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Abstract: The design of backbones is of great significance for enhancing the location and classification
precision in the remote sensing target detection task. Recently, various approaches have been
proposed on altering the feature extraction density in the backbones to enlarge the receptive field,
make features prominent, and reduce computational complexity, such as dilated convolution and
deformable convolution. Among them, one of the most widely used methods is strided convolution,
but it loses the information about adjacent feature points which leads to the omission of some useful
features and the decrease of detection precision. This paper proposes a novel sparse density feature
extraction method based on the relationship between the lifting scheme and convolution, which
improves the detection precision while keeping the computational complexity almost the same as
the strided convolution. Experimental results on remote sensing target detection indicate that our
proposed method improves both detection performance and network efficiency.

Keywords: lifting scheme; feature extraction; density reduction; remote sensing; target detection

1. Introduction

Remote sensing target detection is of great significance in many fields, such as geolog-
ical hazard detection, etc. It is to detect the objects in a given remote sensing image and
determine which classes the objects belong to. Feature extraction is an important step for
target detection, typical features including Histogram of Oriented Gradient (HOG) feature,
bag-of-words (BoW) feature, texture features, sparse representation (SR)-based features,
and Haar-like features [1]. However, these artifact features are limited in representational
power and, thus, less effective for target detection.

Recently, deep learning has achieved great success in remote sensing target detection
since it has shown strong feature representation power. Feature extraction is generally im-
plemented in the backbone of detection networks. Therefore, various researches have been
carried out on the backbone as it plays a key role in enhancing the precision of predicting
location and category. The backbones are often convolutional neural networks (CNNs) that
have achieved success in image classification, such as VGG [2], ResNet [3], DenseNet [4],
MobileNet [5], ShuffleNet [6], SqueezeNet [7], etc. In all these backbones, it is necessary
to decrease the feature extraction density in some layers for enlarging the receptive field,
highlighting important features, and reducing operations. A typical approach is applying a
pooling layer after the vanilla convolutional layer to decrease the feature density [8], but it
suffers from the problems that the information loss is irretrievable as the pooling layer
is not adaptive, and redundant calculation exists due to the operation sequence (firstly
convolution then downsample). Therefore, the subsequent researches focus on altering
the convolutional layer without adopting a pooling layer. The dilated convolution [9] has
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a new parameter named dilated ratio, and the deformable convolution [10] contains an
offset variable. Both of these two methods expand the convolution range in a sparse way
and, thus, decrease the feature extraction density.

The strided convolution (increasing the stride of the vanilla convolutional layer to 2)
is another widely used approach to sparsity the feature extraction density in the backbones
of detection networks, such as Darknet in YOLO [11-13] and ResNet in Faster R-CNN [14].
The computation complexity of this approach is less than the method that features are
firstly extracted by a convolutional layer and then downsampled. However, it loses the
information about adjacent feature points which leads to the omission of some useful fea-
tures. In addition, its ability for extracting context information and geometrical information
is limited without nonlinearity. These drawbacks result in a decrease in detection precision.
The literature [15] compares the methods of strided convolution and pooling for feature
density reduction. The experimental results on the image classification tasks indicate that
the number of parameters and operations increases, while the prediction accuracy rises,
when replacing the max-pooling layer with a strided convolutional layer. Another observa-
tion is that the number of operations decreases, while the prediction accuracy falls when
using a strided convolutional layer instead of a vanilla convolutional layer (with the stride
of 1) followed by a pooling layer. To sum up, strided convolution is with less computation
complexity but lower detection precision, while downsampling after extraction approach
(denoting the method of stride 1 convolutional layer followed by a pooling layer) reaches
higher detection precision but higher computation complexity.

