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Abstract: This paper deals with 3D and 2D linear inverse scattering approaches based on the Born
approximation, and investigates how the model dimensionality influences the imaging performance.
The analysis involves dielectric objects hosted in a homogenous and isotropic medium and a multi-
monostatic/multifrequency measurement configuration. A theoretical study of the spatial resolution
is carried out by exploiting the singular value decomposition of 3D and 2D scattering operators. Re-
construction results obtained from synthetic data generated by using a 3D full-wave electromagnetic
simulator are reported to support the conclusions drawn from the analysis of resolution limits. The
presented analysis corroborates that 3D and 2D inversion approaches have almost identical imaging
performance, unless data are severely corrupted by the noise.

Keywords: linear inverse scattering; resolution limits; singular value decomposition

1. Introduction

Microwave imaging (MWI) is a well-known non-destructive technique that aims at
sensing a scene by means of interrogating electromagnetic (EM) waves in the microwave
frequency band [1,2]. Specifically, MWI’s goal is to localize and characterize unknown
targets placed in the investigated domain from the knowledge of the field that they scatter
when illuminated by a known probing, or incident, field [2].

MWI exploits data processing techniques distinguished between non-linear and lin-
ear approaches [2]. Non-linear approaches are based an accurate model of the scattering
phenomenon and allow, in principle, a quantitative reconstruction, i.e., the determination
of permittivity and conductivity spatial maps of targets hosted in the probed region. On
the other hand, they require an accurate knowledge of the electromagnetic features of
the media hosting the targets as well as of the incident field, and need a large amount of
independent data. Consequently, their applicability in practical cases is strongly limited
because, generally, the knowledge of the hosting media, and thus the radiative behavior
of the antennas, is approximate, and a small amount of data is available. In addition,
commonly, non-linear approaches formulate the imaging as an optimization problem by
searching for the global minimum of a non-linear cost functional. Therefore, save for a
few cases where global optimization schemes are applicable [3], they formulate the imag-
ing by means of local minimization strategies; hence, the imaging result depends on the
initialization of the minimization procedure and a false solution may occur. Conversely,
linear approaches account for an approximate model of the scattering phenomenon, such
as the Born approximation [4]. These approaches do not suffer from local minima problems
and lead to computationally effective inversion procedures. Moreover, they do not require
accurate a priori information of the probed medium as well as of the antenna behavior, and
properly work with a reduced amount of independent data, as that collected by means of a
multimonostatic/multifrequency measurement configuration. By taking into account that a
qualitative reconstruction is enough in many practical cases, linear MWI use is widespread
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and has been successfully applied in several application fields, such as ground penetrating
radar (GPR) prospecting [5], which attracts interest in geophysics [6], civil engineering [7],
archeology [8,9], and cultural heritage monitoring [10]. Other application fields of MWI
include but are not limited to biomedical imaging [11], [12], non-destructive evaluation
and testing [13], through the wall radar imaging [14,15] and urban sensing [16], passive
radar imaging [17], and so on. Furthermore, different tools such as diffraction tomogra-
phy [18] or the Singular Value Decomposition (SVD) of the scattering operator [19] are
exploited to evaluate the information content retrievable from the data and the achievable
resolution limits.

It must be stressed that MWI is a broad research field and a review of the available
algorithms is not the scope of the present article; however, an overview of computational
methods can be found in [20] for readers’ convenience.

The effectiveness of linear MWI approaches based on the Born approximation has
already been demonstrated in challenging application scenarios, for instance, archeological
prospections [9], cultural heritage [10], landmine detection [21], and glacier exploration [22].
Therefore, herein, the attention is focused on linear MWI data processing and aims at
contributing to the open issue about the dimensionality of the model, i.e., 3D or 2D, to
be used in the inverse scattering formulation. Specifically, the data account for the actual
3D nature of the scattering phenomenon, while the imaging is usually faced into a 2D
vertical domain by processing data gathered along a line. Then, the aim is to investigate
how the dimensionality of the scattering model affects the imaging performance. This goal
is pursued by analyzing the spectral content of the scattering operator [19] and the point
spread function (PSF) [23], which are two figures of merit extensively used in literature to
foresee the achievable resolution limits [21,24,25].

In [26], an interesting data conversion procedure has been proposed in the seismic
context to convert the data radiated by a source from 3D to 2D space by accounting for
the ratio between the 2D and 3D Green’s functions. However, the application of a similar
procedure, i.e., the conversion of 3D electromagnetic scattered field data to 2D before their
inversion with the 2D model, is not straightforward in the problem at hand because the 3D
Green’s function is dyadic and not a scalar quantity. Therefore, the data conversion from
3D to 2D is not considered in the inverse scattering formulation.

