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Abstract: The green area index (GAI) and the soil moisture under the canopy are two key variables
for agricultural monitoring. The current most accurate GAI estimation methods exploit optical
data and are rendered ineffective in the case of frequent cloud cover. Synthetic aperture radar
(SAR) measurements could allow the remote estimation of both variables at the parcel level, on a
large scale and regardless of clouds. In this study, several methods were implemented and tested
for the simultaneous estimation of both variables using the water cloud model (WCM) and dual-
polarized radar backscatter measurements. The methods were tested on the BELSAR-Campaign
data set consisting of in-situ measurements of bio-geophysical variables of vegetation and soil in
maize fields combined with multi-polarized C- and L-band SAR data from Sentinel-1 and BELSAR.
Accurate GAI estimates were obtained using a random forest regressor for the inversion of a pair of
WCMs calibrated using cross and vertical co-polarized SAR data in L- and C-band, with correlation
coefficients of 0.79 and 0.65 and RMSEs of 0.77 m2 m−2 and 0.98 m2 m−2, respectively, between
estimates and in-situ measurements. The WCM, however, proved inadequate for soil moisture
monitoring in the conditions of the campaign. These promising results indicate that GAI retrieval in
maize crops using only dual-polarized radar data could successfully substitute for estimates derived
from optical data.

Keywords: GAI retrieval; soil moisture; maize; SAR; L-band; multi-polarization; agriculture

1. Introduction

Monitoring the growth, health, and performance of crops throughout the growing
season is an important aspect of agricultural management at the farm, regional or even
global scale. Two variables of great relevance for crop monitoring are the green area
index (GAI) [1,2] and the surface soil moisture under the canopy. The GAI, i.e., half of
the total area of green plant in the canopy per unit of horizontal ground surface area
(m2 m−2), can be regarded as an extension of the more common leaf area index (LAI) to
all photosynthetically active elements of the canopy [3]. Field measurements of GAI and
soil moisture are, however, often too cumbersome to be carried out at large scale, whereas
remote sensing can provide timely, cost-effective, and possibly accurate estimation methods.

While optical remote sensing systems are the most well-established operational agri-
cultural monitoring systems today and have been successfully used for GAI retrieval,
e.g., [4–7], as well as for soil moisture, though less effectively, e.g., [8–12], they are fre-
quently impeded by the presence of clouds obscuring the view of the sensors [13]. Unlike
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the latter, synthetic aperture radars (SAR) are weather-independent, active sensors able
to penetrate the vegetation as well as the soil underneath in order to extract valuable
information on them thanks to the sensitivity of microwaves to the dielectric and geometric
properties of the objects with which they interact [14].

The sensitivity of SAR to the GAI and surface soil moisture of maize fields has been
investigated in numerous empirical studies. Jiao et al. [15] reported high correlation
coefficients between SAR backscatter signatures and GAI in maize in X-, C-, and L-band
from TerraSAR-X, RADARSAT-2, and ALOS/PALSAR, respectively, which are the most
commonly used frequency bands for agriculture monitoring. The frequency band of the
radar signal is in fact a determining factor in its sensitivity to both GAI and soil moisture,
mainly because the penetration depth of the signal into the canopy largely depends on
it. In maize, a saturation phenomenon tends to occur to backscatter in C-band for GAI
values exceeding 3 [16] to 4 m2 m−2 [17]. The penetration depth of the radar signal is
even more decisive for soil moisture monitoring. If it is too shallow, microwaves cannot
reach and interact with the ground, rendering the soil contribution to the backscatter
negligible and the signal insensitive to surface soil moisture [18]. In their study on the
penetration capabilities of SAR signals in C- and L-band, El Hajj et al. [19] reported that
L-band waves can penetrate a well-developed vegetation cover of wheat or grass, i.e., with
a normalized difference vegetation index (NDVI) larger than 0.7, and reach the underlying
ground, whereas C-band waves proved to be more limiting. Backscatter data in L-band
is therefore expected to allow for the monitoring of both vegetation biophysical variables
and soil moisture in maize fields further into the later stages of plant development than
backscatter in X- or C-band. Besides soil and vegetation characteristics, the sensitivity to
GAI and soil moisture is also dependent on the sensor incidence angle and polarization. At
shallow incidence angles, the contribution of the soil is reduced [18] while the vegetation
contribution to the signal is enhanced [20]. At steep incidence angles, the attenuation
of the signal by the vegetation is diminished and the soil contribution to the backscatter
increases [21]. Regarding the polarization of the signal, the potential of the dual-polarized
C-band data from Sentinel-1, and especially the ratio of its two available polarizations, for
maize monitoring through its GAI was highlighted in [21–23]. Meanwhile, multiple studies
have demonstrated the suitability of multi-polarization C- [24,25] and L-band [26] data for
soil moisture monitoring under vegetation cover.

The retrieval of the vegetation biophysical variables of crops as well as the surface
soil moisture from under their canopy using radar data has been addressed with varying
degrees of success since the eighties, e.g., [27–33] One of the more widely used approaches
for the operational monitoring of crops was proposed by Attema and Ulaby [34]. It is based
on modeling the canopy of the crop as a cloud of identical and randomly distributed water
droplets held in place by the vegetation matter. This approach resulted in a semi-empirical
model for the backscattering coefficient of vegetated surfaces, called the water cloud model
(WCM), which has been successfully used in a number of studies for the retrieval of various
vegetation biophysical variables, e.g., [35–37], and of the surface soil moisture in the
presence of a crop, e.g., [38–43]. The WCM simulates the radar backscattering coefficient of
crops as the incoherent sum of the scattering from the vegetation layer and the contribution
from the underlying soil attenuated by the canopy. The contribution of the soil is mainly
driven by the surface soil moisture and the surface roughness, which can in some cases
be neglected if it does not vary during the observation period. The contribution of the
vegetation depends on one to two canopy descriptors, e.g., the GAI, which can then be
retrieved by the inversion of the model with radar data and ancillary information on the
contribution of the soil, mainly through its surface moisture [44]. However, relying on
in-situ measurements or estimates of the surface soil moisture to retrieve the GAI of a
crop renders the use of the WCM for operational crop monitoring impractical, even at a
moderately large scale. To circumvent this problem, a system formed by a pair WCMs
calibrated using different polarizations can be solved to simultaneously retrieve the GAI
and the surface soil moisture of crops, dispensing with the need for in-situ measurements
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or estimates of the latter. The feasibility of this method was investigated for the retrieval of
the GAI of maize crops from C-band data using multiple inversion strategies [45], as well as
the estimation of the biomass and soil moisture in winter wheat fields [46] and the GAI in
maize and soybean fields [47] from C- and L-band multi-polarized SAR data, and retrieval
accuracies similar to those of methods based on optical remote sensing were reported.