This paper introduces the lifting scheme [16-18] to achieve optimal in both computa-
tion complexity and detection precision. The lifting scheme is an effective implementation
algorithm for the wavelet transform, which is fast, free of auxiliary memory, and able to
build nonlinear wavelets [19-21]. The wavelet transform is traditionally implemented
based on convolution operations followed by downsampling operations, which is similar to
the downsampling after extraction approach in CNNs. Daubechies and Sweldens [22] had
proven that any finite impulse response (FIR) wavelet transform can be decomposed into a
series of prediction and update steps and, thus, performed by the lifting scheme. The lifting
scheme implementation obtains exactly the same output but reduces the computation
complexity compared with the traditional wavelet transform. Our previous paper [23] has
applied the lifting scheme to substitute vanilla convolutional layers (with a stride of 1) in
CNNs to enhance the accuracy of remote sensing scene classification. However, the re-
lationship between the lifting scheme and the sparse density feature extraction has not
been explored yet. Another observation is that remote sensing target detection is sensitive
to sparse density feature extraction and existing methods have drawbacks as mentioned
above. Motivated by these facts, in the present paper, we introduce the lifting scheme into
deep learning and prove that the downsampling after extraction approach in CNNs can
be approximately implemented by the lifting scheme to reduce computation complexity.
Therefore, this paper proposes a lifting scheme-based feature extraction density reduction
method that improves the detection precision while keeping the computational complexity
almost the same as the strided convolution method.

1.1. Problems and Motivations

This paper develops the method from the following aspects:

The strided convolution is a frequently used method for sparse density feature extrac-
tion. It helps to increase the receptive field of the network, strike the important features,
reduce feature dimension and decrease computation complexity. However, this approach
omits some useful features and lacks nonlinearity, which leads to a decrease in detection
precision. As shown by Springenberg et al. [15], the classification accuracy of strided con-
volution is less than the method of vanilla convolutional layer followed by a pooling layer
(which is denoted as downsampling after extraction approach in this paper). On the other
hand, the downsampling after extraction approach has the problem of higher computation
complexity due to redundant calculations.



Remote Sens. 2021, 13, 1862

30f18

The lifting scheme is a feasible method considering both detection precision and com-
putation complexity. (1) The lifting scheme is a highly efficient algorithm for implementing
the wavelet transform which has similarity to the downsampling after extraction approach
in CNNSs. (2) The lifting scheme reserves the nonlinearity of the pooling layer. Thus, it is
superior to the strided convolution method. Therefore, the lifting scheme can achieve a
better detection precision than the strided convolution and lower computation complexity
than the downsampling after extraction approach.

1.2. Contributions and Structure

This paper proposes a lifting scheme-based sparse density feature extraction method.
The main contributions of this paper are summarized as follows:

1. The lifting scheme is proved to be an approximate implementation of the downsam-
pling after extraction approach, having the same output but with a half of calculations.

2. Alifting scheme layer is presented and applied in the detection network backbone
as the sparse density feature extraction layer. Compared with the strided convolu-
tion, the lifting scheme layer performs better with respect to the metric of detection
precision, while the computational complexity is almost the same.

3.  Experiments are carried out on the remote sensing target detection task on the SAR
image dataset SSDD [24] and AIR-SAR [25] and the optical remote sensing image
dataset DOTA [26]. The results indicate that the proposed method is more effective
compared with the strided convolution on the metrics of detection precision and
computational complexity.

The rest of this paper is organized as follows. Section 2 introduces the existing
methods for reducing feature extraction density, the wavelet transform and the lifting
scheme. Section 3 describes the proposed method. Section 4 describes the experimental
results on remote sensing target detection. Section 5 closes with a conclusion.

2. Related Work
2.1. Target Detection Networks

There are mainly two types of target detection networks, including one-stage and
two-stage algorithms, as shown in Figure 1. In the two-stage networks, a series of candidate
boxes are generated as samples in the first stage, and then the samples are classified in
the second stage. Both of the two stages are completed with the convolutional neural
network as the backbone. Concrete algorithms belonging to the two-stage networks
include R-CNN [27], Fast R-CNN [28], Faster R-CNN [14], and so on. In the one-stage
networks, the problem of object positioning is directly transformed into a regression
problem processing; thus, the positioning and classification are processed at the same time
with the convolutional neural network. Concrete algorithms of one-stage networks include
YOLO [11-13], SSD [29], and so on.