The value of the presented analysis is the possibility to predict the best model to be
inverted depending on the noise level of the data. Reconstruction results based on full-wave
synthetic data are also shown for extended targets to support the outcomes suggested by
the resolution analysis. It must be stressed that full-3D linear inversion approaches are
well-assessed for the case of several measurement lines and a volumetric investigation
domain (e.g., see [24]). Therefore, the novel contribution of this work with respect to current
state of art deals with the comparison of the performance of 3D and 2D linear scattering
models when considering a single survey line and a planar investigation domain.

The paper is structured as follows. Section 2 describes the formulation of the problem
and the MWI approach. In Section 3, the resolution analysis is presented and reconstruction
results for extended targets are reported in Section 4. Conclusions follow in Section 5.

2. Problem Statement and MWI Approach

This section describes the mathematical models at the basis of the linear MWI ap-
proach. The models refer to the scenario in Figure 1 where the hosting medium is lossless,
homogenous, non-magnetic, and characterized by the dielectric permittivity εs and mag-
netic permeability µ0 = 4π × 10−7 H/m. The targets are probed by a Tx/Rx antenna pair
moving along the line Γ at z = 0. The antennas collect data in the angular frequency range
Ω = [ωmin, ωmax] and operate in monostatic mode; therefore, the generic measurement
position is denoted by rs ∈ Γ. In the following, the exp(jωt) time dependence is assumed
and dropped.
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Figure 1. Geometry of the problem.

The investigation domain D is a rectangular region hosting the targets identified by
the survey direction (x-axis) and z-axis. Without loss of generality, it is assumed that the
measurement line Γ and the investigation domain D are both located at y = ys = 0 (see
Figure 1). Therefore, it follows that rs = xs x̂ and r = xx̂ + zẑ.

At any point r ∈ D, the presence of a target is described by the contrast function
χ = εt/εs − 1, which represents the variation in the target permittivity εt with respect to
the medium one εs.

2.1. Full-3D Scattering Model

The antennas in Figure 1 are modeled as Hertzian dipoles linearly polarized in the di-
rection normal to the survey line (y-axis). Under the Born approximation, the y-component
of the scattered field E3d

s measured at rs is related to the unknown contrast function χ by
the linear integral equation:

E3d
s (rs, ω) = ŷ·k2

s

x

D
G(rs, r)·Ei(r, rs)χ(r)dr (1)

where ks = ω
√

µ0εs is the propagation constant in the hosting medium, G is the dyadic

Green’s function and Ei is the incident electric field at r radiated by a y-directed Hertzian
dipole at rs. The incident field Ei is related to the dyadic Green’s function G by the

formula [4]
Ei(r, rs) = −jωµ0 I0l G(r, rs)·ŷ, (2)

I0l being the electric dipole moment amplitude. The dyadic Green’s function G in a

homogeneous and isotropic medium has a closed expression in the spatial domain [27]
and, for the case at hand where y = ys = 0, the following expression holds:

G(r, rs) =

 G1 + G2(x− xs)
2 0 G2(x− xs)z

0 G1 0
G2(x− xs)z 0 G1 + G2z2

e−jksR (3)

G1 =
−1− jksR + k2

s R2

4πk2
s R3 (4)
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G2 =
3 + j3ksR− k2

s R2

4πk2
s R5 (5)

where R = |r− rs| =
√
(x− xs)

2 + z2.
Upon accounting for Equations (2)–(5), Equation (1) can be rewritten as

E3d
s (rs, ω) = −jωµ0 I0l

x

D

(
−1− jksr + k2

s r2

4πksr3

)2

e−j2ksrχ(r)dr (6)

The last formula is rewritten by introducing the compact operator notation as

E3d
s = A3dχ (7)

where A3d: L2(D)→ L2(Γ×Ω) is a linear operator mapping the unknown space into the
data space and L2 denotes the square integrable function space.

2.2. 2D Scattering Model

A common hypothesis adopted in MWI literature is to assume the invariance of the
scene in the direction perpendicular to the image plane (i.e., y-direction in Figure 1) and
model the antennas as filamentary electric currents directed along y (TM polarization) with
amplitude I. Under these assumptions, the following scalar integral equation holds:

E2d
s (rm, ω) = k2

s

x

D
G(rs, r)Ei(r, rs)χ(r)dr (8)

where
G(rs, r) =

j
4

H(2)
0 (ks|r− rs|) (9)

is the 2D Green’s function and H(2)
0 is the Hankel’s function of second kind and zero

order. Since
Ei(r, rs) = −jωµ0 IG(rs, r), (10)

and accounting for the reciprocity of Green’s function [4], the integral equation in (8) is
rewritten as

E2d
s (rm, ω) =

ωµ0 Ik2
s

16

x

D

(
H(2)

0 (ksR)
)2

χ(r)dr (11)

Similar to the 3D model in Section 2.1, the last equation is rewritten by using the
operator notation

E2d
s = A2dχ (12)

where A2d: L2(D)→ L2(Γ×Ω) is the 2D linear scattering operator.