This study leverages an innovative data set built in 2018 in Belgium during a mea-
surement campaign called BELSAR-Campaign. The data consist of C- and L-band SAR
data as well as concurrent field measurements of biogeophysical variables of the vegetation
and underlying soil acquired in eight maize fields representative of the area. The aim of
this study is to develop and assess the potential of a method based on the WCM for the
retrieval of the GAI in maize crops, as well as, secondarily, the surface soil moisture under
the canopy, with SAR and in-situ data from the BELSAR campaign. First, the sensitivity of
L-band backscatter to the maize GAI, the surface soil moisture under the canopy, and the
incidence angle of the SAR beam, is assessed by means of a regression analysis, as well as
forward modeling of the WCM. Then, the ability of the WCM to allow the retrieval of one
of the two aforementioned variables at a time, with knowledge of the other, is investigated
for each available SAR frequency and polarization. Finally, an algorithm is implemented
for the simultaneous retrieval of both GAI and volumetric surface soil moisture in maize
crops using only multi-polarized backscatter data and the incidence angle of the SAR beam,
and its results are compared to those obtained with ancillary data on GAI or soil moisture.

2. Data
2.1. Site Description

The BELSAR airborne and field campaign that yielded the data set used in this study
took place during the 2018 growing season, between the end of May and mid-September,
in the BELAIR HESBANIA test site, between Gembloux and Sint-Truiden, Belgium. The
site, which is depicted in Figure 1, belongs to the global JECAM network. It corresponds to
a typical landscape of intensive agriculture of the Hesbaye region. It is mostly covered by
relatively large, homogeneous, flat fields with a uniform topsoil texture of silt loam.
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Figure 1. BELSAR area of interest, with the maize fields in which in-situ measurements were collected
in red, the other maize fields in the area in green, and all the remaining agricultural fields inventoried
as delineated in the Land Parcel Information System of Wallonia, Belgium, in grey.
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2.2. SAR Data
2.2.1. L-Band from BELSAR

The L-band SAR data were collected from an airborne radar system operated by
MetaSensing BV during the BELSAR campaign in a series of flights taking place approx-
imately one month apart during the growing season of maize. Four radar acquisitions,
named F1, F2, F3, and F4, coincided with the presence of maize crops in the imaged area,
in Figure 1. Concurrent in-situ measurements of biogeophysical variables of crop and soil
were recorded in eight maize fields following each of the flights. The dates of the airborne
acquisitions and the corresponding in-situ measurements are reported in Table 1.

Table 1. Acquisition dates (day-month format) of the L- and C-band synthetic aperture radar (SAR)
images from BELSAR and Sentinel-1, respectively, and of the corresponding in-situ measurements of
vegetation and soil variables.

SAR Measurements In-Situ Measurements
ID

BELSAR Sentinel-1 Vegetation Soil

F1 30-05 28-05 31-05 and 01-06 29-05
F2 20-06 21-06 21-06 and 22-06 20-06
F3 30-07 02-08 02-08 26-07
F4 28-08 26-08 29-08 28-08

The airborne L-band SAR system from MetaSensing BV [48] used in this study con-
sisted of a left-looking sensor operating at a central frequency of 1.375 GHz and delivering
fully polarimetric (HH, HV, VH, VV) radar images. The large available bandwidth of
the system, up to 200 MHz, could not be exploited, however, due to constraints imposed
by the Belgian Institute for Post and Telecommunications restricting it to 50 MHz. The
cross-polarization channels, HV and VH, were averaged and the resulting channel was
called HV to distinguish it from its C-band counterpart.

Radar data were processed by MetaSensing BV using the time-domain back-projection
algorithm, performing motion compensation, and delivered as σ-calibrated single-look
complex (SLC) focused SAR data. These radar images were co-registered based on the
absolute position accuracy of the navigation data, i.e., around 0.75 m, and released in
ground range geometry with a ground sampling distance of 1 m.

Four trihedral corner reflectors (CR) were deployed on site and used as standard point
targets for the radiometric and polarimetric calibrations that were performed according to
the procedure described in [49]. The radiometric calibration providing the σ0 was based
on the CR response and the calibration constant K was evaluated for each flight, F1 to F4.
A polarimetric calibration was also applied in order to insure the images acquired in the
different polarization channels correctly reflected the dependence of the target response
to the polarization state of the signal. Data were calibrated for co-pol and cross-pol
channel imbalances, that is, amplitude and relative phase differences between polarization
channels, at both transmission and reception. Cross-talk was considered negligible, based
on the obtained polarimetric signatures and CR impulse response function (IRF) showing
sufficiently good isolation between the polarization at antenna level.

A 20 m inner buffer was applied to the boundaries of the fields in which in-situ data
were collected to reduce border effects. Values of L-band backscattering coefficients σ0

and incidence angle were then averaged over each of these fields. Their time series are
represented in Figure 2.

A more in-depth description of the airborne L-band SAR data set from BELSAR can
be found in [50].
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Figure 2. Time series of average L-band backscattering coefficient σ0 and incidence angle acquired
from an airplane during the BELSAR-Campaign. M1 to M8 designate the maize fields in which data
were collected.

2.2.2. C-Band from Sentinel-1

Sentinel-1 is a constellation of two polar-orbiting satellites carrying SAR systems
operating in C-band, at 5.405 GHz. The constellation, launched in 2014 and 2016, was
designed and is operated by the European Space Agency (ESA) to provide radar imagery
for the Copernicus program of the European Commission.