In both types of detection networks, convolutional neural networks are commonly
used as the backbones to extract features of the input images, which is significant for
positioning and classification. In CNNs, three kinds of layers are usually cast into, includ-
ing feature extraction layer with normal density, sparse density feature extraction layer,
and activation function. The vanilla convolutional layer is repeatedly applied for normal
density feature extraction, the size of the output feature maps of which are usually the
same as the relative input feature maps. To reduce the feature map dimension and enlarge
the receptive field, it is also necessary to utilize several sparse density feature extraction
layers as in Figure 1 and is illustrated in detail in subsection 2.2. Activation functions, such
as ReLU [30], are applied in CNNs to introduce nonlinearity to enhance the representation
ability of the networks.
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Vanilla Convolution

Vanilla Convolution + Pooling

Feature Extraction . .
Sparse Density Feature Extraction

Output CNN Features

Figure 1. Typical remote sensing target detection flowchart. There are mainly two types of target
detection networks, including two-stage (containing both Stagel in the dashed box and Stage2) and
one-stage networks (containing Stage2 only). For both of them, convolutional neural networks are
the most common backbones for feature extraction. The vanilla convolution with the stride of one is
repeatedly used in the backbone for normal density feature extraction. The sparse density feature
extraction module is for receptive field enlargement and dimension reduction, concrete existing
approaches of which are vanilla convolutional layer followed by a pooling layer (which is denoted as
downsampling after extraction approach in this paper), dilated convolution, deformable convolution,
and the most frequently used method—strided convolution, etc.

2.2. Sparse Density Feature Extraction

Sparse density feature extraction is one of the most important modules in detection
networks. As shown in Figure 1, the detection network predicts the object category
and location using the features extracted from the backbone. It is usually necessary
to increase the receptive field to detect large objects and decrease the computational
complexity for practical applications. The frequently used feature extraction density
reduction approaches include:

1.  Downsampling after extraction: It is used in some typical CNNs, such as LeNet [8],
AlexNet proposed by Alex Krizhevsky et al. [31], and VGG by Visual Geometry
Group [2]. Features are extracted by a stride 1 vanilla convolutional layer and then
downsampled by a pooling layer. The whole process can be viewed as reducing
the extraction density. With the pooling layer, the dimensions of feature maps are
decreased and so does the spatial resolution, which may lead to the loss of internal
data structure and spatial hierarchical information.

2. Dilated convolution [9]: It inserts holes in the feature maps from the vanilla con-
volutional layer to increase the receptive field without harming spatial resolution.
Compared with vanilla convolution, there is an additional hyper-parameter in the
dilated convolution named dilated rate, which is the span between holes. The dilated
convolution reduces the feature extraction density since not all pixels in the feature
maps are used in the computation. The dilated convolution reserves the inner data
structure but its checker-board form leads to the gridding effect and the loss of the
information continuity.

3.  Deformable convolution [10]: It is similar to the dilated convolution as it also reduces
feature extraction density in a sparse way. A learnable offset variable is added to the
position of each sampling point in the convolution kernel so that the convolution
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kernel can sample randomly near the current location to fit the irregular shape of the
object. The number of parameters and calculations of deformable convolution is more
than vanilla convolution.

4.  Strided convolution: Strided convolutional layer is used for dimensional reduction
in many detection networks. It is a learnable dimensional reduction layer superior
to the pooling layer since it overcomes the drawbacks of the pooling layer, such as
fixed structure and irreversible information loss. However, the strided convolutional
layer loses the information about adjacent feature points which leads to the omission
of some useful features. Compared with the downsampling after extraction method,
the strided convolutional layer decreases the detection precision [15].

