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Abstract: Hyperspectral remote sensing presents a unique big data research paradigm through its
rich information captured across hundreds of spectral bands, which embodies vital spatial and
temporal information about the underlying land cover. Deep-learning-based hyperspectral data
analysis methodologies have made significant advancements over the past few years. Despite their
success, most deep learning frameworks for hyperspectral data classification tend to suffer in terms
of computational and classification efficacy as the data size increases. This is largely due to their
equal emphasis criteria on the rich spectral information present in the data, albeit all of the spectral
information not being essential for hyperspectral data analysis. On the contrary, this redundant
information present in the spectral bands can deter the performance of hyperspectral data analysis
techniques. Therefore, in this work, we propose a novel bidirectional spectral attention mechanism,
which is computationally efficient and capable of adaptive spectral information diversification
through selective emphasis on spectral bands that comprise more information and suppress the
ones with lesser information. The concept of 3D-convolutions in tandem with bidirectional long
short-term memory (LSTM) is used in the proposed architecture as spectral attention mechanism. A
feedforward neural network (FNN)-based supervised classification is then performed to validate the
performance of our proposed approach. Experimental results reveal that the proposed hyperspectral
data analysis model with spectral attention mechanism outperforms other spatial- and spectral-
information-extraction-based hyperspectral data analysis techniques compared.

Keywords: hyperspectral remote sensing; feature extraction; dimensionality reduction; spectral atten-
tion; convolutional neural networks; recurrent neural networks; bidirectional LSTM; deep learning

1. Introduction

The increase in data volume, velocity, and diversity has lately given rise to the term
“Big Data”, which symbolizes the multifaceted issues faced by many of the scientific and
applied domains. In the context of remote sensing the current data acquisition sources
for Earth observation generate vast amounts of data, which are typically images acquired
at various scales (high/low) and resolutions (i.e., spatial, spectral/temporal) [1]. Over
the past decade, machine learning and deep learning methodologies have gained wide
recognition for hyperspectral data analysis in remote sensing applications [2,3]. Deep-
learning-based feature extraction and classification methodologies in hyperspectral remote
sensing applications using convolutional neural networks (CNNs) [4], recurrent neural
networks (RNNs) [5], and their variations foster the automation of processes due to their
potential for progressively learning the attributes and information present in the high-
dimensional hyperspectral data [6]. Needless to say, the more complex deep-learning-based
classification/object detection frameworks are, the higher their subsequent computational
overhead is expected to be. However, this high computational cost is not desirable as we
gravitate towards more automated/real-time hyperspectral data analysis applications [7].
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The Earth’s land cover is a dynamic canvas on which human beings and natural
systems are always interacting. Land use/land cover (LULC) classification and its dynam-
ics, which partially result from land surface processes, have considerable effects on biotic
diversity, soil degradation, terrestrial ecosystems, and the ability of biological systems to
support human needs [8]. Thus, land cover classification, and its dynamics with remote
sensing data, is an important field in environmental change research at different scales. The
efficient assessment and monitoring of land cover changes are indispensable to advance
our understanding of the mechanisms of change and model the effects of these changes on
the environment and associated ecosystems at different scales [9].

Remote sensing techniques represent some of the most effective tools to obtain in-
formation on LULC classification and dynamics (i.e., temporal–spatial changes and the
transformation of landscapes). Many methods can detect land cover changes based on opti-
cal and radar imagery with different spatial and spectral resolutions. Existing techniques
for accomplishing land cover classification can be broadly grouped into three general types,
namely supervised classification algorithms, unsupervised classification algorithms, and
a mixture of supervised and unsupervised classification techniques [8]. A large amount
of high-dimensional, high-spatial–spectral resolution hyperspectral remote sensing data
is becoming available due to the fast development of satellite and sensor technology, and
the above-mentioned supervised and unsupervised classification methods could swiftly
obtain cardinal information from the remote sensing data, thus playing an important role
in hyperspectral imagery applications [10]. This being said, over time, classification frame-
works based on high spatial–spectral resolution hyperspectral remote sensing data using
machine learning algorithms such as neural networks have made a great impact in the field
of remote sensing and our work is directly related to this.

Conventional machine-learning-based hyperspectral imagery classification and ob-
ject detection frameworks are heavily inclined towards operating on spectral informa-
tion as features [11]. Most of the spectral-information-reliant frameworks suggested in
the literature include some form of similarity- or dissimilarity-distance-measure-based
band grouping [12], and traditional supervised classification paradigms using k-nearest
neighbors [13], maximum likelihood criterion [14], logistic regression [15], random forest
classification [16], bagging and boosting techniques like AdaBoost [17], etc., have proved
to be effective in classifying HSI data. Most of these spectral-information-based method-
ologies lack the potential to capture and utilize the corresponding spectral variability and
information effectively, that is readily available in the high-dimensional hyperspectral data.
This problem of information extraction and processing such high-dimensional data is not
contemporary, however, it has started to gain more importance lately due to the surge in
the volume of data (big data) and its acquisition methodologies. The big data attributes
directly imply high dimensionality and data redundancy, which in turn exacerbates the
curse of dimensionality caveat [18].