2.3. Far-Field Operators

In this subsection, we present the far-field approximations of the 3D and 2D operators
defined by Equations (6) and (11), respectively. The reason for introducing them is that they
allow the geometrical attenuation term to be factorized, which can be then separated from
the remaining amplitude terms. In Section 3.2, the SVD of the far-field operators is studied
to highlight the role of the amplitude term while comparing the resolution performance of
the 3D and 2D scattering models.

In the far-field approximation, the distance R is large in terms of the EM wavelength,
i.e., ksR� 1. As a consequence, it is straightforward to verify that Equation (6) rewrites as

E3d
s (rs, ω) ≈ −jωµ0k2

s I0l
16π2

x

D

e−j2ksr

R2 χ(r)dr (13)
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As regards 2D model, we exploit the asymptotic form of the Hankel’s function [27]

H(2)
0 (z) ≈

√
2

πz
e−j(z− π

4 ) (14)

which allows rewriting Equation (11) as

E2d
s (rm, ω) ≈ jωµ0 Iks

8π

x

D

e−j2ksR

r
χ(r)dr (15)

Note that, in Equations (13) and (15), the geometrical attenuation factors 1/R2 and
1/R, respectively, are factorized unlike Equations (6) and (11).

A further simplification, which will be exploited later in Section 3.2, is to neglect all the
amplitude terms outside the integral in Equations (13) and (15), thus obtaining the simple
integral relationships

E3d
s (rs, ω) ≈

x

D

e−j2ksR

R2 χ(r)dr (16)

E2d
s (rm, ω) ≈

x

D

e−j2ksR

R
χ(r)dr (17)

We recall that only a qualitative image (i.e., the support) of the target can be retrieved
by inverting a linear scattering model and the phase term plays the main role in the imaging
process. In this respect, the approximate models of Equations (16) and (17) are admissible
because the phase term is the same as in Equations (13) and (15).

2.4. The Solution of the Inverse Problem

The inverse problem is discretized by applying the Method of Moments [27], thus
obtaining the matrix equation

Es = A · χ (18)

where Es ∈ CM and χ ∈ CN are the complex data and unknown vectors, respectively, and
A ∈ CM×N is the matrix representing the scattering operator. Note that the matrix A has

rank p ≤ min(M, N).
The matrix A is ill conditioned since it comes from the discretization of an ill-posed

linear inverse problem [23]. Accordingly, the presence of noise on data makes the inversion
an unstable process and it is necessary to apply a regularization scheme to get a physically
meaningful solution. To this aim, we apply the Truncated Singular Value Decomposition
(TSVD) strategy [23]

~
χ = ∑Nt

n=1
Es · uH

n
σn

vn (19)

in which the superscript H is the conjugate transpose operation, {σn, un, vn} is the singular
system of the relevant 3D/2D scattering operator matrix, σn are singular values ordered
in a descending order, un and vn are orthonormal basis vectors in the space of data and
unknowns, respectively. It is timely to remark that vectors un depend on the measurement
point xs while vectors vn depend on the point (x, z) in D. The regularization parameter Nt
is the number of retained singular values and its value is fixed in such a way to find an
optimal trade-off between the accuracy and stability of the solution. In this work, as shown
in Section 3, Nt is determined according to the L-curve method [28].

The modulus of the retrieved contrast vector
~
χ defines a spatial map herein referred to

as tomographic image.
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2.5. Point Spread Function and Spectral Content

The resolution analysis is herein carried out by considering two different figures of
merit. The first one is the PSF, which is the regularized reconstruction of a point target [23].
Scattered field data are generated according to the 3D model being the data always referred
to a 3D scenario in real applications; hence, the imaging is faced by exploiting both the 3D
and 2D models and it is solved as described in Section 2.4.

The matrix A in Equation (18) represents the discretized version of the scattering

operator A3d when the 3D model is adopted and of A2d in the 2D case. The data are
corrupted by Additive White Gaussian Noise (AWGN) with a specified signal noise ratio
(SNR) level. Then, the comparison of 3D and 2D models is performed at parity of SNR.
Specifically, for a fixed SNR level, data are inverted according to the TSVD strategy of
Equation (19) where the regularization parameter Nt is evaluated automatically according
to the L-curve criterion. The L-curve is a log–log plot of the norm of the regularized contrast
‖χ‖2 versus the norm of the corresponding residue ‖Es −A · χ‖2. The optimal Nt value is

the one achieved in correspondence of the corner of the L-curve [28].
The second figure of merit adopted here to compare the considered scattering models

is the spectral content of the scattering operators [19,21,22,24]. This quantity allows visu-
alizing the retrievable spectral components of the unknown contrast function. Note that,
differently from PSF, the spectral content provides a global information related to the con-
sidered investigation domain rather than information at a specific target location. When the
TSVD inversion scheme is adopted, the spectral content is defined as the sum of the square
amplitude of the discrete Fourier transforms of the singular vectors vn corresponding to
the retained singular values, i.e.,

SC(kx, kz) = ∑Nt
n=1

∣∣∣~vn(kx, kz)
∣∣∣2 (20)

where kx, kz are the spectral variables corresponding to x, z and
~
vn(kx, kz) are the 2D discrete

Fourier transforms of the singular vectors vn. An interpretation relating the spectral content
to the Fourier transform of the PSF has been reported in [25].

