils are Regosols and Leptosols of
alluvial origins. The predominant climate is semi-cold and semi-humid, with long and cold
summers and monsoon rains accompanied by winter precipitation with an annual mean
value of 779 mm and mean annual temperatures of 5 to 12 ◦C.



Remote Sens. 2022, 14, 2775 3 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 19 
 

 

cold summers and monsoon rains accompanied by winter precipitation with an annual 
mean value of 779 mm and mean annual temperatures of 5 to 12 °C. 

 
Figure 1. Location and view of Mesa del Pawiranachi (A) and climogram of the Papajichi ejido in 
Chihuahua, Mexico (B) and the perspective of site (C). 

Workflow 
To obtain field data during the month of October; each individual tree within the 

study area was labeled by fixing an aluminum plate to the base. A complete census of all 
individuals was conducted, recording the following dasometric variables at individual 
tree level: diameter at breast height (DBH, cm) and basal diameter (BD, cm), using a dia-
metric tape; and commercial height (CH, m) and total height (TH, m), which were meas-
ured directly by climbing the trees and using a length meter (Figure 2). 

Figure 1. Location and view of Mesa del Pawiranachi (A) and climogram of the Papajichi ejido in
Chihuahua, Mexico (B) and the perspective of site (C).

Workflow

To obtain field data during the month of October; each individual tree within the
study area was labeled by fixing an aluminum plate to the base. A complete census of all
individuals was conducted, recording the following dasometric variables at individual tree
level: diameter at breast height (DBH, cm) and basal diameter (BD, cm), using a diametric
tape; and commercial height (CH, m) and total height (TH, m), which were measured
directly by climbing the trees and using a length meter (Figure 2).

The study area was overflown using a DJI Phantom multispectral (P4M) quadcopter
(Figure 2). The P4M camera has a total of six imaging sensors, five of which are multispectral
(bands: blue = 450± 16 nm, green = 560± 16 nm, red = 650± 16 nm, RedEdge = 730 ± 16 nm,
near-infrared = 840 ± 26 nm) and one RGB sensor, all with a global 2 MP shutter. The UAV
was flown in order to obtain and subsequently process 400 aerial photographs of the study
area, taken from an altitude of 50 m, with overlaps between the images and lines of 80 and
75%, respectively. A subsequent flight was conducted from east to west in order to capture
RGB and spectral images. Both flights were conducted on 16 October 2021, which was a
sunny day, with suitable wind conditions (<25 kph) and a mean temperature of 19 ◦C.



Remote Sens. 2022, 14, 2775 4 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 2. Workflow of the processing stages of images taken by an unmanned aerial vehicle (DJI 
Phantom 4 Multispectral UAV). 

The study area was overflown using a DJI Phantom multispectral (P4M) quadcopter 
(Figure 2). The P4M camera has a total of six imaging sensors, five of which are multispec-
tral (bands: blue = 450 ± 16 nm, green = 560 ± 16 nm, red = 650 ± 16 nm, RedEdge = 730 ± 
16 nm, near-infrared = 840 ± 26 nm) and one RGB sensor, all with a global 2 MP shutter. 
The UAV was flown in order to obtain and subsequently process 400 aerial photographs 
of the study area, taken from an altitude of 50 m, with overlaps between the images and 
lines of 80 and 75%, respectively. A subsequent flight was conducted from east to west in 
order to capture RGB and spectral images. Both flights were conducted on 16 October 
2021, which was a sunny day, with suitable wind conditions (<25 kph) and a mean tem-
perature of 19 °C. 

The UAV used had a georeferencing system on board during the flight and it was not 
necessary to use the real-time-kinematic (RTK) system since the georeferencing system 
could attain vertical and horizontal location pressures of ±0.1 and ±0.3 m, respectively [22]. 
For processing, we used a computer with an AMD Ryzen 3900x processor with 24 cores 
at 3.8 GHz, with an integrated Nvidia Quadro p620 quad-core 2 GHz video card and 32 
GB of RAM; this was used in a Linux operating system environment based on the ubuntu 
distribution Pop!_OS version 22.04 LTS. 