As a consequence, dimensionality reduction (DR) plays a prominent role in hyperspec-
tral data analysis [19]. In general, DR techniques help combat the intensive data learning
overhead by projecting high-dimensional data from their original feature space to a lower
dimensional subspace and preserving all the vital information present in the data. Addi-
tionally, DR also brings down the computational requirements by a considerable factor.
In the literature, various DR techniques such as principal component analysis (PCA) [20],
linear discriminant analysis (LDA) [21], random projections (RPs) [4,6,22], etc., have gained
increased attention due to their demonstrated computational efficacy and ability to preserve
vital information present in the hyperspectral data. In addition, recent literature has proven
that the integration of any form of additional information, such as spatial or contextual,
alongside an efficient DR technique, to the available spectral information can improve the
efficacy of hyperspectral data analysis [23,24].

In hyperspectral imaging, the relationship between the acquired spectral information
and underlying land cover material is inherently nonlinear. To combat this issue, deep
learning and machine learning algorithms have generally been adopted as fundamental



Remote Sens. 2022, 14, 217 3 of 17

feature extraction tools for effectively addressing/modeling data with nonlinear intrinsic
relationships in the past few years. As a result, such deep learning techniques have
shown promising results in the realm of hyperspectral data learning and representation for
classification [2], object recognition [25], and other remote sensing applications. However,
one of the major shortcomings of these techniques is how the data are presented to the deep
learning framework for generalization. Generally, the information extracted from each
spectral band is assigned an equal emphasis or importance without any consideration to
the significance of spectral information/features on the final data analysis outcome [26,27].
Moreover, this form of antiquated equal importance designation to all the spectral bands
can lead to the inclusion of inherent noise or redundant spectral information, which can
not only be detrimental to hyperspectral data analysis but also affect the generalization
capability of the underlying deep-learning-based HSI analysis framework. Thereby, it can
severely inhibit the automation capabilities and efficacy of the methodology [7,23,28].

Therefore, this work leverages the benefits of DR techniques in conjunction with the
ability of spatial–spectral representation provided by deep learning techniques to formu-
late an adaptive spectral attention framework for hyperspectral data analysis. In this
framework, the input high-dimensional hyperspectral cube is first reduced to its lower
dimensional subspace using principal component analysis (PCA). PCA is an unsupervised
linear feature extraction method that uses orthogonal transformation to explore the cor-
relation between the HSI spectral bands in order to extract their intrinsic properties. It is
based on the notion that contiguous bands of HSI data are highly correlated and typically
convey the same information about the ground objects in order to function efficiently [29].
Following the PCA-based DR, this reduced dimensional data are input to the proposed
3D-convolution [30] and bidirectional LSTM [31] based spectral attention and classifica-
tion mechanism. The proposed spectral attention model delivers enhanced hyperspectral
data learning, which prioritizes spectral information that is significant for hyperspectral
data analysis and suppresses the redundant spectral bands. In addition, an FNN-based
supervised classification [32] is incorporated to analyze the performance of this automated
hyperspectral data analysis model.

Therefore, the novel contributions of the proposed work are summarized as follows:

• A lightweight spectral feature extraction methodology for hyperspectral data analysis
is proposed using 3D-convolutions in conjunction to an effective dimensionality
reduction technique using PCA.

• The acquired spectral features, which are now a better representation of the temporal
information in a lower dimensional subspace, are fed into a bidirectional LSTM-based
attention framework, followed by an FNN-based supervised classification.

• Hence, the proposed spectral-attention-driven classification framework is driven
towards improved automated hyperspectral data analysis, while also addressing big
data challenges such as high computational and memory overhead.

• This work also presents variations of the proposed deep-learning-based feature ex-
traction and classification frameworks to include the spectral-only, spatial-only, and
spectral–spatial information extraction models. A comprehensive performance study
of the several spatial–spectral-information-based hyperspectral data analysis frame-
works is also conducted.