3. Resolution Analysis for 3D and 2D Models
3.1. Scenario Description

The resolution analysis of the 3D and 2D scattering models is carried out for the
scenario depicted in Figure 2. The measurement domain Γ is a 2 m long line directed along
the x-axis covering the interval [−1.0, 1.0] m and sampled with a step equal to 0.02 m.
The investigation domain is the rectangle D = [−1.0, 1.0] × [0.2, 2.0] m2 in the x-z plane
discretized into square image pixels with side 0.02 m. A lossless homogeneous and non-
magnetic dielectric medium having a dielectric permittivity εs = 4ε0, ε0 = 8.85 × 10−12 F/m
being the free-space permittivity, is considered. The point target is buried 1 m below the
measurement line at (0, 0, 1) m. The currents I0 and I involved in Equations (6) and (11) are
assumed equal to 1 A and the dipole length is l = 0.001 m.

The scattered field data are computed according to the 3D scattering model over the
frequency range from 500 to 1500 MHz with a step of 30 MHz. The considered band covers
frequencies commonly used in MWI, and allows simulating a MWI system operating with
1 GHz center frequency. On the other hand, the proposed methodology is general and
applicable as it is in other frequency bands. Each trace of the frequency domain data set is
corrupted by AWGN with progressively increasing SNR levels going from 0 to 30 dB with
a step of 5 dB.
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Figure 2. Scenario with a point target buried at (0, 0, 1) m in a homogeneous medium with relative
permittivity εs = 4. The blue circles denote the measurement points and the black square is the target.

3.2. Singular Values Analysis and Optimal Truncation Index

Figure 3 displays the curves of the singular values of the 3D and 2D scattering opera-
tors on a dB scale. As can be seen, both curves exhibit a progressive decay of the singular
values as the index n grows; a more significant decay is observed for the 3D model (blue
curve) compared to the 2D one (red curve). Most notably, the singular values of the 2D
model are significantly higher (at least one order of magnitude) than those of the 3D model
for every index n.

Figure 3. Singular values (dB) of A3d (blue curve) and A2d (red curve) matrices.

The resolution performance that is achievable with the two models depends on the
truncation index Nt and, in turn, on the SNR level. In this respect, Figure 4 shows the
optimal Nt value versus SNR achieved with the 3D and 2D models after applying the
L-curve method. In the low SNR region, the Nt value, i.e., the number of retained singular
values, is significantly lower for 3D model compared to the 2D model one. On the other
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hand, at high SNRs, Nt values are very similar for both models. This suggests different
performance of the models when data are severely corrupted by noise, and such a behavior
depends on the different amplitudes of the singular values formerly observed in Figure 3.
As a result, a worse performance in terms of spatial resolution limits is expected for the 3D
model at low SNRs.

Figure 4. Optimal truncation index versus SNR for 3D (blue curve) and 2D (red curve) models.

For sake of clarity, we report in Figure 5 the L-curves attained for 3D and 2D models
when SNR = 0 dB (left panel) and 30 dB (right panel). As can be observed, the 2D model is
generally characterized by a lower norm of the solution when SNR = 0 dB.

Figure 5. L-curve for SNR = 0 dB (left panel) and 30 dB (right panel).

In order to investigate more in detail, the role played by the level of the singular
values on the robustness of the solution with respect to the noise, and so in determining
the optimal Nt value, it is useful to consider the expressions of the residue and the norm of
the regularized contrast (see Appendix A):

‖Es −A · ~
χ‖

2
= ∑p

n=Nt+1

∣∣∣~Es · uH
n

∣∣∣2 + ∑p
n=Nt+1

∣∣∣w · uH
n

∣∣∣2 + ∑p
n=Nt+1 2Re

{(~
Es · uH

n

)(
w · uH

n

)∗}
(21)

‖~
χ‖

2
= ∑Nt

n=1

∣∣∣~Es · uH
n

∣∣∣2
σ2

n
+ ∑Nt

n=1

∣∣w · uH
n
∣∣2

σ2
n

+ ∑Nt
n=1

2Re
{(~

Es · uH
n

)(
w · uH

n
)∗}

σ2
n

(22)
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where
~
Es is the noiseless scattered field and w is the AWGN vector.

Both residue and norm in Equations (21) and (22) are the superposition of three series
where the first two are positive quantities and the third one can assume positive or negative
values depending on the signs of the scalar products.

The graphs depicted in Figure 6 show the three terms of Equation (21) and the residue
versus Nt for 3D and 2D models when SNR = 0 dB (left panel) and SNR = 30 dB (right
panel). In general, it is observed that the residue is finite and decays with increasing Nt.
Moreover, the two models have similar behavior of residue.