The images were processed and analyzed with photogrammetric procedures using 
the open-source software OpenDroneMap (ODM version: 2.8.4; Cleveland Metroparks, 
Ohio, USA [23]). This software implements the algorithms Structure from Motion and 
Multi-View Stereo (SfM and MVS), producing 3D point clouds of 1000–20,000 points m−2. 
We used VisualSfM to achieve the 3D reconstruction [12], due to its versatility in terms of 
reduced processing time. We then generated the RGB orthomosaic and multispectral or-
thomosaic. The digital surface (DSM) was generated considering the maximum elevation 
values from the trees in a point cloud. Where two points occurred on top of each other, 
only the tallest point was used. Gaps in the point cloud were filled using the dem-gap fill-
steps process with the local gridding method. The digital terrain model (DTM) was ob-
tained by classifying the point cloud using a simple morphological filter (SMRF). 

Using the raster calculator tool of the open-source software QGIS, the canopy height 
model (CHM; Equation (1)) was generated in order to predict the potential height of each 
tree: CHM = DSM − DTM (1)

where CHM = canopy height model, DSM = digital surface model and DTM = digital ter-
rain model. 

Figure 2. Workflow of the processing stages of images taken by an unmanned aerial vehicle (DJI
Phantom 4 Multispectral UAV).

The UAV used had a georeferencing system on board during the flight and it was not
necessary to use the real-time-kinematic (RTK) system since the georeferencing system
could attain vertical and horizontal location pressures of±0.1 and±0.3 m, respectively [22].
For processing, we used a computer with an AMD Ryzen 3900x processor with 24 cores at
3.8 GHz, with an integrated Nvidia Quadro p620 quad-core 2 GHz video card and 32 GB
of RAM; this was used in a Linux operating system environment based on the ubuntu
distribution Pop!_OS version 22.04 LTS.

The images were processed and analyzed with photogrammetric procedures using
the open-source software OpenDroneMap (ODM version: 2.8.4; Cleveland Metroparks,
Ohio, USA [23]). This software implements the algorithms Structure from Motion and
Multi-View Stereo (SfM and MVS), producing 3D point clouds of 1000–20,000 points m−2.
We used VisualSfM to achieve the 3D reconstruction [12], due to its versatility in terms
of reduced processing time. We then generated the RGB orthomosaic and multispectral
orthomosaic. The digital surface (DSM) was generated considering the maximum elevation
values from the trees in a point cloud. Where two points occurred on top of each other, only
the tallest point was used. Gaps in the point cloud were filled using the dem-gap fill-steps
process with the local gridding method. The digital terrain model (DTM) was obtained by
classifying the point cloud using a simple morphological filter (SMRF).

Using the raster calculator tool of the open-source software QGIS, the canopy height
model (CHM; Equation (1)) was generated in order to predict the potential height of
each tree:

CHM = DSM−DTM (1)

where CHM = canopy height model, DSM = digital surface model and DTM = digital
terrain model.

Analysis of the canopy consisted of detecting and geolocating trees in the study area,
estimating their heights and delimiting their crowns to obtain the values of crown diameter
and area. The package ForestTools [24] of the statistical software R [25] was used as a tool to
geolocate the individual trees and delimit their crowns through the variable window filter
(VWF) algorithm and the algorithm of segmentation controlled by markers. This package
automatically detects the crowns of the trees, obtains the tree height (TH, m), generates
polygons and calculates the area of the crown (Ac, m2).

Using the multispectral orthophoto, the reflectance level was calculated according to
the wavelength of each band. In the QGIS software, the Semi-Automatic Classification
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Plugin was executed; this tool allows us to calculate the reflectance of a chosen area
according to the values of each band.

Given there are studies that have exhaustively verified their adequacy, and some
may be redundant [26,27], we consider it appropriate to analyze them individually in
order to obtain a more profound interpretation. Moreover, it has been documented that
each is affected by sensor type and atmospheric effects, for which reason multi-analysis
provides a rigor that guarantees their replicability and cooperation [28]. The calculation
was performed using the raster calculator of the program QGIS through the following
expressions (Equations (2)–(9)).