The study site in Figure 1 is imaged by the SAR systems of the Sentinel-1 constellation
from four different orbits, numbered 37, 88, 110, and 161. Each orbit provides an image of
the area of interest every 6 days in interferometric wide (IW) swath mode. However, in
order to limit the effects of the morning dew and those resulting from modifications of the
observation geometry, all the images used in this study were acquired from orbit 161. In
this ascending orbit, the sensors pass over the area of interest at 5:32 p.m., with a mean
incidence angle for the area of about 42◦. The satellite images were acquired on 28 May,
21 June, 2 August and 26 August, with a maximum of 3 days of separation (mean 1.5 days)
from the dates when in-situ measurements of biogeophysical variables were recorded in
maize fields.

Sentinel-1 data were processed with ESA’s Sentinel-1 toolbox (S1TBX) using the Sen-
tinel Application Plateform (SNAP) [51]. The three main processing steps applied to the
Level-1 SLC data in IW mode were, in order, the thermal noise removal, the radiometric
calibration to obtain backscattering coefficients σ0, and the range Doppler terrain correction
using the Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global digital eleva-
tion model [52]. This procedure resulted in images of backscattering coefficients σ0 and
incidence angles with a 10 m ground sampling distance.

As with the L-band data, a 20 m inner buffer was applied to the fields in which in-situ
data were collected and values of C-band backscattering coefficient σ0 and incidence angle
were then averaged over each of them. Their time series are represented in Figure 3.
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Figure 3. Time series of average C-band backscattering coefficient σ0 and incidence angle from Sentinel-
1 (orbit 161, ascending) imagery. M1 to M8 designate the maize fields in which data were collected.

2.3. In-Situ Measurements of Vegetation and Soil Variables

Synchronously with each airborne SAR acquisition, biogeophysical variables of veg-
etation and underlying soil were collected in eight maize fields in the imaged area, for a
total of 26 data points. The fields are flat and homogeneous, with a surface area ranging
from 1 to around 9 ha. Their location in the area of interest is depicted in Figure 1, and
the correspondence between the acquisition dates of the radar images and the in-situ
measurements can be found in Table 1.

Maize crop biophysical variables were collected in three representative plots inside
each of the eight reference fields, and then averaged at the field level. These plots were
selected according to their normalized difference vegetation index (NDVI), which had been
computed from Pleiades images days prior to the start of the campaign. For each of the
three plots in each reference field, green area index (GAI) measurements were derived
from 10 digital hemispheric pictures, one every 3.75 m, with an approximate nadir view
1 m above the crop canopy, using the CAN-EYE software. The phenological development
stage of the plants in each plot was also recorded. When first surveyed, on 31 May (F1), the
maize plants were at the leaf-development stage, with five to eight leaves already unfolded.
Then, on 21 June (F2), the plants were at the stem-elongation stage, with two to five nodes
detectable. Next, on 2 August (F4), the crops were ripening and at their dough stage,
with kernels yellowish at around 55% dry matter. Finally, on 28 August, only two fields
remained unharvested and were fully ripe, with kernels hard and shiny at about 65% dry
matter. These observations were described using the BBCH-scale [53]. A number of other
maize biophysical variables were also collected during the BELSAR campaign [50]. They
are partly reported in Table 2.

Volumetric soil moisture measurements were conducted using time domain reflectom-
etry (TDR) sensors with 11 cm rods. At least 10 locations per reference field were monitored
with three repetitions per location. All soil moisture measurements within each field were
averaged to provide field average soil moisture values. The range of measured soil moisture
values is 36 to 188 kg m−3. In Belgium, such a low range depicts unusually dry conditions
for the season. The summer of 2018 was indeed marked by an exceptional drought that
accelerated the maturation of crops, which were consequently harvested several weeks
earlier than usual.

Time series of the vegetation and soil biogeophysical variables collected in situ in the
reference fields are represented in Figure 4.
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Figure 4. Time series of BBCH, volumetric surface soil moisture, and green area index (GAI) measured
in situ in eight maize fields, M1 to M8, during the BELSAR-Campaign.

Table 2. Mean and standard deviation of several biophysical variables measured in the eight maize
fields during the BELSAR campaign. Height and VWC designate the plant height and the vegetation
water content. Dates are in the day-month format.

BBCH GAI [m2 m−2] Height [cm] Biomass [kg m−2] VWC [kg m−2]
Date (ID)

Mean Std Mean Std Mean Std Mean Std Mean Std

28-05 (F1) 15.8 0.6 0.4 0.1 40.4 8.2 0.2 0.1 0.2 0.1
21-06 (F2) 33.0 0.8 2.2 0.7 133.0 37.9 2.9 1.2 2.4 1.0
02-08 (F3) 85.0 0.0 2.8 0.6 245.3 33.9 5.2 0.9 3.8 0.7
26-08 (F4) 89.0 0.0 3.0 0.3 288.7 10.0 9.0 0.6 5.4 0.6

3. Methodology
3.1. SAR Signal Modeling
3.1.1. Water Cloud Model

Expressed in its current form by Prevot et al. [54], the water cloud model (WCM) is a
semi-empirical model that simulates the backscattering coefficient of a vegetated field, σ0

tot,
in natural units, as the incoherent sum of the scattering from the vegetation, σ0

veg, and the
contribution from the underlying soil, σ0

soil, attenuated by the canopy,

σ0
tot = σ0

veg + τ2σ0
soil. (1)

The contribution of the vegetation is described as

σ0
veg = AV1 cos(θ)(1− τ2), (2)

where
τ2 = e−2BV2 sec(θ) (3)

is the two-way attenuation through the canopy, θ is the incidence angle of the SAR signal
beam, V1, V2 are vegetation descriptors, and A, B are model parameters. In this study, the
vegetation descriptors, V1 and V2, are, respectively, 1 and the GAI (m2 m−2) of the maize
crop. The GAI is indeed a very suitable descriptor of the canopy since it is an indicator of
light interception and thus, indirectly, photosynthesis [54]. As for the contribution from
the soil to the backscatter, experimental evidence suggests that σ0

soil in decibel (dB) is as a
linear function of the volumetric surface soil moisture, Vm (kg m−3) [55]. However, a closer
fit was achieved with a linear relationship between σ0

soil in natural units and Vm, hence,

σ0
soil = CVm − D, (4)
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where C and D are model parameters that account for the influence of soil moisture and
soil roughness, respectively. This model implies that the soil roughness is constant through-
out the observation period, i.e., the growing season of the crop, which is a reasonable
assumption with respect to Belgian agricultural practices concerning maize.