The rest of the paper is organized as follows: the proposed spectral attention-based
classification methodology is discussed in Section 2 followed by several deep-learning-
based classification techniques used for comparison briefed in Section 3. In Section 4, we
experimentally demonstrate and validate the efficacy of the proposed spectral attention
model, which offers enhanced hyperspectral data analysis through automated extraction
of significant spectral information extraction and suppression of the redundant spectral
bands. Finally, we summarize the effectiveness of our proposed automated hyperspectral
data analysis model in Section 5.
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2. Proposed Classification Methodology
BI-DI-SPEC-ATTN

The goal of our work is to improve the spectral-information-based classification
network’s representational capacity by explicitly modeling the significance of spectral
bands. The motivation behind this is to employ a gating mechanism to recalibrate the
strength of distinct spectral bands in the input, i.e., to selectively emphasize the information
from beneficial spectral bands while suppressing less relevant ones. While the necessity
of a gating methodology for spectral attention mechanism is important to revamp the
underlying classification framework’s efficacy, we strongly feel that the inclusion of a
computationally effective DR technique to render high dimensional HSI data in a lower
dimensional subspace, which enhances the representation of features in the projected data
space, is equally cardinal.

Hence, in the proposed data analysis framework, PCA is employed as a DR technique
to reduce the spectral dimension of the input raw hyperspectral data cube. PCA is used
to project a high dimensional hyperspectral data to its lower dimensional feature space to
preserve crucial information present in the data. It also directly provides DR benefits such as
a reduction of inherent noise and redundant information present in the data. Consequently,
an input hyperspectral data cube X of spatial dimensions M× N and spectral dimension P
is now dimensionally reduced to size (M× N × D). The proposed model then extracts 3D
patches of pixels to preserve the spectral information from the input data in the shape of
(3× 3× D), on which a 3D convolution operation with 32 kernels of shape (3× 3× 30)
is applied to extract and preserve the corresponding local neighborhood interactions
between pixels and their spectral correlation. The spatial dimension of the convolutional
kernel was set to (3× 3) to make it experimentally less computationally expensive for
the framework to convert a spatially windowed input to a spectral vector, which is the
input to the bidirectional LSTM in the successive stage of the HSI analysis framework.
However, the choice was not frantically made. The spatial size of (3× 3) and the spectral
dimensional size of 30 for the 3D-convolutional kernel were empirically compared against
many other choices and were chosen because they produced the best trade-off between
computational efficacy and execution time during experimentation. This is followed by
another convolution operation with 32 kernels of shape (1× 1× 64). As a result, the output
from this function has a shape of (K× 1).

Successively, this pixel vector is passed through a bidirectional LSTM-based spectral
attention gating mechanism as described in Equations (1)–(5). This attention gating mecha-
nism selectively emphasizes the relevant informative pixels and suppresses the irrelevant
bands. For any time step t, given a minibatch input Xt ∈ Rn×d (n, number of samples; d,
number of inputs in each example), and a hidden layer activation function φ, assuming that
the forward and backward hidden states for this time step are

−→
Ht ∈ Rn×h and

←−
Ht ∈ Rn×h,

respectively, where h is the number of hidden units, the mathematical representation of the
attention gating mechanism is illustrated below.

−→
Ht = φ(XtW

( f )
xh +

−→
H t−1W( f )

hh + b( f )
h ) (1)

←−
Ht = φ(XtW

(b)
xh +

←−
H t+1W(b)

hh + b(b)
h ) (2)

Ht =
−→
Ht ×

←−
Ht (3)

Next, we obtain the final hidden state output Ht by multiplying
−→
Ht and

←−
Ht as shown

in Equation (1). The same operations described in Equations (1)–(3) are repeated twice
before the final output of the attention gating mechanism Ot3 is obtained as shown in
Equations (4) and (5).

Ot1 = so f tmax(Ht) (4)

Ot2 = Ot1 × Xt and Ot3 = Ot2 + Xt (5)
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The softmax activation function has been used on the output of the second bidirectional
LSTM layer. The output of this softmax activation produces an activation map (which
consists of probabilities ranging between 0 and 1), which directly reflects the importance
of the output features. These probabilities are then multiplied with the output of the
3D convolution layer, which affects the weighting of the individual pixels in the (K× 1)-
shaped input vector by selectively emphasizing the pixels that contain more information
and suppressing the ones with less information.

These constructed features are now used as an input for an FNN with 3 layers of 100,
50, and C nodes, respectively, with a dropout of 0.2 between the first two dense layers
for supervised classification. Here, C denotes the number of classes in the dataset. The
overall 3D-convolution and bidirectional LSTM-based spectral attention and classification
framework—BI-DI-SPEC-ATTN—is illustrated in Figure 1.

Figure 1. The proposed 3D-convolution and bidirectional LSTM-based attention and classification
architecture (BI-DI-SPEC-ATTN).