NDVI =
NIR− RED
NIR + RED

(2)

LCI =
NIR− RedEdge

NIR + RED
(3)

RVI =
NIR
RED

(4)

GNDVI =
NIR−GREEN
NIR + GREEN

(5)

NDRE =
NIR− RedEdge
NIR + RedEdge

(6)

NDGI =
GREEN− RED
GREEN + RED

(7)

TVI =

√
NIR− RED
NIR + RED

+ 0.05 (8)

OSAVI =
NIR− RED

NIR + RED + 0.16
(9)

where NDVI = normalized difference vegetation index, GNDVI = green NDVI, LCI = leaf
chlorophyll index, NDRE = normalized difference red edge index, OSAVI = optimized soil
adjusted vegetation index, RVI = ratio vegetation index, TVI = transformed vegetation index,
NDGI = normalized difference greenness index, NIR = near infrared band, RED = red band,
RedEdge = red edge band and GREEN = green band.

To evaluate photosynthetic activity within the community, the index values were
extracted for the crown of each tree. In order to obtain the statistics per genus, the zone
statistics tool of the QGIS program was implemented.

With the exception of the crown, which is a novel parameter not geometrically compa-
rable in the field, estimates of the variables at the individual tree level obtained with the
UAV were evaluated with respect to the field measurements. In the case of height, given the
operational difficulty of its measurement, a subsample of n = 57 trees was used to evaluate
the accuracy of the estimates (https://youtu.be/EIkZQX8qI98; accessed on 22 March 2022).
As a validation strategy, we manually digitized 47 trees and compared these with those
values derived from the algorithm (Ac).

3. Results

A total of 400 images were obtained with the RGB sensor on a single flight and used
to generate the RGB orthomosaic (the processing was 4 min), the digital terrain, the surface
models and the canopy height models derived from the photogrammetric process (the
processing was 8 min) with the software OpenDroneMap (Figure 3).

https://youtu.be/EIkZQX8qI98
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(D) = canopy height model, derived from the UAV flight.

In the field study, 163 trees in “El Cordoncito” in the Mesa del Pawiranachi were
recorded and measured. Table 1 presents the descriptive statistics of the metrics of the
individuals taken in the field and calculated in the office. This area is a natural forest and
subjected to timber forest management, the individual trees of which present a normal
diameter of 1.8 to 62.3 cm with an average of 9.25 cm, and heights of 0.63 to 20.76 m with
an average of 4.91 m. This indicates that the population present in “El Cordoncito” is in a
state of growth since most of the individuals are juveniles with only a limited number of
dominant trees present.

Table 1. Statistical description of the trees recorded in “El Cordoncito”.

Variable CH TH Hc BD ND

n 163 163 163 163 163
min 1.13 1.91 0.56 4 1.8
q1 1.86 3.495 1.555 9.25 6.2

average 2.211 4.911 2.7 13.064 9.247
median 2.16 4.45 2.18 11.5 8.1

q3 2.41 5.5 3.185 15.05 10.75
max 5.39 15.09 10.41 46.3 37.5
sd 0.664 2.262 1.782 6.446 5.231
se 0.052 0.177 0.14 0.505 0.41

where CH = commercial height (m), TH = total height (m), Hc = height of crown (m), BD = basal diameter
(cm), ND = normal diameter (cm), n = number of trees, q1 = quartile 1, q3 = quartile 3, max = maximum,
min = minimum, sd = standard deviation and se = standard error.

Statistics were also obtained at the genus level (Table 2). The greatest densities per
genus were Pinus, Juniperus, Quercus and Arbutus (109, 43, 9 and 2, respectively), for
which reason the forest in the community is Pinus-Juniperus.

Using the variable window filter algorithm of the package ForestTools, 132 trees were
detected and their crowns delimited (Figure 4). The algorithm had a tree identification
accuracy of 64.4% (163 digitalized–132 detected) with respect to the trees verified in the
field. This can be attributed to the heterogeneity of the canopy structures, where some
trees underlie the dominant individuals, as well as to the irregular spacing among the trees
themselves.
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Figure 5 shows the results of the linear regression applied to determine the relationship
between the height and crown values recorded in the field and those estimated with the
UAV. Furthermore, a graph of dispersion of the residuals of the field data against the
predicted values is presented. Statistical evaluations of the characteristics recorded with
the field data and those estimated with the UAV showed that 90% of the height and 91% of
the crown delineation values are explained by the UAV.

Table 2. Statistical description of the trees recorded in “El Cordoncito”.