3.1.2. Calibration

The model parameters A, B, C, and D were calibrated via non-linear least squares,
which amounts to minimizing the sum of square residuals (SSR),

min
A,B,C,D

N−1

∑
i=0

(σ0
obs,i − σ0

tot,i)
2, (5)

where N is the number of data points in the calibration set, and σ0
obs,i and σ0

tot,i,
i = 0, 1, . . . , N − 1, are the backscattering coefficients, in natural units, observed and
simulated with the WCM, respectively. This problem is solved numerically by alternating
between the basin-hopping algorithm [56], which is a stepping technique for global opti-
mization, and a truncated Newton method [57], for local minimization, starting from an
initial guess (A0, B0, C0, D0) for the model parameters.

3.2. Backward Modeling
3.2.1. Algebraic Inversion

After the WCM is calibrated, it can be algebraically inverted in order to retrieve either
the GAI or the volumetric surface soil moisture, Vm, of a maize crop. Hence, an estimate of
the green area index,

ĜAI = −cos(θ)
2B

ln

(
A cos(θ)− σ0

obs
A cos(θ)− CVm + D

)
, (6)

and an estimate of the volumetric surface soil moisture,

V̂m =
1
C

(
σ0

obs − A cos(θ)(1− e−2B GAI sec(θ))

e−2B GAI sec(θ)
+ D

)
, (7)

can be obtained from a measurement of the backscattering coefficient, σ0
obs, the incidence

angle of the SAR signal beam, θ, and Vm or the GAI, respectively.

3.2.2. Simultaneous Retrieval of Green Area Index and Surface Soil Moisture

The algebraic inversion of the WCM allows to retrieve either the GAI or the surface
soil moisture from SAR data with knowledge of the other variable. However, in-situ
measurements of GAI and surface soil moisture are poorly suited to an operational setting.
The use of two polarizations of a multi-polarized SAR measurement can dispense with
the necessity to have knowledge of one of the two variables of interest, i.e., GAI and
surface soil moisture, to obtain the other. Two WCMs can be calibrated using backscattering
coefficients in different polarizations, forming a system of two non-linear equations with
two unknowns, ĜAI and V̂m,{

σ0
obs,pq = Apq ĜAI cos(θ) (1− e−2Bpq sec(θ)) + (CpqV̂m − Dpq) e−2Bpq sec(θ)

σ0
obs,rs = Ars ĜAI cos(θ) (1− e−2Brs sec(θ)) + (CrsV̂m − Drs) e−2Brs sec(θ)

(8)

where σ0
obs,pq and σ0

obs,rs are the measured backscattering coefficients in the pq and rs
polarizations, and Apq, Bpq, Cpq, Dpq, Ars, Brs, Crs, Drs are the parameters of the two
WCMs, with pq, rs ∈ {HH, HV, VV}, pq 6= rs, for fully polarimetric data, and pq = VH,
rs = VV for dual-polarized data.

The resolution of (8) is an ill-posed problem. Several combinations of GAI and Vm
can indeed correspond to a same SAR measurement [35]. Inversion techniques aim at



Remote Sens. 2022, 14, 2496 9 of 24

finding an approximate solution to the inverse problem by indirectly imposing additional
constraints, which are dependent on their specific implementation, on the solution such
that it becomes unique, thereby regularizing the problem. Three inversion techniques are
explored and reported in this study: (1) an iterative optimization (IO) method [58]; (2) a
look-up table (LUT) search; and (3) a random forest regressor (RFR) approach [59].

The IO method consists of finding solutions to (8) iteratively from an initial guess of
the solution. The Levenberg–Marquardt algorithm [60] is used for this purpose. Since the
existence of local minima cannot be excluded for the inverse problem, the method is not
guaranteed to return the global minimum of the objective function. The possibility that
its approximate solution is a local minimum depends largely on its initial approximation
and its stopping criterion. In this paper, the latter specifies that the method stops when the
approximate solution or objective value of the last iteration is too close to the ones of the
previous iteration, or when a predetermined number of iterations is reached.

The LUT search begins by the generation of a data cube of simulated backscattering
coefficients by forward modeling the pair of WCMs in (8) with varying values of GAI,
Vm and θ. The inversion of a set of backscatter measurements and incidence angles is
then performed by searching in the cube the entries that most closely correspond to them
according to a criterion, the minimum Euclidean distance in this paper, and returning the
GAI and soil moisture values from which they were simulated. In addition to the proximity
criterion, the returned approximate solution therefore depends on the step size between
the table entries and the criterion for choosing between multiple entries with identical
proximity. In this study, if two inputs have the same distance to the observed radar data,
the returned GAI and soil moisture values correspond to the entry for which their value as
well as that of the incidence angle are the smallest.

Finally, the RFR consists in training a random forest on the data contained in the LUT to
make up for the low amount of data observed in the field, and then using the trained model
to produce estimates of the variables of interest from SAR measurements. The returned
solution is computed as the mean of the predicted values of the variables of interest by
the decision trees in the forest. As with the two previous inversion techniques, the choice
of the hyperparameters, quantitative and categorical, of the method has an impact on
the approximate solution that is found [61]. These hyperparameters can be the object of
an optimization procedure, also called tuning, by various methods such as a grid search.
The use of bootstrapping also introduces a random element in the method. It is therefore
expected that the three inversion strategies listed above will produce different results
between them and depending on the values of their hyperparameters. The comparison
between these methods in this paper is therefore not absolute but relative to the problem
presented and the experimental data collected.

3.3. Experimental Design

The main purpose of this study is to evaluate the performance of an algorithm based
on the WCM for the simultaneous estimation of GAI and surface soil moisture in maize
fields from radar data only. For this purpose, several methods, i.e., IO, LUT search, and
RFR, are implemented and tested with the L- and C-band multi-polarized SAR, vegetation,
and soil data from the BELSAR campaign. The results obtained are then compared to those
that the WCM can deliver when one of the two variables of interest is known. A flowchart
providing a summary of the different steps in the methodology of this study can be found
in Figure 5.
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Figure 5. Flowchart of the experimental design.