3. Methodologies for Comparison
3.1. PCA-3D-CNN

The PCA-3D-CNN deep learning methodology is considered to understand the effects
of a spectral-only feature extraction framework, wherein a conventional DR technique such
as PCA is used in tandem with supervised classification using CNN for hyperspectral
data analysis. The emphasis here is to understand the effect of CNN-based conventional
spectral feature extraction techniques such as PCA on hyperspectral data analysis. In
this approach, the hyperspectral data in its original dimensionality P is projected onto
a D-dimensional subspace using PCA for the spectral feature extraction. The resultant
low-dimensional data are windowed into a size of (3 × 3 × D) followed by a 3D-CNN
model for supervised classification. All the network parameters were empirically estimated
for optimal results [6]. In the PCA-3D-CNN model, the first layer is a 3D-convolutional
layer with 16 filters with dimension (3 × 3 × 32) followed by a flatten layer that is carried
forward into an FNN with 100, 50, and C nodes with a dropout between every two layers
with a value of 0.2, where C denotes the number of classes in the dataset.

3.2. SPEC-3D-CNN

Convolutions in a 2D-CNN can only capture 2-dimensional spatial information, and
disregard the information along the spectral/temporal dimension. To address this concern,
Ji et al. extended the idea of 2D-CNN used for 2D images to a 3D convolution in both space
(2D) and time for video classification [33] and this acted as an inspiration for the HSI data
classification methodology SPEC-3D-CNN. This methodology is identical to PCA-3D-CNN
in its motivation to understand the contribution of spectral features exclusively on the
proposed hyperspectral data analysis framework. However, unlike PCA-3D-CNN, there is
no DR or spectral feature extraction technique employed on the original hyperspectral data.
Here, the hyperspectral data in its original spectral dimensions P are directly introduced
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to the 3D-CNN classification architecture discussed in Section 3.1. This implies that the
shape of the input to the 3D-CNN in the SPEC-3D-CNN methodology is (3 × 3 × P). This
SPEC-3D-CNN model was specifically considered to study the effects of DR techniques or
lack thereof on the automation performance of hyperspectral data analysis.

3.3. SPAT-2D-CNN

The aim of this model is to understand the contribution of spatial information alone
on the CNN architecture. In this exclusive spatial feature extraction methodology, spatial
contextual information is exploited by constructing features for a data point around its spa-
tial neighborhood with the aid of 2D convolutional kernels. In this model, a (3 × 3) spatial
neighborhood is considered, which is consistent with the other comparison methodologies
defined in Section 3. This windowed data are now introduced as inputs to a 2D-CNN-based
classification architecture. All CNN model hyperparameters and layers were empirically
estimated for best performance. As in the SPEC-3D-CNN architecture, no DR technique
was used on the original hyperspectral data in this SPAT-2D-CNN framework.

3.4. SVM-CK

In this work, we validate our proposed CNN architectures against the traditional
composite kernel SVM (SVM-CK) for an inclusive spatial–spectral information extraction
framework. The spatial features are extracted by calculating the spatial mean over a (3 × 3)
window surrounding the pixel under consideration and its corresponding linear spatial
kernel is computed [4,23]. Whereas for spectral features, the hyperspectral pixel vectors are
directly used as spectral feature vector and RBF is used as the spectral kernel. Thus, the
SVM-CK model incorporates both spatial and spectral features present in the hyperspectral
data to provide enhanced classification performance. All the experiments related to the
SVM-CK-model-based hyperspectral classification were conducted using LIBSVM on raw
hyperspectral data without the use of any dimensionality reduction technique.

4. Experimental Results

In this section, all the datasets used for experimentation are briefly discussed alongside
a detailed report on the experimental setup used for all the experiments conducted in
this research work. Additionally, the efficiency of the proposed spectral attention and
classification architecture BI-DI-SPEC-ATTN is validated and compared against four other
models namely, PCA-3D-CNN, SPEC-3D-CNN, SPAT-2D-CNN, and SVM-CK as described
in Section 3.

4.1. Datasets

All experiments were conducted on two airborne visible/infrared imaging spectrome-
ter (AVIRIS) datasets—Salinas and Indian Pines—and a reflective optics system imaging
spectrometer (ROSIS) dataset—University of Pavia [34]. The Salinas dataset is composed of
224 spectral bands, out of which 20 water absorption bands have been discarded. It has a
spatial resolution of (512 × 217). This dataset comprises 16 classes related to vegetables,
vineyard fields, and bare soils. The Indian Pines dataset was acquired by an AVIRIS sensor
over the Indian Pines test site in northwestern Indiana. This dataset has a spatial dimension
of 145 × 145 and 224 spectral bands (200 after removal of the water-absorption bands)
with a spatial resolution of 20 m spanning 16 land cover classes. The Pavia University
dataset has 103 spectral bands each having a spatial dimension of (610 × 340) with a spatial
resolution of 1.3 m spanning nine classes of land covers. For each dataset, the training set
was randomly chosen spanning from 5% through 50%.
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4.2. Parameter Tuning and Experimental Setup

For our proposed methodology to function optimally, we have several parameters
that need to be adjusted: the size of the reduced dimensional space using DR (D), the
learning rate, the optimizer, etc. The reduced dimension D for the PCA computation was
empirically found to be 100 for the Salinas and Indian Pines datasets and 50 for the Pavia
University datasets, respectively. The length of the LSTM input vector K was empirically
set to 256 for the Salinas and Indian Pines datasets and 128 for the Pavia University dataset,
respectively. All parameters in the proposed approach were experimentally set to their
optimal values to produce the best classification results. These parameters related to both
the proposed methodology and frameworks used for comparison were tuned well enough
to not leave any room for improvement for the classification results on all three datasets.

