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Abstract: With increasing access to open spatial data, it is possible to improve the quality of analyses
carried out in the preliminary stages of the investment process. The extraction of buildings from raster
data is an important process, especially for urban, planning and environmental studies. It allows,
after processing, to represent buildings registered on a given image, e.g., in a vector format. With
an actual image it is possible to obtain current information on the location of buildings in a defined
area. At the same time, in recent years, there has been huge progress in the use of machine learning
algorithms for object identification purposes. In particular, the semantic segmentation algorithms of
deep convolutional neural networks which are based on the extraction of features from an image by
means of masking have proven themselves here. The main problem with the application of semantic
segmentation is the limited availability of masks, i.e., labelled data for training the network. Creating
datasets based on manual labelling of data is a tedious, time consuming and capital-intensive process.
Furthermore, any errors may be reflected in later analysis results. Therefore, this paper aims to
show how to automate the process of data labelling of cadastral data from open spatial databases
using convolutional neural networks, and to identify and extract buildings from high resolution
orthophotomaps based on this data. The conducted research has shown that automatic feature
extraction using semantic ML segmentation on the basis of data from open spatial databases is
possible and can provide adequate quality of results.

Keywords: semantic segmentation; open data; deep learning; building extraction; unet; deeplab

1. Introduction

Increasing access to open spatial data and the development of machine learning
algorithms mean that information can be extracted accurately from satellite and aerial
imagery. On this basis, it is possible to determine the location of objects more precisely at
the early stages of urban, planning and environmental analyses.

Information extraction can take place at different levels of complexity. The result
is mainly dependent on the input data, the object of analysis and the algorithm used.
Open spatial data are currently an increasingly important source of information in various
areas of the economy. Their numbers are enormous and the amount of disk space they
occupy is growing every day [1]. However, the use of such data requires processing it for
specific applications. For several years, solutions based on deep neural networks have been
increasingly popular. As a result, it is possible to classify, detect or segment objects, for
example, from open raster data.

The application of semantic segmentation to geospatial data gives satisfactory results
for: the extraction of objects, such as buildings [2–9]; roads [10,11]; the assessment of
damage due to natural disasters [12]; or during population density assessment [13]. The
problem with semantic segmentation is the small amount of publicly available labelled data
that can be used to train the network. Creating datasets based on manual labelling of data is
a tedious, time-consuming and capital-intensive process [14–16], and any errors can affect
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the results of the analysis. These problems motivate the search for solutions to automate the
creation of masks for semantic segmentation from raster data (e.g., orthophotos), including
those based on open vector spatial data [3]. Compared to our approach, existing works
do not use mostly accurate and publicly available cadastral data or use less accurate data
(raster with larger terrain pixel) as, for example, in Inria Dataset [17], and are not as flexible.
In our approach, we can use data from different areas and create diverse datasets, as will
be shown later in the paper.

Raster-based open spatial data can be divided into global and local (national). Global
data are mainly remote sensing data acquired from satellites. The European Space Agency’s
Sentinel-2 mission allows the free acquisition of raster data which contains information not
only on RGB channels, but also other spectral channels. The advantage of these type of data
is that they are updated every few days, whereas the disadvantage is their spatial resolution.
Therefore, they are most often used for macro analyses (also using deep neural networks)
for segmentation, e.g., for fire impact assessment [18] and land cover analysis [19–21]. On
the other hand, segmentation of individual buildings for open data is not possible—it
would be necessary to use commercial data, whose spatial resolution is much better, such
as in [22,23].

Raster local (national) data are the data made available by individual national insti-
tutions that operate (acquire, store or make available) geospatial data; for example, in
Poland, this role is fulfilled by the Central Office of Geodesy and Cartography (GUGiK).
The registers provide access to various resources: orthophotomaps with a resolution of
up to 5 cm; vector layers of The Land and Building Register (EGiB); The Topographic
Objects Database (BDOT10k) for a scale of 1:10,000; Digital Terrain Models and Digital
Surface Models; LiDAR data, and others. The main problem of the data is the verification
of their validity, as they are usually created every certain time unit (years). The LandCover
dataset [24] which is used for land use segmentation on the basis of orthophotomaps was
created on the basis of data that was made available by GUGiK. In various European
countries, similar data are provided by institutions analogous to the GUGiK.