Figure 6. Three terms in Equation (21) and residue versus truncation index for 3D and 2D models:
SNR = 0 dB (left panel). SNR = 30 dB (right panel).

The graphs in Figure 7 are concerned with the norm of the solution (see Equation (22))
for SNR = 0 dB (left panel) and SNR = 30 dB (right panel). All the three terms involved in
Equation (21) are also reported for clarity. As discussed in Appendix A, the first term (blue
curves) is limited for every Nt in agreement with the Discrete Picard Condition [29]. On
the other hand, the second term (red curves) is divergent and essentially determines the
behavior of the norm (green curves) as Nt grows. In particular, for 3D model, the second
term starts to diverge at a smaller Nt compared to the one of the 2D model. The third term
(black curves) has an oscillating trend that does not play a meaningful role on the norm
of the solution. In view of the finite values of the residue, it turns out that the optimal Nt
(L-curve corner) is mainly influenced by the divergent behavior of the norm of the solution.
Regardless of the noise level, the norm of the solution for the 3D model starts to diverge
before the one associated with the 2D model, and this justifies the difference in Nt values
observed in Figure 4.

Figure 7. Three terms in Equation (22) and norm of the solution versus truncation index for 3D and
2D models: SNR = 0 dB (left panel). SNR = 30 dB (right panel).
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3.3. Point Spread Function and Spectral Content

The imaging performance of the considered models is assessed in Figure 8 in terms
of spectral contents. These last are evaluated via Equation (20) by setting the TSVD
truncation index in accordance with the curves reported in Figure 4. The spectral contents
of both models are characterized by a low-pass filtering along the x-axis and a band-pass
filtering along z. Moreover, the comparison of the spectral contents provides similar trends
for the two models save for low SNR values. Indeed, at low SNR, the spectral content
of the 3D model (lower panels) exhibits a more severe filtering along the z-axis, i.e., a
bandwidth reduction. The spatial filtering here shown is typical for an electromagnetic
inverse scattering problem when an aspect limited reflection configuration is exploited
(e.g., see [19]).

Figure 8. Spectral contents for different SNR levels obtained by means of Equation (20): 2D model
(upper panels); 3D model (lower panels); color scale (−10, 0) dB.

The images plotted in Figure 9 show the normalized amplitude of the regularized PSF
for 2D (upper panels) and 3D (lower panels) models versus SNR, achieved in correspon-
dence of the optimal truncation indexes shown in Figure 4; in particular, SNR = 0, 10, 20,
30 dB values are considered for sake of brevity. As expected, the PSFs are characterized
by a focused spot in correspondence of the target position. Notably, the main lobe width
along the x-axis turns out to be almost independent on the SNR on the data for both models.
On the other hand, the lobe width along z-axis for the 3D model appears slightly larger
compared to the 2D model one as the SNR level decreases. This phenomenon is better
highlighted by the cuts of the PSF reported in Figure 10.

Figure 9. Normalized amplitude of the PSF achieved for different SNR levels and for a point target
placed at (0,0,1) m: 2D model (upper panels); 3D model (lower panels); color scale (0,1).
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Figure 10. Cuts of the PSF achieved for different SNR levels and for a point target placed at (0,0,1) m:
x-cuts (upper panels). z -cuts (lower panels). The red and blue lines refer to the 2D and 3D
model, respectively.

In order to provide a more quantitative assessment of the imaging performance, Table 1
summarizes the resolution limits and the optimal truncation index for each model and SNR
level. Note that the spatial resolution (∆x and ∆z) is evaluated according to the full-width
at half-maximum (FWHM) of the PSF main lobe. The reason for such choice is that, as
revealed by Figure 10, the PSF cuts do not always have definite nulls close to the main lobe,
and therefore it is not possible to apply reliably the usual Rayleigh criterion [23].

Table 1. Resolution for a point target at (0,0,1) m.

3D Model 2D Model

SNR (dB) ∆x (cm) ∆z (cm) Nt ∆x (cm) ∆z (cm) Nt

0 3.8 11.2 690 3.8 9.0 860
5 3.8 10.1 710 3.8 8.2 900

10 3.8 8.9 890 3.8 7.6 1020
15 3.8 8.1 1050 3.8 7.6 1090
20 3.8 7.6 1110 3.8 7.6 1130
25 3.8 7.6 1170 3.8 7.6 1170
30 3.8 7.6 1220 3.8 7.6 1220

Numerical data in Table 1 confirm that resolution along z worsens when the data are
noisy and the most notable deterioration arises with the 3D model. On the other hand,
no resolution variation is observed along the x-axis coherently with the qualitative PSF
analysis (see Figures 9 and 10).