Genus Variable n min q1 Average Median q3 max sd se

A
rb

ut
us

CH

2

1.54 1.585 1.63 1.63 1.675 1.72 0.127 0.09
TH 4.05 4.318 4.585 4.585 4.852 5.12 0.757 0.535
Hc 2.51 2.732 2.955 2.955 3.178 3.4 0.629 0.445
BD 12.5 14.125 15.75 15.75 17.375 19 4.596 3.25
ND 8 9.45 10.9 10.9 12.35 13.8 4.101 2.9

Ju
ni

pe
ru

s CH

43

1.13 1.43 1.745 1.71 2.03 2.41 0.365 0.056
TH 1.91 2.58 3.549 3.45 4.47 6.34 1.122 0.171
Hc 0.56 1.005 1.804 1.57 2.32 4.89 0.876 0.134
BD 4 6.55 10.667 8.3 14.15 28.8 5.213 0.795
ND 1.8 3.95 7.174 6.1 10.05 22.6 4.042 0.616

Pi
nu

s

CH

109

1.52 2.02 2.429 2.28 2.53 5.39 0.678 0.065
TH 2.21 3.88 5.33 4.7 6.1 15.09 2.373 0.227
Hc 0.6 1.75 2.901 2.47 3.32 10.41 1.856 0.178
BD 6.3 10 13.504 11.6 14.7 46.3 6.025 0.577
ND 3.9 6.9 9.742 8.2 10.3 37.5 5.141 0.492

Q
ue

rc
us

CH

9

1.66 1.72 1.927 1.92 2.02 2.31 0.208 0.069
TH 3.3 4.91 6.411 5.86 8.81 10.11 2.446 0.815
Hc 1.64 2.99 4.484 3.95 6.83 8.01 2.29 0.763
BD 6.3 11.5 18.6 16.4 19.5 44.7 11.669 3.89
ND 3.5 7.4 12.789 11.4 14.3 31.3 8.264 2.755

where CH = commercial height (m), Hc = height of crown (m), TH = total height (m), BD = basal diameter
(cm), ND = normal diameter (cm), n = number of trees, q1 = quartile 1, q3 = quartile 3, max = maximum,
min = minimum, sd = standard deviation and se = standard error.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Digitalization of trees (top left), digitalization of crowns (top right), trees identified (bot-
tom left) and crowns detected (bottom right) using the ForestTools algorithm. 

 
Figure 5. Regression analysis (top) and graph of residual vs. predicted values (bottom) for height 
(left) and crown delineation (right), at individual tree level with field data and estimates derived 
from the UAV, from 57 trees detected with the ForestTools algorithm. 

Three crowns were randomly selected (one of each genus) in order to obtain the mul-
tispectral reflectance (Figure 6). 

Figure 4. Digitalization of trees (top left), digitalization of crowns (top right), trees identified
(bottom left) and crowns detected (bottom right) using the ForestTools algorithm.



Remote Sens. 2022, 14, 2775 8 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. Digitalization of trees (top left), digitalization of crowns (top right), trees identified (bot-
tom left) and crowns detected (bottom right) using the ForestTools algorithm. 

 
Figure 5. Regression analysis (top) and graph of residual vs. predicted values (bottom) for height 
(left) and crown delineation (right), at individual tree level with field data and estimates derived 
from the UAV, from 57 trees detected with the ForestTools algorithm. 

Three crowns were randomly selected (one of each genus) in order to obtain the mul-
tispectral reflectance (Figure 6). 

Figure 5. Regression analysis (top) and graph of residual vs. predicted values (bottom) for height
(left) and crown delineation (right), at individual tree level with field data and estimates derived
from the UAV, from 57 trees detected with the ForestTools algorithm.
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Figure 6. Spectral reflectance at different wavelengths in the crowns of three different genera.

With regard to estimations of the vegetation index, Figure 7 shows the different indices
calculated for “El Cordoncito” in Mesa de Pawiranachi from the multispectral orthomosaic
derived from the photogrammetric process with OpenDroneMap. Moreover, it was possible
to determine the indices NDVI, NDGI, GNDVI, NDRE, OSAVI, LCI, TVI and RVI, obtaining
values from −1 to 1, except for RVI, which presented values greater than 1 (Figure 7).
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Figure 7. Vegetation indices of “El Cordoncito” in Mesa del Pawiranachi, NDVI = normalized
difference vegetation index, GNDVI = green NDVI, LCI = leaf chlorophyll index, NDRE = normalized
difference red edge index, OSAVI = optimized soil adjusted vegetation index, RVI = ratio vegetation
index, TVI = transformed vegetation index, NDGI = normalized difference greenness index.