Similar to raster-based data, vector-based open spatial data can be divided into global
and national scale. Open Street Map (OSM) is a global project that aims to create a free,
editable map of the world. It is built by users and made available under an open-content
licence. Segmentation using OSM has been carried out, among others, in [3,12].

Open vector data of national scale, similar to raster data, are made available by
national institutions operating geospatial data. In Poland, such a resource is, for example,
information on The Land and Building Register (EGiB) which is part of the cadastral
database. The approach using open vector data for dataset creation was used by among
others [9]. However, there the dataset is not described in detail the type of input data and
what the problems of this dataset might have been are not described).

The problem of automatic labelling or using data resources that cannot be clearly
labelled is not a simple one. Most often these data are not suitable to be directly labelled
and must be processed through a transformation and rasterization process.

The aim of this paper is to present the results of work on verifying the possibility of
using open vector spatial data as labels for the process of training convolutional neural
networks and solving the task of the semantic segmentation of buildings for raster data. The
paper uses fully open data that is available in the authors’ country of residence—Poland—
from the following databases: cadastral data of The Land and Building Register (EGiB) for
a selected location in Poland and orthophotomaps taken from aerial photographs, made
available by the Central Office of Geodesy and Cartography in Poland.

The motivation for the research was to verify the possibility of simplifying the tedious
and time-consuming process of data labelling. The research goal was to verify the possibility
of creating machine learning datasets based on the use of open spatial data. In addition, the
research verified the impact of using available popular network architectures for solving
semantic segmentation problems, i.e., UNET and DeepLabV3+, in order to obtain an
algorithm that was characterised by the highest possible reliability. The algorithm was also
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verified in terms of differences in identification of buildings for different orthophoto terrain
pixels.

The main novelty with respect to the other work is the verification of the use of fully
open, accurate data to segment buildings from aerial photographs. This provides the
opportunity to create large, diverse datasets that are flexible and contain multiple patterns.
Additionally, the data used are characterised by high accuracy (low pixel resolution and
high accuracy of vector data), where in the other works the data are far less accurate. In
addition, the proposed algorithm allows for the creation of huge learning datasets from
cadastral data, which are currently made publicly available by many European countries.
The algorithms that were developed as a result of the work can be used, among others, for:

• Verification of the state of the cadastral databases in order to identify unpermitted
buildings;

• Verification of the actual state of an area in the initial phase of an infrastructural
investment process for a more reliable cost assessment;

• Mapping of buildings for unmapped areas;
• Verification of the validity of open building databases.

The structure of the article is as follows. The Section 1 introduces the topic and
describes related works. The Section 2 describes the dataset that was used, discusses
the issues related to it and the data pre-processing. The Section 3 discusses the network
architectures that were used and presents the algorithm and processing strategies that
produced the final result. The Section 4 presents the obtained results, which are then
analysed—both statistically and visually. In addition, a discussion of the results is presented
in this section. The paper concludes with a summary and conclusions of the conducted
research in the Section 5.

2. Study Area and Datasets
2.1. Open Spatial Data

This paper focuses on the possibility of using open spatial data using the example
of data that is available in the authors’ country of residence, Poland. This section is a
characterisation of open spatial data available in Poland which were used in the research,
i.e., orthophotomaps and cadastral data—The Land and Building Register (hereinafter:
EGiB). The use of OpenStreetMap (hereinafter: OSM) resource was also considered, but it
was ultimately abandoned for reasons described in the next section.

Open spatial data in Poland are available on the basis of individual laws and Eu-
ropean regulations concerning spatial information infrastructure, including the Inspire
Directive [25]. The data are made available through the Geoportal [26] which is maintained
by the Head Office of Geodesy and Cartography, or through individual local government
units. The list of maintained resources is available at [27]. These units are obliged to
maintain and make available free of charge (usually in an incomplete form for reasons of
personal data protection and legal interests) geodetic resources, including those concerning
the cadastre—EGiB. However, these resources are currently under development and are
not yet available nationwide in a downloadable form.