In the following, we also analyze the effect of the target position on the resolution
limits. Specifically, the aim is to investigate how the PSF changes when the target is
located at different distances, i.e., at z = 0.5 m, z = 1 m, z = 1.5 m, with respect to the
antennas. For this case, it has been found that 3D and 2D models provide similar imaging
performance, save for the low SNR case. For sake of brevity, here we do not present the PSF
reconstructions and report only the resolution data achieved when the SNR is equal to 0 dB
(see Table 2), which are those showing the major variations between the models. As can
be seen, both models again exhibit identical resolutions along x-axis, which progressively
worsen as the target depth increases due to the smaller illumination angle [19]. With regard
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to the resolution along z, as previously observed, a significant focusing enhancement is
achieved by inverting the 2D model because a larger number of singular values is retained
in the TSVD compared to the 3D model.

Table 2. Resolution for a point target at different distances from the antennas when SNR = 0 dB.

3D Model 2D Model

Depth (m) ∆x (cm) ∆z (cm) Nt ∆x (cm) ∆z (cm) Nt

0.5 2.6 9.4 280 2.6 9.0 380
1 3.8 11.2 690 3.8 9.0 860

1.5 4.9 13.4 840 4.9 8.7 990

3.4. 3D vs. 2D Model: The Far-Field Case

In order to investigate in more detail the reason why the 3D model is less performing
than the 2D one in the low SNR region, we compare in Figure 11 the curves of the sin-
gular values of 3D and 2D operators (Equations (6) and (11)) with those of their far-field
approximations. Specifically, the magenta and green curves refer to the far-field operators
accounting for all amplitude terms (Equations (13) and (15)), while the black and gray
curves are related to the far-field operators where the geometrical spreading is the only
amplitude term (Equations (16) and (17)). It is interesting to observe that the curves of
the 3D and 2D operators and their corresponding far-field approximations containing
all amplitude terms (Equations (13) and (15)) are identical. This means that the far-field
condition holds for the considered investigation domain and operating frequency band.
Most notably, we can also notice that the curves of the 3D and 2D far-field operators that do
not contain amplitude terms outside the integrals (Equations (16) and (17)) are very similar
each other and different from the remaining ones. This means that the amplitude factor
not including the geometrical attenuation is the main reason why 3D and 2D operators
containing all amplitude factors behave differently.

Figure 11. Singular values (dB) of exact and far-field 3D/2D operators.

To support this claim, we report in Figure 12 the optimal regularization parameters
and in Figure 13 the PSF cuts achieved by inverting the 3D and 2D far-field operators
defined by Equations (16) and (17). As can be observed, unlike Figure 4, the optimal
regularization parameters in this case look more similar and the PSF cuts of the 3D and 2D
models match very well (see Figure 13).
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Figure 12. Optimal truncation index vs. SNR for 3D (blue curve) and 2D (red curve) far-field models
of Equations (16) and (17).

Figure 13. Cuts of the PSF achieved for different SNR levels and for a point target placed at (0,0,1) m:
x-cuts (upper panels). z -cuts (lower panels). The blue and red lines refer to the 3D and 2D far field
models of Equations (16) and (17).

4. Reconstruction Results

In this section, numerical experiments are reported to further assess the imaging
performance of the 3D and 2D models in the case of extended targets. To this end, the full-
wave electromagnetic solver GPRMAx3D [30] is exploited to generate synthetic data with
transmitting dipoles radiating a Ricker wavelet centered at the frequency of 1.0 GHz. The
simulation parameters of the implemented model such as medium properties, measurement
configuration and investigation domain are identical to those previously considered for the
resolution analysis in Section 3.

The first considered scenario is sketched in the left panel of Figure 14 and features a
spherical cavity (εt = ε0) centered at (0.0,0.0,1.2) m and having radius 0.2 m. The 2 m long
measurement line at y = 0 is located 1.2 m exactly above the cavity center. Moreover, the
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investigation domain also passes through the center of the cavity virtually cutting it into
two equal parts.

Figure 14. Simulated single-target scenario (left panel). Filtered data (middle panel). Average
spectrum of the filtered data (right panel).

The simulated data are generated over the fast-time window (0, 35) ns and processed
according to following operations: zero time setting at 1 ns and time-gating up to 13 ns to
filter out the direct coupling between the Tx and Rx antennas. The filtered data so obtained
(middle panel in Figure 14) account for the field scattered from the target, which appears in
the typical form of a diffraction hyperbola [5]. Each trace of filtered data is transformed in
the frequency domain over the band from 500 to 1500 MHz with a step of 30 MHz. The
average spectrum of the noiseless scattered field data is represented in the right panel of
Figure 14. Afterwards, each trace of the frequency domain data is corrupted by AWGN
with progressively increasing SNR levels from 0 to 30 dB in 10 dB steps. For each SNR
level, the frequency domain data are inverted according to the 3D and 2D models and the
L-curve method is applied.