3.4. Validation and Comparison between Inversion Methods

Since the amount of data that is available is relatively small, the goodness-of-fit and
retrieval performance of the models are evaluated through a leave-one-out cross-validation
(LOOCV) scheme. Let M be the number of data points in the data set. At each of the M
iterations of the scheme, the model is trained on M− 1 data points. The remaining data
point is then used to evaluate the goodness-of-fit of the WCM, by simulating the backscatter
of the crop with the true values of the GAI, Vm, and θ of the data point, as well as the
accuracy of the model predictions, by estimating the GAI and Vm from their corresponding
radar measurements. The aggregation of these M evaluations through appropriate metrics
then enables to evaluate the estimation performance of the different models and the ability
of the WCM to simulate the backscatter of crops. The metrics used in this study to quantify
the difference between estimated and observed values are Pearson’s correlation coefficient,
r, the root-mean-square error (RMSE), and the relative RMSE (rRMSE). The rRMSE is
defined in this study as the RMSE divided by the difference between the maximum and
minimum values of the observations. This normalization facilitates the comparison between
data that has different ranges of values, such as the backscattering coefficients in co- and
cross-polarization, as is apparent in Figures 2 and 3. For this reason, it is used in this
study to evaluate the goodness-of-fit of the WCM, while the GAI and Vm estimates are
evaluated with the RMSE to ease the comparison with state-of-the-art retrieval methods, as
well as offer a more straightforward understanding of the real-world applicability of the
investigated methods.
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4. Results
4.1. Sensitivity Analysis

The potential of the C-band radar data from Sentinel-1 for maize monitoring has
already been established and quantified in several studies, e.g., [21–23]. For this reason,
only the sensitivity of the L-band backscatter measurements from the BELSAR data set
to variations of the GAI, the volumetric surface soil moisture under the canopy, Vm, and
incidence angle, θ, will be assessed in this study. This will be carried out in two ways. First
using linear and linear-log regression models with the measured backscattering coefficients,
as in [22,62]. Linear-log regression models are linear regression models computed using the
logarithm of the independent variable. Second, by simulating backscattering coefficients
with the WCM and observing their response to variations of GAI, Vm, and θ.

4.1.1. Sensitivity of L-Band σ0 to GAI and Vm

The linear and linear-log regression lines, depicted in Figure 6, suggest through their
coefficients of determinations, r2

lin and r2
lin-log, that the L-band backscattering coefficients

σ0 from BELSAR are moderately sensitive to the GAI, especially in HV, with r2
lin = 0.61

and r2
lin-log = 0.73, and in VV, with r2

lin = 0.63 and r2
lin-log = 0.70, but have no sensitivity to

the surface soil moisture under the canopy, with r2
lin = 0.01 and r2

lin-log = 0.01 in HV, and

r2
lin = 0.02 and r2

lin-log = 0.01 in VV. This finding is discussed in more detail by Bouchat
et al. [50] in their study on the potential of the BELSAR airborne SAR acquisitions for
agricultural applications, where the GAI is reported as the crop biophysical variable that is
the most linearly correlated with the L-band backscattering coefficients used in this work,
amongst all the crop variables measured in situ during the BELSAR campaign, i.e., GAI,
plant height, wet and dry biomass, and vegetation water content which are reported in
Table 2.
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Figure 6. Scatter plots, as well as linear and linear-log regressions lines, of the volumetric surface soil
moisture and GAI as a function of the backscattering coefficient σ0 in HH, HV, and VV polarization.

4.1.2. Sensitivity of the Calibrated WCM to GAI, Vm, and θ

The sensitivity of the WCM, and of the L-band backscatter measurements through
it, to variations of GAI, Vm, and θ is investigated by calibrating the WCM with the entire
BELSAR data set (n = 26) for each polarization, and then forward modeling backscattering
coefficients with varying values of the three variables on which it depends.

The values of the parameters of the WCM calibrated with HH, HV, and VV polarized
L-band data from BELSAR are listed in Table 3. Note that the calibration procedure
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for the WCM is based on the minimization of the sum of its squared residuals, a non-
convex objective. While convergence to a global minimum cannot be guaranteed for this
optimization problem, the minimization procedure, starting from an initial guess for values
of the model parameters (A, B, C, and D), was found to be insensitive to this initial choice.
Indeed, a range of initial values was tested for the start of the iterative minimization
algorithm, and it was found that relatively large perturbations of these initial guesses have
a negligible impact on the cross-validation errors made by the WCM. For this reason, all
the calibration procedures of the WCM in this study have (A0, B0, C0, D0) = (1, 1, 1, 1) as
the initial guess.

Table 3. Values of the parameters of the water cloud model (WCM) calibrated with all available
in-situ measurements of green area index (GAI) and volumetric surface soil moisture, Vm, and their
corresponding L-band SAR backscattering coefficients and incidence angles.

Polarization A B C D

HH 1.35× 10−1 1.73× 10−1 7.88× 10−4 1.32× 10−1

HV −3.24× 10−2 −6.58× 10−2 6.68× 10−5 9.74× 10−3

VV −4.44× 10−3 −1.60× 10−1 7.48× 10−5 −4.58× 10−3

The fit of the WCM with the parameter values reported in Table 3 is similar in terms of
RMSE for backscattering coefficients in HV and VV, with values of 0.16 and 0.15, respectively.
However, the correlation coefficient in HV is higher than in VV, i.e., 0.83 against 0.72. The
goodness-of-fit of the model is significantly worse in HH, with an r of 0.65 and an rRMSE
of 0.22.

The backscattering coefficients simulations performed with the WCM calibrated with
the parameter values listed in Table 3 for various values of GAI, Vm, and θ, are reported
in Figures 7 and 8. These simulations provide insight on the sensitivity of the model,
and indirectly the L-band SAR backscatter, to these variables. Variations in the value of
the incidence angle have little overall effect on the sensitivity of the WCM simulations
to variations in GAI or surface soil moisture values. Only the response of the model
in VV is slightly affected by variations of θ, and only at high GAI values, i.e., around
4 m2 m−2. Besides, the simulated backscattering coefficients in VV do not seem to converge,
or saturate, with increasing GAI and are quite sensitive to variations in its value. On the
other hand, they do not appear to be very sensitive to variations of the surface soil moisture
value, Vm. The simulations in HV seem to be the most balanced, i.e., they are sensitive to
changes in GAI and Vm, even at higher values, although this sensitivity decreases as GAI
and Vm values increase. They are also more sensitive than those in VV to the surface soil
moisture under the canopy. In general, the GAI has a significant impact on the sensitivity of
the model to the surface soil moisture. This phenomenon is expected; the more developed
the crop, the less capacity the signal has to penetrate it to interact with the soil. Finally,
simulations in HH already saturate for moderately high values of GAI, at around 2 m2 m−2,
and are not very sensitive to soil moisture except at the early stages of crop growth.