The resources are maintained in various coordinate systems. Most often, data from
the national dataset (e.g., orthophotomaps) are provided in the PL1992 system (EPSG 2180),
while data from local government units (e.g., EGiB) are provided in the PL2000 system
(EPSG 2176-2179—depending on the zone).

2.2. Selection of Study Areas

The following criteria were used to select the area for further analysis:

• Urban area;
• Architecture varying in terms of time of construction (historic buildings, often with

more complicated architecture and contours, and modern buildings with simpler
shapes);

• Architecture varying in terms of use (residential, industrial, public buildings, etc.);
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• Building density and diversity;
• Availability of actual orthophotomap (max. up to one year back) with terrain pixel of

max. 10 cm;
• Availability of data from the cadastral vector database: The Land and Building Register

(EGiB).

In response to these criteria, the city of Bielsko-Biała in southern Poland in the Silesian
Voivodeship was selected for further analysis. It is a city with diverse architecture, con-
sisting of both older buildings and districts with modern buildings. Additionally, the city
contains industrial areas with factories or large warehouses. In terms of building density
and diversity, the city is characterised by a centre with compact buildings and, within a
radius of about one kilometre, a less dense suburban area. Both an orthophotomap (dated
2021, with a maximum terrain pixel of 10 cm) and data from EGiB database were available
for the city.

At the stage of selecting data sources, the use of two vector data resources, i.e., EGiB
and OSM, was considered. The selection of the resource for further analysis was based on
the verification of the actuality of these resources in relation to the orthophotomap of 2021,
obtained from the Polish Geoportal [26]. Figure 1 shows the comparison between EGiB
and OSM data. In green, the common parts of both resources are presented, in yellow the
objects that are only in the EGiB database, while in red the elements that are only in the
OSM database.
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Figure 1. Comparison of data from EGIB and OSM (green—common parts of both databases, yellow—
objects only in EGiB database, red—objects only in OSM database).

The analysis showed that the main problem of OSM resources is that they are outdated.
Data from EGiB are more up-to-date, more accurate and complete and have no artefacts.
Examples are presented in Figure 1 and—depending on the type of problem—are marked
as the following areas:

• Area A—incorrectly determined outline of the building in the OSM database (the car
park located next to the building was included in the building projection);

• Areas B1, B2, B3, B4, B5, B6—no buildings that actually exist in the OSM database;
• Area C1—presence in the OSM database of buildings which in fact do not exist;
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• Area D—generalisation of building outline (simplification of building outline shape).

Since all the indicated problems may result in a much lower accuracy of the network
and the wrong extraction of buildings, in further works it was decided to use only the EGiB
database.

Before proceeding to further work, the input data from the EGiB database were
analysed in relation to the orthophotomap. This comparison was aimed at identifying
possible errors that could affect the results of the algorithm and, consequently, the possibility
of extracting buildings.

Firstly, the obvious problem that was identified was that the mask outline of the
dataset followed the wall outline, not the roof outline. This was due to the specificity of
the EGiB database, which contains the vertices of the wall points. The applied roof eaves
and other elements intended to protect the objects against, for example, the degrading
activity of rainwater, increased the building outline. The problem is illustrated in Figure 2a.
However, it was considered that the problem could be omitted given the purpose of the
study, i.e., to identify the existence of objects with an approximate outline rather than to
identify their exact outline.
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For the same reason, the problem caused by the available orthophotomap not being a
true orthophotomap [28] and containing radial displacements which are particularly visible
for tall objects was also omitted. A true orthophotomap is slowly being made available by
the Central Office of Geodesy and Cartography. As of the writing of this article, i.e., the
end of February 2022, the EGiB database was not available for the area that was subject to
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the creation of this type of product, and therefore it had to be excluded as a candidate for
analysis. However, in each case, the building from the EGiB database is located within the
outline boundaries of the objects with the orthophotomap. This problem is presented in
Figure 2c.