The images plotted in Figure 15 are the tomographic reconstructions related to the 3D
(upper panels) and 2D (lower panels) models for the different SNR values. In general, each
reconstruction is characterized by the presence of a well-focused spot along the upper target
interface. Furthermore, the lower side of the target is clearly defocused and delocalized
as confirmed by the presence of the spot located in proximity of the cavity center. This
effect is a peculiar feature of the considered linear models, which assume propagation in
a homogenous medium with relative permittivity equal to 4 (v = 15 cm/ns) and do not
take into account the actual (lower) permittivity of the cavity (v = 30 cm/ns). As for the
comparison between the two models, the images in Figure 15 confirm that very similar
results are achieved except when SNR = 0 dB. In this case, as already predicted by the PSF
analysis in Section 3.3, the 3D model is characterized by a worse resolution along z, and
consequently it is not possible to distinguish the upper part of the target contour from the
lower one.

A further numerical test case referred to a two-target scenario is considered and shown
in the left panel of Figure 16. The first target is a parallelepiped cavity with length 1.5 m
along y and having a square cross-section with side 0.2 m in the x− z plane. The center
of the parallepiped is located at (0.3, 0.0, 1.1) m. A spherical cavity with radius 0.2 m and
center at (−0.3, 0.4, 1.1) m is buried in proximity of the parallelepiped.

Unlike the parallelepiped cavity, the investigation domain at y = 0 does not intercept
any part of the spherical target, which is thus illuminated in side-looking mode by the
antennas placed at y = 0.

The raw data are processed according to the time-domain operations considered for
the previous test and the achieved filtered data are represented in the middle panel of
Figure 16. This image reveals the presence of several targets’ signatures, which can be
attributed to the direct reflections by the targets and to the mutual interactions between
them. The average spectrum of the time-domain data is also plotted in the right panel of
Figure 16 for sake of completeness.
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Figure 15. Normalized amplitude of the tomographic reconstructions vs. SNR achieved in the single-
target scenario with 3D (upper panels) and 2D (lower panels) models. The dashed line circumference
is the intersection of the spherical cavity with the investigation domain. Color scale (0, 1).

Figure 16. Simulated two-target scenario (left panel). Filtered data (middle panel). Average spec-
trum of the filtered data (right panel).

The tomographic reconstructions obtained by inverting the frequency domain data
according to the 3D and 2D models are plotted in Figure 17. It is easily realized that this
case is more challenging than the former one. The upper side of the parallelepiped is
always clearly identified, as well as the lower edge, which is imaged in proximity of the
target center. As regards the spherical cavity, the reconstruction of the upper contour is
more attenuated with respect to the parallelepiped one because the sphere is illuminated
laterally (with respect to the antenna radiation maximum) and so a weaker radar return is
produced (see also filtered data in Figure 16). The upper edge of the sphere appears also
slightly delocalized along z with a displacement of about 0.1 m with respect to the true
target contour. This outcome is again due to the fact that the target is illuminated laterally
and then the target range measured by the radar does not correspond to the distance
along z. All reconstructions also highlight the presence of some artifacts produced by the
interactions between the targets (multipath ghosts) that are not taken into account by the
considered linear models [31,32]. Moreover, the superior resolution performance along z
achieved by the 2D model at low SNRs is confirmed once again.

Finally, we show the tomographic reconstructions for the single-target (Figure 18) and
two-targets (Figure 19) scenarios achieved by inverting the 3D and 2D far-field models of
Equations (16) and (17). In this case, as already foreseen by the PSF analysis in Section 3.4,
both models have similar imaging capabilities also at low SNR.



Remote Sens. 2022, 14, 222 16 of 20

Figure 17. Normalized amplitude of the tomographic reconstructions vs. SNR achieved in the
two-target scenario with the 3D model (upper panels) and 2D model (lower panels). The square is
the cross-section of the parallelepiped cavity while the circumference is the projection of the spherical
cavity on the investigation domain. Color scale (0, 1).

Figure 18. Normalized amplitude of the tomographic reconstructions vs. SNR achieved in the single-
target scenario with the far-field 3D (upper panels) and 2D (lower panels) models of Equations (16)
and (17). The square is the cross-section of the parallelepiped cavity while the circumference is the
projection of the spherical cavity on the investigation domain. Color scale (0, 1).
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Figure 19. Normalized amplitude of the tomographic reconstructions vs. SNR achieved in
the two-target scenario with the far-field 3D (upper panels) and 2D (lower panels) models of
Equations (16) and (17). The square is the cross-section of the parallelepiped cavity while the circum-
ference is the projection of the spherical cavity on the investigation domain. Color scale (0, 1).

As regards the computational cost of the 3D and 2D imaging approaches, Table 3
summarizes the computation times (in seconds) to perform the data processing on a
standard laptop equipped with an Intel(R) Core(TM) i7-8565U CPU and 16-GB RAM
under MATLAB 2017 environment. As expected, both approaches have almost identical
computation times because the matrices associated to the 3D and 2D operators have the
same size M × N. In particular, the computational load is largely dominated by the SVD
calculation whose processing time (about 50 s) is one order magnitude greater than the
one required to evaluate the operator matrix (about 5 s). This result can be explained by
considering that the operator matrix computation has complexity O(MN) while SVD has
complexity O(k1 M2N + k2 N3), where k1 and k2 are some constants depending on the
algorithm used [33].