Based on this sensitivity assessment, HV seems to be the most appropriate polarization
for estimating GAI and Vm. It is then closely followed by VV, while HH appears insensitive
to these biogeophysical variables in comparison.
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Figure 7. Backscattering coefficient simulations σ0 in polarization HH, HV, and VV as a function
of GAI (top) for multiple values of volumetric surface soil moisture, Vm, with the incidence angle
θ = 40◦, and (bottom) for multiple incidence angles, with Vm = 125 kg m−3.
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Figure 8. Backscattering coefficient simulations σ0 in polarization HH, HV, and VV as a function
of volumetric surface soil moisture, Vm, (top) for multiple values of GAI with the incidence angle
θ = 40◦, and (bottom) for multiple incidence angles with GAI = 2 m2 m−2.

4.2. Algebraic Inversion of the WCM

The retrieval of either the GAI or the volumetric surface soil moisture, Vm, is performed
through the algebraic inversion of the WCM described in Section 3.2.1. This method
requires the knowledge, or at least an estimate, of Vm to retrieve the GAI of a maize crop,
and vice versa.

The quality of the fit between the measured backscattering coefficients and those
simulated with the WCM, for each polarization, is depicted in Figures 9 and 10 for the
L-band from BELSAR and C-band from Sentinel-1, respectively. The coefficients in the
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figures are expressed in natural power units rather than decibels, even though the latter are
more frequently encountered in the field of radar remote sensing. This is tied to the fact
that the model is calibrated in these units and that the simulations of the semi-empirical
model are not constrained in such way that they would have to be physically consistent,
i.e., they can have negative values. This is indeed the case for the simulations in HH, in
Figure 9a; therefore, the calibration results cannot be reported in decibels without omitting
negative values.

In L-band, the fit of the simulations in HH, with a correlation coefficient of 0.47 and an
rRMSE of 0.26, is significantly worse than for HV, with an r of 0.75 and an rRMSE of 0.18.
In VV, the errors are highly influenced by only two data points that penalize the correlation
coefficient and rRMSE, with values of 0.46 and 0.21, respectively. Without these outliers,
given the tight distribution of the points along the 1:1 line, better results than in HV could
be expected.

In C-band, despite errors in line with those obtained with L-band data, with correlation
coefficients of 0.53 and 0.61, and rRMSEs of 0.21 and 0.22, for VH and VV, respectively, the
model simulations appear to be less faithful to the backscattering coefficients measurements
than those obtained with L-band data, as attested by the distribution of the data points in
the scatter plots in Figure 10.

The estimates of GAI and Vm obtained through the algebraic inversion of the WCM,
in a LOOCV scheme, are shown in Figure 11 for the L-band data, and in Figure 12 for the
C-band data, and the estimation errors for each frequency band are reported in Table 4a
and Table 4b, respectively.

The most accurate GAI estimates obtained using this method are derived from L-band
SAR data in VV, with an r of 0.87 and an RMSE of 0.68 m2 m−2. The vertical co-polarization,
although leading to better GAI retrieval accuracies than HV, with an r of 0.85 and an
RMSE of 0.75 m2 m−2, is, on the other hand, less suitable than the latter for the estimation
of the surface soil moisture, with an r of 0.60 and an RMSE of 54.73 kg m−3 for HV, and
an r of 0.39 and an RMSE of 81.25 kg m−3 for VV. As for HH, its GAI and Vm retrieval
accuracies are very low, with r values of 0.48 and 0.37 and RMSEs of 1.41 m2 m−2 and
81.53 kg m−3, respectively.

It is important to note, however, that threshold values were set to limit the values of
the GAI estimates to a range between 0 and 4 m2 m−2, as in [35], and Vm estimates between
0 and 250 kg m−3. These extreme values used as prior information artificially increase the
precision of the model estimates since they limit its least physically plausible outputs.
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Figure 9. Results from the leave-one-out cross-validation (LOOCV) for the calibration of the water
cloud model (WCM) with L-band data in (a) horizontal co-polarization, HH; (b) cross-polarization,
HV; (c) vertical co-polarization, VV.
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Figure 10. Results from the LOOCV for the calibration of the WCM with C-band data in (a) cross-
polarization, VH; (b) vertical co-polarization, VV.
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Figure 11. Results from the LOOCV for the retrieval of either maize GAI or volumetric surface
soil moisture, Vm, using the algebraic inversion of the WCM with L-band data in (a) horizontal
co-polarization, HH; (b) cross-polarization, HV; (c) vertical co-polarization, VV.
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Figure 12. Results from the LOOCV for the retrieval of either maize GAI or volumetric surface soil
moisture, Vm, using the algebraic inversion of the WCM with C-band data in (a) cross-polarization,
VH; (b) vertical co-polarization, VV.

Table 4. Results from the leave-one-out cross-validation (LOOCV) for the retrieval of either GAI
or volumetric surface soil moisture, Vm, in maize fields from (a) L- and (b) C-band backscattering
measurements (n = 26) with the algebraic inversion of the WCM.

(a) L-Band

GAI [m2 m−2] Vm [kg m−3]
Polarization

r RMSE r RMSE

HH 0.48 1.41 0.37 81.53
HV 0.85 0.75 0.60 54.73
VV 0.87 0.68 0.39 81.25

(b) C-Band

GAI [m2 m−2] Vm [kg m−3]
Polarization

r RMSE r RMSE

VH 0.58 1.30 0.30 87.50
VV 0.68 1.05 0.56 61.46

4.3. Simultaneous Retrieval of Green Area Index and Surface Soil Moisture

The simultaneous retrieval of both GAI and Vm with dual-polarized SAR data (HH
and HV, HH and VV, or HV and VV, for the L-band data, and VH and VV for the C-band
data) is performed using three inversion strategies: the iterative optimization (IO) method,
the look-up table (LUT) search, and the random forest regression (RFR). These are described
in Section 3.2.2.