In addition, the EGiB database does not consider objects that are: not permanently
connected to the ground; additional elements of buildings such as terraces, summer cot-
tages, farmhouses, outbuildings or allotments. For this reason, the database is incomplete.
Therefore, in the process of data preprocessing it was decided not to consider the objects
that are not included in the EGiB database. The problem is presented in Figure 2b.

Figure 2d shows an area that is not subject to any of the problems described above.
This is also the case for most of the area to be analysed, so it was decided to check the
possibilities described above for the segmentation of the buildings.

2.3. Data Preprocessing

Publicly available datasets for object segmentation are most often created manually
based on vector data from OSM or corrected manually based on publicly available building
outlines. Datasets are also created based on commercially acquired data. However, our aim
was to create a dataset completely free of charge.

The input orthophoto data included six images in. GTiff format with a ground pixel
resolution of 10 cm. The areas that were selected for analysis were diverse in terms of
architecture and building density. The dimensions of each image in pixels were 22,477 ×
23,162, and in metres 2247.7 m × 2316.2 m. The area of analysis therefore covered an area
of over 31 square kilometres. In the study area there were 21,010 buildings in vector format,
available in the EGiB database.

From the input data, which consisted of orthophotomaps and vector data from EGiB,
two datasets were created according to the algorithm presented in Figure 3: the first one for
the input pixel with the terrain pixel of 10 cm and the second one with the terrain pixel
of 50 cm. The second dataset was created by resampling data from the first, main dataset.
The algorithm was programmed using the Python language and the gdal, ogr, opencv and
patchify libraries. Different terrain pixels from the input data were used to compare the
performance of the algorithms with respect to the size of the terrain pixels and to evaluate
the possibility of segmenting buildings on these pixels.

The data were split into smaller images that were suitable for neural networks. This
is a recommended action as it reduces the computing power required. Then, only those
images where buildings were present were selected.

The first dataset contained 6365 images with dimensions: width—512, height—512,
number of channels—3 (RGB colours) and corresponding labels in the form of binary
image masks (1—buildings, 0—background) that were obtained as a result of rasterization.
The data were divided into training set—80% of data, validation set—10% and testing
set—10%. They contained, respectively, 5092 training images, 636 validation images and
637 test images. Similar work was carried out with the second dataset with a larger
terrain pixel. The division of the large images into smaller images resulted in 1263 images
with dimensions: width—256, height—256, number of channels—3 (RGB colours) and
corresponding labels in the form of binary image masks (1—buildings, 0—background)
that were obtained by rasterization. The data were divided in the same ratio as the first
dataset and in this way 1010 training images, 126 validation images and 127 test images
were obtained. A summary of both datasets is shown below in Table 1. Figure 4 shows
raster data visualisations of the two datasets for visual comparison of the datasets. Clearly,
more blurring is seen for the larger ground pixel, so a worse performance of the proposed
architectures for this dataset is to be expected. The datasets have been made available on a
repository [29] via the GitHub platform.
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Table 1. Summary of created datasets.

Resolution [m] Image Size [pix] Image Size [m] Training Images
Number

Validation Images
Number

Test Images
Number

0.1 512 × 512 × 3 51.2 × 51.2 5092 636 637
0.5 256 × 256 × 3 128.0 × 128.0 1010 126 127

We are aware that somewhat false ground-truth data (containing the errors mentioned
in the previous section) were used for testing. Testing of the algorithm with manually
produced data (true ground-truth) is planned in future work. We anticipate that this may
affect the accurate extraction of building edges, but as mentioned, our aim is to test the
feasibility of using fully open data for building segmentation.

3. Materials and Methods
3.1. Semantic Image Segmentation Architectures

Currently, the most commonly used network architectures for image segmentation
tasks are different variations of UNET and DeepLab. SegNet [30,31] and PSPNet [32] are
also used, however, their use for further analyses was rejected because they are usually
less efficient. Choosing the most optimal architecture was not the aim of the paper, but we
would like to describe them briefly.