The objective function used in all our experimentation was the categorical cross-
entropy with a learning rate of 0.0001 and a decay of 10−6. The choice to pick categorical
cross-entropy as the objective function was straightforward, as the nature of the problem
we address in this work is multiclass classification. However, this was not the case when
choosing an optimal learning rate during experimentation. Numerous values of learning
rates, such as 0.00005, 0.0001, 0.0003, 0.0005, 0.001, and 0.005 were investigated. Upon
rigorous experimentation, it was determined that a learning rate of 0.0001 with a decay
of 10−6 produced optimal results on all three datasets, and fluctuated the least when the
results were averaged over three trials. Additionally, choosing a suitable batch size can
effectively improve the memory utilization while training the classification model and
improve the convergence accuracy of the architecture. We experimented by setting the
batch size to multiple values, namely, 16, 32, 64, and 128, with a batch size of 32 producing
the optimal results on all three datasets.

All the experiments used the Adam optimizer as it produced optimum results on all
the datasets that are discussed in this work. In a normal gradient descent optimizer, the
weights are adjusted based on the gradient calculated in the same epoch. However, with
the Adam optimizer, the weights are adjusted based on the moving average of gradients
calculated in current and previous epochs. The moments adjustment as per the Adam
algorithm is calculated as a moving average of previous and current gradients and then
those moments are used to update the weights. Gradient descent, RMSprop, and Adam
optimizers, which are well known in the literature, were pitted against each other during
experimentation and the Adam optimizer produced the best classification results on the
Salinas, Indian Pines and Pavia University datasets.

To avoid any bias induced by random sampling of pixels, the classification results
were averaged over three trials and the average accuracies along with execution time of
the models are presented. All experiments were implemented using python on an Intel(R)
Core(TM) i7-7700HQ processor with 16 GB RAM machine, and no GPU training was
involved. For the purpose of training on all three datasets, samples were picked randomly
from each class label in equal proportion and experimental results across different train/test
ratios spanning from 5% through 50% were documented.

4.3. Discussion

Tables 1–3 denote the specific number of training and testing samples used for ex-
perimentation with 10% of training data across all three datasets discussed in this paper.
Figures 2–4 illustrate the classification maps for 10% of training data for the proposed
bidirectional LSTM-based spectral attention and classification analysis methodology BI-
DI-SPEC-ATTN for the Salinas, Indian Pines, and Pavia University datasets, along with
the frameworks used for comparison. It can be further inferred from Tables 4–6 that BI-
DI-SPEC-ATTN gave superior classification performance over other frameworks that are
discussed for both the Indian Pines and Pavia University datasets. Table 7 shows the
overall execution time of all the models in this work for 10% of training data. It can be
clearly noted from Figures 2–4 that our proposed BI-DI-SPEC-ATTN methodology has
more coherent classification regions and fewer misclassifications with a competitive com-
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putational efficiency when compared to other methods discussed, at a reasonable trade-off
between computational time and classification performance compared to other spatial-only,
spectral-only and spatial–spectral-information-based feature extraction models.

Table 1. Total number of class-specific training and testing samples used for Salinas dataset with 10%
of training data.

# Class Name # of Training Samples # of Testing Samples

1 Brocoli-green-weeds-1 200 1809
2 Brocoli-green-weeds-2 372 3354
3 Fallow 198 1778
4 Fallow-rough-plow 140 1254
5 Fallow-smooth 268 2410
6 Stubble 396 3563
7 Celery 358 3221
8 Grapes-untrained 1128 10,143
9 Soil-vinyard-develop 620 5583

10 Corn-senesced-green-weeds 328 2950
11 Lettuce-romaine-4wk 106 962
12 Lettuce-romaine-5wk 192 1735
13 Lettuce-romaine-6wk 92 824
14 Lettuce-romaine-7wk 108 962
15 Vinyard-untrained 726 6542
16 Vinyard-vertical-trellis 180 1627

Total 5412 48,717

Table 2. Total number of class-specific training and testing samples used for Indian Pines dataset
with 10% of training data.