For the IO method, the initial values for the GAI and Vm required by the Levenberg–
Marquardt algorithm were set at 2 m2 m−2 and 125 kg m−3. With regard to the LUT search
and RFR, the pairs of backscattering coefficients forming the data cube were simulated
from a grid of GAI, Vm, and θ values such that
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GAI = {x : x = 0.05n, n ∈ {0, 1, . . . , 80}},
Vm = {x : x = 0.5n, n ∈ {0, 1, . . . , 500}},

θ = {x : x = 20 + 0.5n, n ∈ {0, 1, . . . , 80}}.

A grid search resulted in the number and maximum depth of the RFR trees being set
at 100 and 4, respectively.

Since the WCMs are calibrated separately using distinct polarizations, the calibration
results for this retrieval method are the same as the ones for the one relying on the algebraic
inversion of the model. They are reported in Figures 9 and 10 for the L- and C-band data,
respectively. As for the validation results from the LOOCV for each available frequency
band and polarization pair, they are reported in Table 5.

In L-band, of the three inversion strategies, the RFR with the polarization pair HV
and VV resulted in the most accurate estimates for both GAI and volumetric surface soil
moisture, with an r of 0.79 and an RMSE of 0.77 m2 m−2, and an r of 0.20 and an RMSE of
70.60 kg m−3, respectively. These validation results, from the LOOCV with the RFR, as well
those obtained with the other two polarization pairs, are depicted in Figure 13.

Of the three polarization pairs in this frequency band, the pair HV and VV provides the
best GAI estimates for each inversion strategy. This finding does not hold for Vm, however,
since the pair HH and HV yields a lower RMSE than the other pairs with the IO method,
with a value of 80.75 kg m−3, although these errors remain much larger than those obtained
via the RFR. Furthermore, for each polarization pair, the GAI estimates obtained with the
RFR are better than those of the other two inversion strategies, which is consistent with the
findings of Mandal et al. [45] in their investigation into multiple inversion strategies for the
estimation of the GAI in maize crops using the WCM with C-band data.

For the C-band data with the only available polarization pair, VH and VV, the strategy
resulting in the most accurate GAI and Vm estimates is the RFR, as with the L-band, with
correlation coefficients of 0.65 and 0.29, and RMSEs of 0.98 m2 m−2 and 69.34 kg m−3.

Based on these observations, the L-band seems, therefore, better suited for the estima-
tion of the GAI with this method, and the C-band for the estimation of Vm, although results
for the latter are quite close between the two frequency bands. However, this observation
must be qualified. Concerning Vm, neither the estimates obtained from L-band data nor
those obtained from C-band data seem to be usable for accurate soil moisture monitoring
based on the loose distributions around the 1:1 line visible in Figures 13 and 14. As for
the GAI, there is a clear overestimation of its value at the beginning of the growing season
for both frequency bands. However, this may be due to an imbalance in the calibration
data set.

Finally, this method, which consists of simultaneously estimating the GAI and volu-
metric surface soil moisture of a maize crop, thus provides similar, although slightly less
accurate, results than the method based on the algebraic inversion of the WCM. However,
the former has the decisive advantage, in an operational context, that it only requires
backscattering measurements in two polarizations and the incidence angle of the SAR
beam, and no ancillary information on either one of the variables of interest to provide
estimates of the other. Note as well that for none of these strategies were the thresholds
imposed for the estimates of GAI and Vm reached, unlike for the method based on the
algebraic inversion of the WCM.
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Figure 13. Results from the LOOCV for the simultaneous retrieval of maize GAI and volumetric
surface soil moisture, Vm, from (a) HH and HV; (b) HH and VV; (c) HV and VV polarization pairs,
using a random forest regressor (RFR).
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Figure 14. Results from the LOOCV for the simultaneous retrieval of maize GAI and volumetric
surface soil moisture, Vm, using a RFR with C-band data in VH and VV polarizations.
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Table 5. Results from the LOOCV for the simultaneous retrieval of GAI and volumetric surface soil
moisture, Vm, in maize fields from (a) L- and (b) C-band backscattering measurements (n = 26) with
different inversion strategies for the WCM: the iterative optimization method (IO), the look-up table
search (LUT), and the random forest regressor (RFR).

(a) L-Band

GAI [m2 m−2] Vm [kg m−3]
Method Polarizations

r RMSE r RMSE

HH and HV 0.32 1.46 0.21 80.75
HH and VV 0.17 1.49 −0.36 127.28IO
HV and VV 0.69 1.16 0.28 92.43

HH and HV 0.10 1.60 −0.25 89.65
HH and VV 0.43 1.26 −0.30 118.16LUT
HV and VV 0.76 1.00 0.14 82.23

HH and HV 0.47 1.12 −0.22 78.59
HH and VV 0.36 1.26 0.20 98.42RFR
HV and VV 0.79 0.77 0.20 70.60

(b) C-Band

GAI [m2 m−2] Vm [kg m−3]
Method Polarizations

r RMSE r RMSE

IO VH and VV 0.59 1.27 0.16 87.80
LUT VH and VV 0.54 1.22 0.21 81.15
RFR VH and VV 0.65 0.98 0.29 69.34

5. Discussion

The sensitivity assessment of the L-band data, based on a regression analysis and
simulations of the backscatter of the maize crop by forward modeling with the WCM,
demonstrated the sensitivity of the L-band backscattering measurements to variations in
the GAI in those crops. However, it also revealed the significantly lower sensitivity of the
SAR measurements to the volumetric surface soil moisture under the canopy, possibly due
to drought conditions, which is also apparent in the estimation results obtained from both
retrieval methods, i.e., the algebraic inversion of the WCM and the joint estimation of both
variables from radar backscatter measurements in two distinct polarizations.