For evaluation of the indices according to the delimited trees, NDVI ranged from
−0.701 to 0.665, TVI from 0.855 to 0, LCI from 0.48 to −0.95, GNDVI from 0.60 to −0.70,
OSAVI from 0.67 to −0.70, NDRE from 0.47 to −0.55, NDGI from 0.47 to −0.55, and RVI
from 0 to 4.13 (Figure 7).
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The values of the vegetation indices of the crown were visibly higher (green and yellow
colors) than the discriminated indices (herbaceous plant vegetation, bare soil, dead vegetal
material—orange and red colors). However, both low and high values were found within
the tree crowns. These are hypothetically attributable to different levels of photosynthetic
activity, as well as open spaces. Figure 8 shows the distribution range of the maximum
values of the vegetation indices per genus, which are commonly associated with seasonal
extremes in variations of vegetation dynamics [29].

In terms of the distribution of the maximum values of the vegetation indices per genus,
Quercus was highest in the indices TVI, NDVI, OSAVI, and LCI (Figures 8 and 9), while
Arbutus was highest in NDRE and LCI, and Pinus in NDGI. Juniperus was the lowest
across all of the indices (Table 3).
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Table 3. Statistical description of the maximum values of the vegetation indices of the de-
tected crowns.

Variable GNDVI LCI NDGI NDRE NDVI OSAVI RVI TVI

min −0.024 0 −0.347 0 −0.206 −0.206 0.658 0.455
average 0.307 0.198 0.089 0.212 0.412 0.412 2.508 0.680

max 0.596 0.453 0.520 0.472 0.664 0.664 4.96 0. 845
sd 0.109 0.118 0.117 0.141 0.112 0.112 0.598 0.073

where min = minimum, max = maximum, sd = standard deviation, NDVI = normalized difference vegetation
index, GNDVI = green NDVI, LCI = leaf chlorophyll index, NDRE = normalized difference red edge index,
OSAVI = optimized soil adjusted vegetation index, RVI = ratio vegetation index, TVI = transformed vegetation
index, NDGI = normalized difference greenness index.
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4. Discussion

Modern silviculture aims to optimize resources in the search for sustainable forest
management [30]. This study developed procedures for the estimation of attributes at
the level of the individual trees that are pioneers in Mexican natural forests. The number
of trees, crown area and total height are the main measurements in the forest inventory
and are critical to the support of appropriate decision-making. Similarly, multispectral
indices were calculated as a strategy with which to improve knowledge of reflectance as an
indicator of the ecological mechanisms faced by these ecosystems [31].

The quantification of such structural variables/traits has implications for the fauna in
the habitat [32] and, in general, for the ecology of the forest stand [33]. For example, the
geometry of the crown and the tree height is directly related to the capacities for carbon
capture, while the photosynthetic rates of the trees can provide indications regarding vigor
and climatic vulnerability [34]. These aerial parts of the tree represent variables of great
ecological interest that merit further investigation in order to contribute to our knowledge.

4.1. Estimation of Attributes of Individual Trees

Regarding estimation of tree-level attributes using UAV technology, our study pro-
vides a perspective of such estimation in natural stands. From a practical point of view,
this strategy enhances the use of individual tree-level attribute measurements, saves time
and improves certainty. In spite of certain shortcomings (addressed below), we demon-
strate that, when traditional measurement procedures are combined with UAV-derived
geospatial information, knowledge of forest stands is enhanced and decision-making in
forest management could be improved as a result. To scale up the potential for application
to larger areas of forest, ideal experimentation sites must be identified. We consider that
the study area was strategic in terms of the potential extrapolation of the application of the
technique to other management scales. For example, the coexistence of four genera within
a relatively limited area, together with the dendroecological structural variations present
(see Table 2), confers advantages over traditional monospecific and contemporary studies
and those of regular spatial arrangement [35].
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In the first instance, quantification of the number of trees produced limited results,
unlike those found in neighboring areas [12]. This could be explained by the difference in
the structural complexity of the stand, as well as in the number of UAV flights performed.
However, our findings can provide forest managers with a spatial perspective regarding the
density of the forest that could be of utility for the purposes of exploration and planning,
and that was previously unavailable or very difficult to achieve at ground level.