# Class Name # of Training Samples # of Testing Samples

1 Alfalfa 5 41
2 Corn-notill 140 1288
3 Corn-mintill 81 749
4 Corn 24 213
5 Grass-pasture 48 435
6 Grass-trees 72 658
7 Grass-pasture-mowed 3 25
8 Hay-Windrowed 47 431
9 Oats 2 18

10 Soybean-notill 95 877
11 Soybean-mintill 232 2223
12 Soybean-clean 58 535
13 Wheat 21 184
14 Woods 124 1141

15 Buildings-Grass-Trees-
Drives 38 348

16 Stone-Steel-Towers 10 83

Total 1000 9249
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Table 3. Total number of class-specific training and testing samples used for University of Pavia
University dataset with 10% of training data.

# Class Name # of Training Samples # of Testing Samples

1 Asphalt 663 5968
2 Meadows 1865 16,784
3 Gravel 210 1889
4 Trees 306 2758
5 Painted Metal Sheets 134 1211
6 Bare Soil 503 4526
7 Bitumen 133 1197
8 Self-Blocking Bricks 368 3314
9 Shadows 95 852

Total 4277 38,499

Table 4. Class-specific accuracies of Indian Pines dataset with 10% of training data for the proposed
methodology and other models used for comparison.

# Class Name BI-DI-SPEC-ATTN PCA-3D-CNN SPEC-3D-CNN SPAT-2D-CNN SVM-CK

1 Alfalfa 86.1 54.9 98.8 83.8 92.6
2 Corn-notill 94.2 93.6 93.2 81.7 92.4
3 Corn-mintill 83.3 93.0 85.6 79.3 92.5
4 Corn 92.1 82.8 86.9 78.4 91.0
5 Grass-pasture 94.3 92.7 93.7 95.8 92.3
6 Grass-trees 97.8 99.5 96.1 97.7 83.1
7 Grass-pasture-mowed 57.8 79.1 95.8 88.9 95.4
8 Hay-Windrowed 99.4 95.2 94.3 97.5 90.0
9 Oats 68.3 75.9 72.2 53.6 89.1
10 Soybean-notill 95.8 93.9 92.0 82.4 92.4
11 Soybean-mintill 92.1 96.8 93.2 84.8 94.3
12 Soybean-clean 95.6 89.2 95.8 95.7 87.5
13 Wheat 98.4 98.1 94.1 95.6 96.0
14 Woods 97.8 95.7 94.8 86.1 92.2
15 Buildings-Grass-Trees-Drives 98.3 93.2 92.0 82.4 93.7
16 Stone-Steel-Towers 93.6 92.7 88.4 95.6 93.9

OA (%) 94.07 93.01 92.12 91.67 90.53
κ (%) 94.03 92.87 91.54 90.88 90.17

Table 5. Class-specific accuracies of Pavia University dataset with 10% of training data for the
proposed methodology and other models used for comparison.

# Class Name BI-DI-SPEC-ATTN PCA-3D-CNN SPEC-3D-CNN SPAT-2D-CNN SVM-CK

1 Asphalt 98.0 96.1 93.1 90.2 93.6
2 Meadows 98.9 97.8 97.0 88.1 96.4
3 Gravel 94.8 89.3 80.2 77.3 88.9
4 Trees 97.7 95.1 96.5 94.7 92.7

5 Painted Metal
Sheets 99.0 97.8 98.2 88.9 98.3

6 Bare Soil 98.7 97.5 91.8 95.3 97.4
7 Bitumen 95.5 96.4 90.5 91.5 96.1

8 Self-Blocking
Bricks 94.4 92.4 83.5 90.6 91.4

9 Shadows 95.8 94.2 97.8 94.9 95.3

OA (%) 97.80 96.52 94.77 92.70 93.01
κ (%) 96.55 95.71 93.66 91.49 92.88
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Table 6. Class-specific accuracies of Salinas dataset with 10% of training data for the proposed
methodology and other models used for comparison.

# Class Name BI-DI-SPEC-ATTN PCA-3D-CNN SPEC-3D-CNN SPAT-2D-CNN SVM-CK

1 Brocoli-green-weeds-1 89.4 60.9 96.3 82.9 95.6
2 Brocoli-green-weeds-2 97.5 96.9 92.1 82.1 94.3
3 Fallow 86.6 96.3 83.4 80.1 94.7
4 Fallow-rough-plow 95.4 85.0 84.6 79.5 95.2
5 Fallow-smooth 97.6 95.1 91.5 93.6 93.5
6 Stubble 99.1 99.8 94.7 95.1 86.8
7 Celery 60.2 83.4 93.6 85.7 96.5
8 Grapes-untrained 99.9 98.5 92.1 98.2 93.9
9 Soil-vinyard-develop 69.9 78.2 70.1 58.9 92.6