UNET consists of two main segments: the encoder and the decoder. The encoder
at the initial stage consists of convolutional blocks, at the ends of which a pooling layer
is implemented to reduce dimensionality. After moving to the dimensionality change
pointbridge, dimensionality is increased by deconvolution or upsampling. Additionally,
block information from the encoder is skipped and concatenated, followed by a convolution
block. The operation is repeated until the input dimensions are obtained, where a predicted
mask is obtained using the final convolution layer with the appropriate activation func-
tion [33]. The above description is the foundation of the network. In the years following
the emergence of UNET network, various research teams have tried to modify it so that it
provides even better results for different applications. Such an approach can be the use of
DeepUNET [34], DeepResUNET [5,8] or combining UNET with solutions such as ASPP
(Atrous Spatial Pyramid Pooling) [10]. From the point of view of information extraction
from aerial images or satellite imagery, the results presented in [35,36] are particularly inter-
esting. The obtained results allowed extraction of specific objects with varied accuracy—the
mean Intersection Over Union value in most of the cited publications is around 90% in the
case of building segmentation.

DeepLab, on the other hand, are network architectures based on atrous convolution
in its initial version—DeepLabv1 [37], followed by the creation of atrous spatial pyramid
pooling—DeepLabv2 [38]; its extension—DeepLabv3 [39]; the development of a segmen-
tation decoder—DeepLabv3+ [40]; and the creation of networks based on NAS—Neural
Architecture Search—Auto-DeepLab [41]. The use of the DeepLab architecture is particu-
larly effective with the use of pre-trained backbones that allow for feature extraction. Part
of ASPP allows for context identification by analysing links in the nearer and wider area.
This approach, among others, was used in [24]. The DeepLab architecture, particularly
DeepLabv3+ is also often used to segment information from satellite or aerial images
e.g., [42–44].

Therefore, it was decided to test both architectures described above for solving the
segmentation problem using open data resources. Part of the solution was implemented
using the Python and Keras libraries, along with a Tensorflow framework as the backend.
For this purpose, a publicly available library was created on GitHub [29]. A visualisation
of the architectures used is shown in Figure 5.
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Figure 5. Used model architectures.

Various variations of UNET and DeepLabV3+ networks were implemented there, as
well as the metrics and loss functions described later in this paper. A Github implementation
of UNET with the ResNet34 backbone [45] was also used. The backbones were loaded with
publicly available weights for the models that were obtained from the classification of the
ImageNet dataset. The table below (Table 2) presents the network architectures used.

Table 2. Summary of used architectures.

Model Description Backbone Number of Parameters for Input 512 × 512

UNET Parameters: 16, 32, 64, 128, 256 does not exist 1,947,010
UNET_bb UNET with backbone Resnet34 24,456,299

DeepLabV3+ DeepLabV3+ with backbone Resnet50 17,830,466

3.2. Data Augmentation

To eliminate overfitting, data augmentation was performed using the ImageDataGen-
erator class available in the Keras package. The rotation and flip operations were applied to
the datasets. The data prepared in this way were used to check whether data augmentation
improved the results that were obtained on the validation dataset. Example images that
were obtained as a result of data augmentation are presented in Figure 6. The results of
network training based on augmented data are presented in Section 4.
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3.3. Semantic Image Segmentation

During the development of the computational strategy for the segmentation task,
the choice of network hyperparameters was considered and analysed. Special attention
was paid to the selection of an appropriate loss function. The most commonly selected
loss functions for the segmentation task were described in [46]. Based on the results of
the analyses that were presented in the indicated publication, focal loss functions were
abandoned. These functions tend to focus on difficult cases of learning patterns. Since
images with problems as described in Section 2 could be classified as difficult cases, it
was decided not to use this group of loss functions. To confirm the above assumption,
the network was also computed using the focal loss function, which proved the above
statement.

Finally, a loss function based on the Dice coefficient was chosen, which for binary
segmentation is the same as the F1-score metric. This makes it possible to balance between
the occurrence of False Positive and False Negative when evaluating the effects of network
training. It was therefore considered possible to reduce radial displacement problems in the
images in this way. The computational formula of the loss function (1) and (2) is presented
below.