Delimitation of the tree crowns using UAV technology constitutes an important metric
in biometry with implications for tree physiological development. In the field, the techni-
cian normally tries to indirectly estimate this parameter by assuming the area of a circle
from the average of the greatest and smallest diameters of the crown. However, the bias
inherent in this technique reduces the reliability of the results. For this reason, the estimates
generated by the UAV present greater certainty since the algorithm acts to more closely
delimit the irregular shape, as seen in [36]. The Structure from Motion (SfM) algorithm has
been successfully used in conifer forests; however, its application in mixed forests with
broadleaf species is still incipient [37]. Our results are favorable since tree density and
distribution can be mapped along with the crown area. These metrics therefore offer an
opportunity to influence estimates of biomass and/or carbon [38].

From an ecological perspective, the crown is a multipurpose ecological indicator, in-
cluding estimates of the potential for carbon capture, aerial biomass storage, forest fire risk,
requirements for cultivation work (pruning, thinning, etc.), density regimes, vegetation
changes, regeneration strategies, classification of species and refuges for fauna [39,40].
Accurate estimation of the crown dimensions is therefore essential for precision silvicul-
ture [41].

One limitation of the detection algorithm is that the segmentation routine is strongly
affected by stand characteristics such as density, species heterogeneity, and tree age [37].
Our strategy consisted of smoothing the canopy height model using filters, as seen in [39].
The result allowed better crown delimitation despite the differences in leaf and branch
shapes among the studied genera. However, it is important to monitor the intensity of the
filters and verify the field data, since small trees may be omitted, as well as those that were
being suppressed by the adult trees. It is therefore advisable to complement the analysis
with hyperspectral and LiDAR tools [42–44], although the financial implications should
also be taken into account. In addition, segmentation techniques need to be refined to
delimit the crowns from the tree tops. We therefore recommend conducting thorough initial
tree top detection for use as an input to the canopy delimitation process

Although our study did not include an exhaustive analysis of the accuracy of auto-
delimitation of the tree crown, we found the estimations to be good (R2 = 0.91; RMSE = 1.83 m2).
Better results were clearly evident in the broadleaf species, supporting [37]. We attributed
this to the fact that this particular leaf foliage gives rise to a homogeneous crown con-
formation, while the needle and branch arrangement in the conifers gives rise to greater
inconsistencies in the segmentation process [44,45]. It is also advisable to differentially eval-
uate the algorithms according to species, given the variation that exists in the configuration
of the irregular geometry that confers differing complexity according to genus.

Accurate height estimation is of crucial importance for both ecological and commercial
reasons. It is a significant indicator of the productive capacity of the site and a fundamental
requirement for subsequent estimates of stand structure [37]. Our methodology produced
acceptable results (R2 = 0.91, RMSE = 0.36) since, compared to previous studies such as those
of [30,45], the statistical values are consistent. Any bias can be attributed to the difficulty in
mapping the vegetation and leaf litter below the tree at the time of generating the digital
surface model, and subsequent corrections are therefore advisable when field data on
leaf litter thickness are available. However, the estimation capabilities of the UAV are
significantly better than those of technician-led efforts, since the occlusion and overlapping
of canopies make it difficult to accurately distinguish the canopy apex. Another limitation
may be the seasonality of the estimations, since some species of the genera Arbutus and
Quercus are devoid of foliage at certain times of the year, making it difficult to distinguish
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the uppermost tip of the tree. In normative terms, the error found is permissible under
current regulations [46].

4.2. Multispectral Indices

Remote sensing is considered one of the most powerful technologies for vegetation
assessment. The rapid and vertiginous development of this technology has proven to be an
effective tool with which to further our understanding of vegetation dynamics [1,11]. In
this study, we extracted the canopy reflectance spectrometry through multispectral indices
using UAV at the individual-tree level.