10 Corn-senesced-green-weeds 96.4 96.1 90.8 81.1 92.8
11 Lettuce-romaine-4wk 96.6 99.9 91.4 83.9 95.7
12 Lettuce-romaine-5wk 98.9 92.7 93.5 94.6 90.3
13 Lettuce-romaine-6wk 99.7 98.8 92.7 95.0 98.4
14 Lettuce-romaine-7wk 99.1 98.3 92.5 85.5 95.8
15 Vinyard-untrained 99.9 96.3 90.0 84.7 96.8
16 Vinyard-vertical-trellis 96.3 95.6 86.4 96.2 91.9

OA (%) 97.78 96.08 91.16 91.45 94.01
κ (%) 96.92 95.66 91.02 90.97 93.75

Our proposed framework produces the best classification results with an overall
accuracy of 97.78%, 94.07%, and 97.80% on the Salinas, Indian Pines, and Pavia University
datasets, respectively, for just 10% of training samples selected, which can be reaffirmed
from the figures and tables documented in Section 4. Even though other classification
methodologies discussed in this work are efficient, with many of them being state-of-the-art
techniques, they lack the ability to capture distinctive features and information between
different classes across the three datasets discussed in this work to produce effective
classification results in comparison with the proposed BI-DI-SPEC-ATTN methodology.
While the state-of-the-art composite kernel SVM-based classification technique (SVM-
CK) discussed produced good classification results on the Salinas and Pavia University
datasets with its ability to incorporate both spatial and spectral features present in the
hyperspectral data through a 3 × 3 window-based average spatial kernel, coupled with an
RBF spectral kernel, it under-performs when applied on the Indian Pines dataset, producing
larger misclassification regions compared to all the other methodologies. Additionally,
the 3D-CNN-based classification methodologies discussed in our work, namely, PCA-3D-
CNN and SPEC-3D-CNN, produced superior classification results overall against their
counterparts, namely, the 2D-CNN-architecture-based classification techniques SPAT-2D-
CNN and SVM-CK, owing to their ability to effectively incorporate both spatial and
temporal features that are critical for effective classification of hyperspectral data. Finally,
the results produced by the proposed bidirectional LSTM-based attention and classification
framework outperformed all the methodologies discussed in this work demonstrating the
importance and feasibility of constructing the relationship between features and weighing
them with the aid of an effective attention methodology. This was followed by a solid
FNN-based network for classification of the constructed features, which produced results
that bolstered the efficacy of the proposed technique.
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Table 7. Overall execution time (in minutes) of all the models in comparison for 10% training data.

Dataset BI-DI-SPEC-ATTN PCA-3D-CNN SPEC-3D-CNN SPAT-2D-CNN SVM-CK(10% Training)

Time: 28.64 Time: 7.51 Time: 12.47 Time: 6.19 Time: 22.76

Salinas # of Parameters:
179,118

# of Parameters:
120,272

# of Parameters:
135,340

# of Parameters:
115,388

Epochs: 100 Epochs: 80 Epochs: 80 Epochs: 80

Time: 36.20 Time: 5.27 Time: 10.39 Time: 6.55 Time: 21.54

Pavia University # of Parameters:
96,841

# of Parameters:
80,569

# of Parameters:
100,264

# of Parameters:
89,128

Epochs: 120 Epochs: 80 Epochs: 80 Epochs: 80

Time: 15.94 Time: 9.63 Time: 14.98 Time: 7.21 Time: 27.11

Indian Pines # of Parameters:
179,118

# of Parameters:
120,272

# of Parameters:
135,340

# of Parameters:
115,388

Epochs: 100 Epochs: 80 Epochs: 80 Epochs: 80

The efficacy of our proposed methodology BI-DI-SPEC-ATTN can be further affirmed
from the overall classification accuracy plots as depicted in Figures 5–7 for the Salinas,
Indian Pines, and Pavia University datasets, respectively. Our proposed approach BI-DI-
SPEC-ATTN significantly outperformed all other methods compared, especially against the
conventional principal-component-analysis-based spectral feature analysis model (PCA-3D-
CNN), a 2D-convolutional-neural-network-based hyperspectral data classification model
(SPAT-2D-CNN) and a conventionally used SVM-based spatial–spectral information inclusion
model (SVM-CK). Our proposed methodology BI-DI-SPEC-ATTN presents a pragmatic and
an efficient attention-based classification framework to automate the feature selection process
through varied levels of importance/weighting assigned to spectral bands in a dataset,
based on their quality of information. Thus, the BI-DI-SPEC-ATTN model provides superior
classification performance not only with just 10% of training samples but also at various
different training-testing ratios as demonstrated above in Figures 5–7. Therefore, our BI-DI-
SPEC-ATTN model serves as an effective framework for automated decision making with
excellent classification performance for hyperspectral data analysis applications.