Table 3. Computation times of the 3D and 2D inversion approach.

3D Model 2D Model

Operator 5.34 s 5.14 s
SVD 50.2 s 51.3 s

5. Conclusions

This work has dealt with MWI and the achievable performance in the frame of the
Born approximation when 3D and 2D scattering models are used to describe the data–
unknown relationship. The presented analysis allows us to determine the best model to be
inverted depending on the noise level of the data. A theoretical assessment of the achievable
resolution was carried out accounting for the point spread function and the spectral content,
which are two quantities commonly adopted to predict the imaging capabilities. Moreover,
reconstructions results based on synthetic data referred to extended targets have been
provided. For a fair comparison, the optimal regularization parameter was determined by
applying the L-curve method.

The presented analysis has pointed out that when data are severely corrupted by
noise, the inverse approach based on the 2D-scattering model turns out be slightly more
effective in terms of robustness to noise and resolution along the direction perpendicular
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to the measurement line. Such an outcome is related to the higher singular values of the
2D operator, compared to the 3D ones, when all amplitude factors are accounted for in
the scattering operator. However, for moderate to high SNRs, or if amplitude factors not
including the geometrical attenuation term are neglected, the 3D and 2D models have
almost identical performance.

Future research activities are concerned with the experimental verification of the
theoretical analysis reported in this work, and the study of innovative measurement
configurations, such as multiple lines and acquisition geometries different from the classical
rectilinear one. Moreover, the conversion of the incident field from 3D to 2D, by a procedure
similar to that reported in [26] in the seismic context, may be exploited to define a novel
inverse scattering approach where the 2D Green’s function replaces the 3D Green’s function
in the linear integral equation.
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Appendix A

In this Appendix A, we report the expressions of the square norm of the solution ‖~
χ‖

2

and the residue ‖Es −A · ~
χ‖

2
. In the presence of additive noise, the scattered field can be

expressed as

Es =
~
Es + w (A1)

where
~
Es and w are noiseless scattered field and AWGN vectors, respectively.

Accounting for the TSVD formula in (19), the regularized contrast vector is rewritten as

~
χ = ∑Nt

n=1
Es · uH

n
σn

vn = ∑Nt
n=1

~
Es · uH

n
σn

vn + ∑Nt
n=1

w · uH
n

σn
vn (A2)

Note that the contrast vector
~
χ and singular vector vn depend on the point r in the

investigation domain D. Such dependence is implicitly assumed and omitted to simplify
the notation. Based on Equation (A2), the square norm of the regularized contrast vector is
evaluated as

‖~
χ‖

2
=

~
χ · ~

χ
H
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n
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m
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w · uH
m

σm
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)H

(A3)

Upon performing calculations and accounting for the orthonormality of the singular
vectors vn, Equation (A3) leads to

‖~
χ‖

2
= ∑Nt

n=1

∣∣∣~Es · uH
n

∣∣∣2
σ2

n
+ ∑Nt

n=1

∣∣w · uH
n
∣∣2

σ2
n

+ ∑Nt
n=1

2Re
{(~

Es · uH
n

)(
w · uH

n
)∗}

σ2
n

(A4)

where Re{·} is the real part operation.
According to Equation (A4), the norm of the solution is given by the superposition

of three series: the first one is a positive contribution due to the noiseless data; the second
one is a positive contribution due to the noise; and the third one is a combination of
noise and data that can assume positive or negative values depending on the signs of the
scalar products.
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As pointed out in [29], the first series is convergent due to the Discrete Picard Condition

ensuring that the coefficients
∣∣∣~Es · uH

n

∣∣∣ decay faster than the singular values σn. On the
other hand, the second term diverges because the noise component does not satisfy the
Discrete Picard Condition.

As regards the residue ‖Es −A · ~
χ‖

2
, we express Es in terms of its projections on the

singular vectors un, i.e.,

Es = ∑p
n=1

(
Es · uH

n

)
un = ∑p

n=1

(~
Es · uH

n

)
un + ∑p

n=1

(
w · uH

n

)
un (A5)

where p = rank(A). By accounting for the TSVD formula in (19) and SVD property

A · vn = σnun (A6)

we have that

Es −A · ~
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n=Nt+1

(~
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n

)
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(
w · uH

n

)
un (A7)

The dependence on the measurement position rs ∈ Γ in Es and in singular vectors un
has been omitted to simplify the notation in Equation (A7).

Finally, the residue is evaluated as follows
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(A8)

As before, straightforward calculations and the exploitation of the orthonormality of
the basis vectors un yields

‖Es −A · ~
χ‖

2
= ∑p

n=Nt+1

∣∣∣~Es · uH
n

∣∣∣2 + ∑p
n=Nt+1
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(A9)

Note that, unlike the norm of the solution in Equation (A5), the residue in (A9) does
not depend on the singular values of the operator.
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