It is recognized that the photosynthetic capacity of canopies is a crucial parameter
with which to improve our understanding of the eco-physiological processes taking place
between the forest and the atmosphere, i.e., the magnitude of photosynthetic variability in
forest species remains a challenge that merits analysis beyond the leaf level, and its accurate
estimation would reduce uncertainty in terrestrial biosphere models (e.g., carbon fluxes
and others). With no intention of explaining the rates and thresholds of photosynthesis of
the studied species, we discuss the spectral reflectance results calculated with multispectral
vegetation indices (e.g., VI). This is a preliminary step to further exploring their use and
linkage with ground-truth photosynthetic measurements (not measured in this study).

In addition, the spectral reflectance captured by a UAV sensor at canopy level is known
to be associated, to a greater extent, with canopy geometry and dispersion of the foliage,
etc., often producing spurious spectral variation that can be confused with the spectral
signature associated with plant photosynthesis. As discussed below, each index presents
differences in its spectral reflectance, but the best combination of these VI remains to be
explored. Consequently, we discuss them as a potential source that could predict future
photosynthetic productivity [47].

It is noteworthy that, although these VI are not direct measures of actual productivity
rates, they are in line with previous studies that use reflectance as a viable tool with which
to predict photosynthetic variables, or as an indicator of canopy “greenness” [48], although
in this study we only used reflectance spectra and never used leaf-level data or phenological
measurements.

In this sense, the NDVI represented the greenness of the individuals and is used by
some authors as a proxy for relative biomass [49–51], although it is recommended to deter-
mine light use efficiency (LUE). By taking advantage of contrasts between electromagnetic
bands and chlorophyll pigments, this index allowed us to differentially distinguish the
trees in terms of vigor (Figure 8). The genus Quercus presented the highest values of this
index, with advantageous implications for the conservation of this genus in the face of
predicted climatic change [52]. Secondly, Pinus and Arbutus seem to share the same level
of “greenness”, although without very critical conditions. In contrast, the genus Juniperus
seems to be the most heavily impacted by environmental or anthropogenic stressors (not
studied here). Management strategies such as pruning, thinning, controlled burning and
other regimes that could influence site productivity should therefore be considered. The
reliability of NDVI in evergreen forests requires further assessment given that previous
studies demonstrated uncoupling between NDVI magnitude and productivity due to a
change in radiation-use efficiency [48,50,53]

The TVI is sensitive to crown structure [54] and is highly recommended for monitoring
changes in the dynamics of the vegetation due to its property of contrasting the values of
reflectance [55]. Its values confirmed Quercus as the genus with higher spectral reflectance
than the other three genera.

A similar trend was followed by GNDVI, as an indicator of water from soil moisture
and nitrogen consumption attributable to photosynthetic activity. Although our study did
not contemplate chemical analysis of the soil, previous studies in neighboring sites have
reported that nitrogen is not limiting [12]. Consequently, we hypothesized that water will
be the limiting factor, as documented by [56,57]. These sites are of shallow soil depth and
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water from the monsoon rains tends to run off, leaving the trees under water stress and
heavily reliant on winter rains to carry out their physiological processes [58].

The NDRE proved to be a useful complement with which to detect tree anomalies,
since it optimizes the detailed data between the red bands and the NIR, complementing
the benefits of the NDVI [59]. Thus, Arbutus differed markedly from the other three genera
(Figure 8), meaning that this species undergoes marked changes in the properties of its
spectral reflectance with respect to the other species. NDRE has been reported as a potential
indicator of chlorophyll and changes in photosynthetic rate transitions (not measured
here), making it very useful for programming in situ cultural activities that require these
plants [59].

The LCI indicated the level of chlorophyll, where the genus Arbutus differed notably
from the other genera. According to [13], this index is a good indicator of the leaf area
index and is related to the maturity of the individual. For this reason, it merits continuous
monitoring.

Regarding the OSAVI, this index evidenced that the highest chlorophyll values are
presented by the genus Quercus, followed by Arbutus and the pines, whilst the Juniperus
present a small scale. This index considers the soil as a factor of chlorophyll content, such
that it is directly related to the amount of canopy foliage [60]. Coincidentally, [61] reports
that its values are proportional to the robustness of the canopy. This makes sense since the
oaks presented the largest crown dimensions (Table 2). As a consequence, this index could
be appropriate for monitoring photosynthetic activity in closed, high-density canopies.