With the wide range of experiments and analysis that we conducted, it would definitely
be worthy to denote the importance of PCA as a dimensionality reduction technique
alongside being a principal feature extraction component in our work. It not only reduced
the computational complexity of our spectral attention and classification methodology
(BI-DI-SPEC-ATTN), but also acted as an efficient lightweight spectral feature extraction
technique and a noise reduction component.

(a) Ground Truth (b) BI-DI-SPEC-ATTN (c) PCA-3D-CNN (d) SPEC-3D-CNN (e) SPAT-2D-CNN (f) SVM-CK
(Accuracy: 97.78%) (Accuracy: 96.08%) (Accuracy: 91.16%) (Accuracy: 91.45%) (Accuracy: 94.01%)

Figure 2. Classification maps of Salinas dataset for all proposed methodologies using 10% of train-
ing data.
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(a) Ground Truth (b) BI-DI-SPEC-ATTN (c) PCA-3D-CNN
(Accuracy: 94.07%) (Accuracy: 93.01%)

(d) SPEC-3D-CNN (e) SPAT-2D-CNN (f) SVM-CK
(Accuracy: 92.12%) (Accuracy: 91.67%) (Accuracy: 90.53%)

Figure 3. Classification maps of Indian Pines dataset for all proposed methodologies using 10% of
training data.

The importance of a dimensionality reduction technique such as PCA for DR, in-
formation retrieval, and as a linear orthogonal transformation technique that transforms
the data to a new coordinate system, has been justified in the literature over time in HSI
applications. PCA is explicitly not designed for noise removal but instead, it is designed to
reduce the dimensionality of the feature space with which the underlying deep learning
regression/classification model approximates. We can think of PCA as a tuning knob to
smoothly decide how much information we want to retain, which is impossible to achieve
if one works directly with the original features. Since we cannot directly decide which
features to retain and the ones to eliminate, as the original features have no order of priority
or usability, PCA comes into play.

As a result, eliminating some of the PCs with lower variances, i.e., with lower eigen-
values, usually helps the model to generalize better. PCs with higher eigenvalues capture
the principal information about the dataset and thus adding more and more PCs ends up
appending information to the existing reduced dimensional data space. Thus, removing
some PCs with lower eigenvalues actually acts as a regularization technique to minimize
the redundancy of the information present in the data. Hence, in this work, we aimed to
alleviate the inherent process noise and data redundancy present in the hyperspectral data
using PCA to enhance the data learning outcomes of deep learning methods [4,6].
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(a) Ground Truth (b) BI-DI-SPEC-ATTN (c) PCA-3D-CNN (d) SPEC-3D-CNN (e) SPAT-2D-CNN (f) SVM-CK
(Accuracy: 97.80%) (Accuracy: 96.52%) (Accuracy: 94.77%) (Accuracy: 92.70%) (Accuracy: 93.01%)

Figure 4. Classification maps of Pavia University dataset for all proposed methodologies using 10% of training data.
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Figure 5. Overall classification accuracies on Salinas dataset for varying sizes of training samples.

Figure 6. Overall classification accuracies on Indian Pines dataset for varying sizes of training
samples.

Figure 7. Overall classification accuracies on Pavia University dataset for varying sizes of training
samples.
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Alongside PCA, the bidirectional LSTM-based feature importance weighting/attention
module, which operates by selectively emphasizing the feature values and correlating the
output sequence of feature vectors of the high dimensional hyperspectral data with the
results of selective learning, constitutes our proposed attention and classification framework
BI-DI-SPEC-ATTN.

Additionally, Table 7 denotes the overall execution time (includes training, validation,
and testing) for all the methodologies discussed in this work for the Salinas, Indian Pines
and Pavia University datasets with 10% of training data. Overall, the experimental results
presented in this paper demonstrate that the proposed bidirectional and 3D-CNN-oriented
spectral-attention-based classification architecture (BI-DI-SPEC-ATTN) required only a
small number of training samples for effective classification, while also providing robust
performance with all the datasets used in the experimentation phase.

5. Conclusions

In this work, a novel deep-learning-based bidirectional spectral attention and clas-
sification mechanism was introduced. Compared to the traditional deep-learning-based
hyperspectral data analysis approaches, our work explores the ability of a gated spectral
attention mechanism to adaptively diversify spectral bands by selectively emphasizing the
more informative bands and suppressing the less useful ones for a superior classification
performance. Experimental results demonstrated that the proposed BI-DI-SPEC-ATTN
methodology yielded outstanding classification performance while being robust under a
limited training samples scenario, when compared to other spatial- and spectral-only based
feature extraction and classification approaches. Our spectral attention based hyperspectral
data analysis framework, BI-DI-SPEC-ATTN, further illustrated the efficacy and potential
to learn and prioritize features in the high-dimensional HSI data and extract important
relationships between the spectral features, which reinforced the goal of effective and
efficient automation in hyperspectral remote sensing applications.
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