The algebraic inversion of the WCM, the results of which are reported in Section 4.2,
consists of finding one of the two variables of interest using the other as well as backscat-
tering measurements in a single polarization and the incidence angle of the SAR beam.
This method for either GAI or soil moisture retrieval provided more accurate results with
SAR backscatter measurements in L-band rather than in C-band, especially for the GAI
retrieval. Furthermore, for this purpose, the vertical co-polarization, VV, in L-band was
the most adequate, but only slightly better than HV. For the estimation of the soil moisture
under the canopy, on the other hand, while accuracies were low for all frequency bands and
polarizations, the cross-polarization in L-band yielded the best results, while the horizontal
co-polarization, HH, in L-band did not provide satisfactory results for either variable, as
the sensitivity assessment prefigured. These findings are in agreement with the study of
Tronquo et al. [63], who also exploited the BELSAR data set and reported that the most ac-
curate soil moisture retrieval results over bare soils were found for VH and VV polarization.
As for the C-band, finally, the cross-polarization, VH, provided more accurate estimates of
both GAI and surface soil moisture than VV.

The simultaneous retrieval method, the results of which are reported in Section 4.3,
dispensed with the need for ancillary data altogether and allowed the joint estimation
of the two variables of interest simultaneously from dual-polarized SAR measurements
and their incidence angle alone. Accurate GAI estimates were obtained with a strategy
consisting of training a random forest regressor with data simulated by a pair WCMs
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fitted on dual-polarized radar data. However, as with the first method, the accuracy of the
surface soil moisture estimates obtained did not prove adequate enough for its monitoring,
unlike the GAI estimates. The best accuracies for GAI retrieval with this method were
obtained with L-band data in HV and VV polarizations, and the estimates derived from the
C-band data from Sentinel-1 were not as good as those obtained from the L-band data from
BELSAR. This second method did not provide GAI estimates as accurate as the previous
one with the L-band data, though they were still fairly similar. It was the opposite for the
C-band data. The similarity between the results of the first and second methods, as well
as their accuracy, suggest that, under the specific conditions of the BELSAR campaign,
knowledge of the volumetric surface soil moisture does not provide any improvement in
accuracy for the estimation of the GAI of maize crops using the WCM with dual-polarized
radar data.

The results show that the WCM is a simple and straightforward model to implement
and operate which already works well with a limited amount of training data [64], although
its calibration and estimation capabilities are very-dependent on them [35] and possibly
quite inconsistent through time and space [17]. Its calibration procedure has proven to be
robust and very independent of the choice of initial model parameters values. Moreover, it
can be used with sufficient accuracy for the monitoring of maize crops, through their GAI,
with ancillary information on surface soil moisture or only with radar data provided that
two polarization channels are available.

In view of the results reported for its retrieval, monitoring the surface soil moisture
under the canopy in maize fields is not possible with the WCM described in Section 3.1.1.
Several hypotheses can explain the relative insensitivity of this model to soil moisture
variations. The model for the soil contribution to the total backscatter suggested by Ulaby
et al. [55], which depends linearly on volumetric surface soil moisture, might not be valid
for the soil moisture conditions encountered, i.e., very dry soils and a very narrow range of
surface moisture values due to an exceptionally dry season. The empirical Oh model [65] or
the physically-based integral equation model (IEM) [66,67] and advanced integral equation
model (AIEM) [68,69] could be used as an alternative to it. These models require an
accurate description of the surface roughness, however, and its parameterization from field
measurements is known to be problematic. This issue was addressed by Tronquo et al. [63],
who proposed a method based on effective roughness modeling, whereby roughness
parameters are calibrated based on backscatter observations, which can then be used for
soil moisture retrieval. This approach could be implemented in the WCM framework in
order to better reflect the actual soil contribution to the total backscatter. Another hypothesis
explaining the insensitivity of the model to soil moisture invokes the attenuation of the
signal by the already well-developed canopy as early as the second acquisition, on 21 June
(F2), although it seems less likely in view of the penetration ability of the L-band [19]. The
preponderance of double-bounce phenomena in the canopy that are not taken into account
by the WCM could also explain the poor sensitivity of the model. Or finally, a combination
of these different factors could be the cause of the inaccuracy of the results.

The accuracy of the GAI estimates obtained with the algebraic inversion of the WCM
and the simultaneous estimation of the two variables is encouraging. As expected for high
biomass crops, the L-band performs significantly better than the C-band in this respect.
Only the HH polarization does not yield the same satisfactory results for the GAI retrieval.
This might be due to an effect of the orientation of the maize rows relative to the SAR signal
beam, which is much greater in HH than in HV or VV [50,70]. The results are otherwise
getting close to, though remaining less accurate than, those that can be expected from
remote sensing methods exploiting optical data; e.g., [5,71,72]. The use of radar-only data,
however, has a significant advantage over them in the presence of cloud cover, which is
frequent during the growing season, and especially at its end, in the area of interest. The
GAI map in Figure 15 is an example of the relevance of such techniques. It reveals that
harvesting has only begun in the northern part of the field, while the rest of the field is still
vegetated, at a time when cloud cover is almost persistent.
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Figure 15. GAI map of a maize field, in which in-situ data were collected, produced using a RFR
trained with L-band backscattering coefficients σ0 in HV and VV polarizations acquired on 26 August
(F4). To reduce speckle, a 5× 5 boxcar filter was applied on the SAR images prior to GAI retrieval.

6. Conclusions

The WCM was used in this study for the simultaneous estimation of the GAI of maize
crops and the surface soil moisture under their canopy from dual-polarized SAR data in
C- and L-band. Accurate GAI estimates were obtained using a random forest regressor
to invert a pair of WCMs calibrated with SAR data in cross-polarization and vertical co-
polarization in both L- and C-band, with correlation coefficients of 0.79 and 0.65 and RMSEs
of 0.77 m2 m−2 and 0.98 m2 m−2, respectively. However, the method was shown to be
inadequate for soil moisture retrieval in the drought conditions of the field campaign.

These very encouraging results indicate that GAI retrieval in maize crops using only
dual-polarized radar data could successfully substitute for estimates derived from optical
data when these are not available, such as in the case of persistent cloud cover. Furthermore,
the effectiveness of multi-polarized L-band data for GAI monitoring reported in this study
highlights the relevance for agriculture of the further development and exploitation of
spaceborne L-band SAR with a high revisit time. The upcoming launch of NISAR, ALOS-4,
and Tandem-L, with their L-band, high temporal resolution, and systematic acquisition
mode, will allow to extend and scale up the results of this study using a larger set of L-band
SAR acquisitions and provide a valuable addition to the C- and X-band sensors already in
orbit, which opens up exciting prospects for agricultural applications.
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