Dice coefficient = F1 score =
2 × TP

2 × TP + FP + FN
× 100% (1)

LDice= 1 − Dice coefficient (2)

The Adam optimiser was used for parameter updates [47]. As shown in the analyses
conducted by the researchers, it is usually the most efficient [48], also for image segmen-
tation tasks [49]. The optimiser parameters were used according to [47]: learning rate
α = 0.001, β1 = 0.9, β2 = 0.999, while ε = 10−7.

Calculations were carried out on two standalone desktops with GPU computing
capability. Computations that used 256 × 256 images were performed on a platform with
the parameters: CPU—Intel(R) Core (TM) i7-9750H, GPU—NVIDIA GeForce GTX1650,
16 GB RAM. However, calculations for the second, larger dataset were performed on
a platform with the following parameters: CPU—Intel(R) Core (TM) i7-6900K CPU @
3.20 GHz, GPU—NVIDIA GeForce GTX1070, 62 GB RAM.

3.4. Results Evaluation

For the network evaluation, the metrics proposed in [50] were used to evaluate the
quality of the results obtained in the segmentation task. The following metrics were used:
precision (P); recall (R); Intersection-Over-Union (IoU, Jaccard Index); and F1 score (Dice
coefficient). These are presented in Equations (3)–(6). The symbols in the formulae indicate
elements of the confusion matrix, where: TP—True Positive—number of pixels correctly
classified as buildings; FP—False Positive—number of background pixels classified as
buildings; TN—True Negative—number of pixels correctly classified as background; and
FN—False Negative—number of pixels of buildings classified as background. The average
IoU value for both classes—buildings and background—was used in the presentation of
the results.

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

IoU =
TP

TP + FP + FN
(5)

F1 score =
2 × precision × recall

precision + recall
=

2 × TP
2 × TP + FP + FN

(6)
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4. Results

Before the learning process started, during data loading, all pixels were rescaled to
values between 0 and 1. Additionally, the images were normalised. These procedures were
intended to speed up the operation of the computational networks. The calculations them-
selves were performed according to the algorithm described in Section 3. The presented
results were obtained on the basis of calculations on a test set. The validation set was used
as a control during network learning.

4.1. Dataset with 0.5 m Terrain Pixel

The results that were obtained for a dataset with a 0.5 m pixel are presented in Table 3.
The best results were achieved for the UNET network with the Resnet34 backbone. In
contrast, the worst results were obtained for the DeepLabV3+ network, which may be due
to the requirements of this architecture in relation to the number of input datasets. Part of
DeepLabV3+ is ASPP (Atrous Spatial Pyramid Pooling) which uses Dilated Convolution.
This is computationally demanding [51] and requires sufficient input data of satisfactory
quality. The main purpose of using ASPP is to extract features of larger objects and maintain
their consistency [7]. Too little input data resulted in False Positive artifacts in some parts
of the predicted images. This can be seen in Figure 7, especially in example (c).

Table 3. Results for 0.5 m dataset [%].

Neural Network Architecture Augmentation mIoU F1-Score Precision Recall

UNET NO 90.64 95.02 94.89 95.15
UNET with backbone NO 92.24 95.91 95.83 95.99

DeepLabV3+ NO 79.96 88.37 88.28 88.46
UNET YES 90.33 94.85 94.57 95.13

UNET with backbone YES 90.24 94.79 94.53 95.06
DeepLabV3+ YES 83.83 90.81 90.03 91.62
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examples from the test dataset.
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Table 3 also shows the results for each architecture using the data augmentation de-
scribed in Section 3.2. Better results on the test set were obtained only for the DeepLabV3+
architecture, which may confirm the conjecture described in the previous paragraph about
the requirements of this network. For both UNET architectures the results achieved are
slightly worse. This may be due to the specifics of the dataset and the information trans-
mitted inside the network. As the dataset is characterised by inaccuracies (described in
Section 2.2), the network through augmentation may have received more bad patterns for
learning. Therefore, the calculated weights changed to recognise more bad patterns. In
addition, the data were highly heterogeneous, which results from a lack of spatial planning.
It can therefore be concluded that data augmentation does not always produce positive
results.

Figure 7 presents the predicted masks based on several images from the test set, which
mirrors the results in Table 3. However, not all objects were classified. The reasons for this
situation are discussed in detail in Section 4.3.