The RVI reflects the fact that the genus Quercus presents the highest chlorophyll values,
which is attributed to its greater quantity of foliage and higher crown volume (Figure 8).
These results agree with [62], who state that this index is an indicator of chlorophyll content
as a factor that influences photosynthesis and nitrogen content.

The NDGI showed the best values for Juniperus and is an indicator [63] of changes
in the status quo of the vegetation, e.g., post-disturbance. In other words, this greenness
index reflects the reflective characteristics of plants, as determined by their momentary
condition. Juniperus differs from other species in terms of cellular structure and moisture
and chlorophyll content.

Our spectral multi-indices approach produced greater knowledge of the variation in
spectral signatures, as a reflection of the potential photosynthetic activity in the studied trees.
As shown in Figure 6, the wavelengths highlight a significant decrease in the percentage
of genus-differentiated reflectance around 650 nm. These differences can be interpreted
in different ways [63], but it is desirable in the future to take further considerations into
account in order to make these data useful for interpretations of photosynthetic activity
as such. For example, determination of the radiation use efficiency (RUE) from careful
ground measurements would allow a better understanding of the rate of photosynthesis
through NDVI. On the other hand, it is necessary to derive continuous spatial and temporal
information regarding the tree physiology, complement with hyperspectral data, refine
radiometric corrections and calibrate the sensors. This will act to reduce the uncertainty of
monitoring the performance of photosynthesis at canopy level, and eventually at leaf level.

We also do not discount the possibility that our results could allow us to discrimi-
nate species and phenological processes [64–66]. In any case, it is crucial to determine
the behavior of dendroecological variables collected in situ, since multispectral indices
are complementary to the field information, which is essential in order to reach better
conclusions.

As a limitation, the seasonality of image acquisition should be considered, since there
are reports that multispectral indices are also multiseasonal [67]. The dynamics of tree
phenology and physiological processes, therefore, merit further study with a temporal
perspective. Particularly in the case of oaks, for example, there are seasons when the tree
is devoid of foliage while the tree develops other physiological processes, such as root
elongation, radial growth, bud development, etc.
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Despite the promising results in terms of extracting phenotypic information of high
spatial resolution and accurate spectral reflectance for tree-level applications, we highlight
certain limiting factors that merit further research. For instance, a range of phenological
stages, leaf optical properties, soil reflectance, canopy structure, sun directions, saturation
phenomenon, sensor effects, etc. are all important factors governing spectral accuracy [68].
It is therefore advisable to exercise caution with the application of our approach, which is
merely descriptive. Before linking multispectral imagery with vigor or tree productivity,
fresh consideration of the use of UV-based VI is required. The lack of synchrony between
canopy spectrometry and physiological processes means that these indices are not infallible
indicators of instantaneous photosynthetic rates. The major problems include atmospheric
effects, optical properties and canopy structural attributes, which must be measured in
situ. Thus, the combination of VI with environmental and physiological variables requires
the adoption of more innovative approaches. In addition, multispectral data acquisition
and processing techniques imply high technical requirements and the need for specialized
personnel.

5. Conclusions

This research was advantageous for forest monitoring in natural forests and could
complement forest inventories and ecology studies. The long time periods required for
individual field estimations are drastically reduced by the approach followed here. Our
workflow proved to be an effective alternative for characterizing tree attributes. The infor-
mation generated substantially facilitates applications using the knowledge of the studied
species metrics. The accuracy of the metrics is reliable and the multispectral indices are
useful indicators of potential photosynthetic capacity. They represent surrogate variables
that can be used as input for models of forest ecosystem dynamics. The characterization of
VI was a valuable indicator for distinguishing functional genus types. In particular, NDVI
is a dominant and effective index for detecting photosynthetic activity, although this does
not imply that it is infallible. As a result, one may consider the use of other vegetation
indices as generated here.

The quality of the mapping allowed the proposal of new research paradigms, including
the need to adjust the algorithms according to tree age, height and species group, since
the mapping results were influenced by species composition. Likewise, stand density
merits the exploration of additional technologies in order to reduce uncertainty, but the
implications in terms of economic costs must be taken into account.
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