Ultimately, the UNET architecture with the Resnet34 backbone was found to perform
best in terms of both metrics and visualisation. Regular UNET was slightly worse (mIOU
worse by 2points). On the other hand, the worst results were obtained for the DeepLabV3+
network—mIOU which was worse than UNET by over 10 points when using the dataset
without augmentation and about 7 points when using augmentation.

4.2. Dataset with 0.1 m Terrain Pixel

The results that were obtained by the individual architectures for the dataset with a
0.1 m terrain pixel are presented in Table 4. As data augmentation did not significantly
improve the results that were achieved for the dataset with a 0.5 m pixel, it was decided to
omit it when analysing the dataset with a smaller terrain pixel.

Table 4. Results for 0.1 m dataset [%].

Neural Network Architecture Augmentation mIoU F1-Score Precision Recall

UNET NO 91.08 95.31 95.19 95.43
UNET with backbone NO 93.00 96.36 96.33 96.38

DeepLabV3+ NO 92.86 96.28 96.27 96.29

As in the case of the dataset with the 0.5 m terrain pixel, and for the dataset with the
0.1 m terrain pixel, the best performance is achieved by the UNET network with backbone,
but the mIoU difference with respect to DeepLabV3+ is small at 0.14 points. This is due to
the definition of an appropriate input set size for the DeepLabV3+ network. The regular
UNET network performs slightly worse here, the achieved mIoU metric is worse by about
2 points compared to the other networks. However, its biggest advantage is the speed of
computation, which is due to the significantly smaller number of weights to be determined.

Visualization of the results is shown in Figure 8. Considering only visual issues, it
can be concluded that the best results were obtained for DeepLabV3+ architecture—the
most TP and TN areas. The other architectures also give satisfactory results. Importantly,
the architectures give good results for both lower density areas (Figure 8a,c–g) and higher
density areas (Figure 8b,f).

The occurrence of FP-labelled pixels at the edges of buildings is largely due to the
ground truth not being entirely true (errors described in Section 2.2). On the other hand,
occurring FNs are often caused by obscuration caused by trees or shading from a taller
building. Further, the varied shape of the roof causes the model to fail to recognise parts of
the building (TN).
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4.3. Discussion

The obtained results confirm the possibility of using open spatial data as a dataset
for the task of segmenting buildings from raster images. However, it should be kept in
mind that the most important issue is the requirement for data accuracy, which must
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be adapted to the specific task. Given this, the use of the described approach may have
some limitations when the goal is to segment building outlines very accurately, where the
problems discussed in Section 2.1 may have a significant impact on the results. This section
will discuss the achieved results in more detail.

Firstly, comparing the results that were obtained between the two datasets, one can
see slightly higher metric values for the dataset with the smaller ground pixel resolution.
This difference is particularly noticeable when using the DeepLabV3+ architecture, where
an mIoU score of 12.90 points better was obtained due to the specificity of this architecture.
For both UNETs, the difference in value did not exceed 0.01 points, but when visually
comparing the results from these networks we see that some of the buildings for the larger
pixel were not classified correctly. Such a small difference in metrics is due to the size of the
buildings for each dataset. For example, a building with dimensions of 10 × 10 m occupies
20 × 20 pixels for a dataset with a larger pixel and 100 × 100 pixels for a dataset with a
smaller pixel. No segmentation of such an object or its shading/shadowing in the test
image will have a much greater impact in the case of a dataset with a smaller pixel, and
this is reflected during the calculation of metrics.

The visual comparison also shows that the dataset with the smaller terrain pixel is
more effective. In the test images, all the objects were correctly identified, whereas the
dataset with the larger pixel size showed significantly more False Negative and False
Positive areas.

A noticeable problem for both datasets is shaded and wooded areas. Shadows cast
by high buildings cause the objects directly below to be covered or shaded. The result is a
pixel misclassification or partial segmentation of the object. This problem concerns mainly
garages or extensions to the main building. Similar results are generated on images where
vegetation—usually trees—covers the image. While the first problem can be eliminated by
creating a true-orthophotomap, the second problem in the case of using photogrammetric
digital cameras will always occur. Its solution may be the use of LiDAR and adding more
analysis dimensions in addition to RGB colours.

The loss function that was used achieved its purpose. The aim of using DICE loss was
to maintain a balance between FP and FN values. The results obtained, i.e., similar Recall
and Precision values, show that this aim can be considered satisfied.

The mIoU values obtained for building segmentation are similar to those achieved by
other researchers for public datasets. Typically, this value reaches a value of around 90%.

The limitations of the used dataset, as described in this section and Section 2.2, may be
difficult to fully overcome. The solution of this may be to expand the dataset to include
other areas that generate new learning patterns. The analysed dataset was also not varied
by lighting, so applying the algorithm to images with different histogram characteristics
may not give satisfactory results. Therefore, further tests for more areas, and more diverse
areas are possible. In addition, in order to fully assess the accuracy of the obtained results,
a comparison of the obtained results with fully correct, hand-made building outlines is
required.

The applied models and their hyperparameters can be optimised. However, the aim of
this paper was not to develop new architectures or approaches, but to verify the possibility
of using open data to generate data for training sets to solve the semantic segmentation
problem.

5. Conclusions

Open spatial data allow the extraction of a lot of information. Their biggest advantage
is fast and free access. The increase in data volume, combined with the development of
machine learning algorithms for object identification increases the ability to accurately
extract information from satellite and aerial images. As a result, it is possible to identify
the location of objects more accurately at early stages of urban, planning or environmental
analyses. It should be remembered, however, that the use of open data depends on the
accuracy requirements for the problem being analysed.
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On this basis, the analyses presented in this paper conclude that open vector spatial
cadastral data can be used as labels in the training process of convolutional neural networks,
and solve the task of the semantic segmentation of buildings for raster data. The solution
presented in this paper enables simplification of the tedious, time-consuming and capital-
intensive process of data labelling. This solution also enables the minimisation of errors that
may be reflected in the later results of the analyses. The results of the conducted analyses
also allow a comparison of the effectiveness of available popular network architectures, i.e.,
UNET and DeepLabV3+, in solving semantic segmentation problems, and the influence of
backbones on the accuracy of building detection.

This paper also analysed the effect of the orthophoto ground pixel resolution on the
accuracy of building identification. The analyses showed that for each of the network
architectures used, better results are achieved for data with a smaller terrain pixel. The
use of data with a smaller terrain pixel is particularly important when using DeepLabV3+,
where it allows the mIoU value to be increased by approximately 13 points.

This needs to be confirmed in separate studies, but most probably these data can be
successfully applied for the purposes mentioned in the introduction, such as verifying the
state of cadastral databases for the identification of unauthorised buildings; verifying the
actual state of the land in the initial phase of the infrastructural investment process for a
more reliable cost assessment; the mapping of buildings for unmapped areas; verifying the
validity of open databases.

However, it is important to keep in mind the identified limitations of the datasets
described in Section 2, such as the building outline following the walls rather than the
roof or radial offsets. These limitations were omitted in this analysis as unimportant to the
problem being solved. However, they may reduce the efficiency of directly implementing
the presented algorithm to solve other problems, such as the accurate detection of the
position of buildings.

Therefore, the authors plan to further develop the presented dataset with other, more
diverse areas, which will allow to generate new learning patterns and optimise the hyper-
parameters of the applied models in order to increase the accuracy of object detection.

The authors also plan to apply the algorithm presented in this paper using true-
orthophoto mapping, which should become more widely available for a larger area of
Poland over time. This approach will allow examination of the extent to which the reduction
in radial displacement problems improves the extraction of buildings using the algorithm
presented in this paper. Additionally, in order to minimise the problem of detecting objects
under vegetation and shaded areas, the possibility of adding more image dimensions on
the basis of available LiDAR data from Airborne Laser Scanning also made available by
governmental units will be verified.

Moreover, the authors are planning to compare a dataset for which masks will be
created manually with a dataset that includes masks adopted based on cadastral data.
The aim of this activity will be to verify the existence of the algorithm limitations that are
proposed in this publication.
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