2.3. From Wawvelet to Lifting Scheme

Discrete wavelet transform (DWT) is a typical signal processing algorithm that has
achieved great success in scientific fields with its adorable properties, such as time-
frequency localization and compact support. The first-generation wavelet transform is
traditionally implemented by the two-channel filter bank representation [32] as following:

a=(xxh)]2, ¢y

d=(xxg) ]2, 2)

where the input signal x is processed by a low-pass digital filter h and a high-pass digital
filter g separately in two channels followed by a downsampling operation denoted by
“1 2”. The output signals of DWT are coarse component a and detailed component d that
belongs to different frequency bands. This approach is based on the convolution operation
and is, thus, limited by high computational complexity and linearity.

Sweldens proposed the lifting scheme [16-18] to overcome these drawbacks and bring
some favorable properties, such as fast, fully in-place implementation and the ability to
construct nonlinear wavelets. Three steps are contained in the lifting scheme, including

®  Split: The input signal is split into two non-overlapping subsets A and B.

*  Prediction: Subset A is predicted by subset B with some predicted error produced.

¢ Update: Subset B is updated with the prediction error to maintain the same average
as the input signal.

The lifting scheme is the generalization for the first-generation wavelets. Daubechies
and Sweldens have proved that any first-generation wavelets can be implemented by
a relative lifting scheme [22]. In the split step, a common method is the lazy wavelet
transform where the original signal x = [xg, x1, X2, ..., X;,...] (i = 0,1, ...) is split into an even
subset x, = [xg, X2, ..., Xok, ...](k = 0,1, ...) and an odd subset x, = [x1, X3, ..., Xop 11, ...] (k =
0,1,...). These signals are transformed into the z-domain for the subsequent processing
with the z-transform, which is a generalization of the Fourier transform and is widely used
in the discrete-time signal processing [33]. The z-transform of a sequence x[n] is defined as

X(z)= Y, x[n)z" 3)

Transformed to the z-domain, the two-channel filter bank representation is equiva-

lent to
() i),

with A(z) and D(z) representing the z-transform of a and d. X,(z) and X,(z) are the
z-transform of x, and x,, which are the even subset and odd subset of x, respectively. P(z)
is the polynomial matrix of h and g:

(H() G(2)
P(Z)<Hoé> Goé))' ©
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where H,(z) and H,(z) are the z-transform of the even subset h, and the odd subset h, of
h, respectively, while G,(z) and G, (z) are the z-transform of the even subset g, and the odd
subset g, of g, respectively. With P(z) seperated into the production of several matrices by
Euclidean algorithm, the final form of the lifting scheme is figured out with the prediction
and update operators determined.

2.4. Lifting Scheme for Vanilla Convolutional Layer

In our previous paper [23], we have proven the relationship between the lifting scheme
and vanilla convolutional layer that

2{xom} =" ( 3, ©

where the left-hand side denotes the vanilla convolutional layer, and the lifting scheme
is on the right-hand side. Z denotes the z-transform, x and h = [hy, Iy, h;] are the input
signal and the convolutional kernel, respectively. There is only one channel in the whole
process; thus, the polyphase matrix P(z) is redefined as

o= (343).

For the 1 x 3 convolutional layer, the polynomial matrix is decomposed into

1 @2_1 1 0 ho
P2y = (1w, ( ) ®)
(0 1 )(ho A
3. Proposed Method

In this section, we describe the lifting scheme-based sparse density feature extraction
by firstly illustrating the relationship between the lifting scheme and the downsampling
after extraction method, and then proposing the lifting scheme layer that can be efficiently
used in the detection networks.

3.1. Lifting Scheme for the Downsampling after Extraction Method

The downsampling after extraction method is usually implemented by a vanilla
convolutional layer followed by a pooling layer as illustrated in Section 2. Different from
the convolution in math, the convolution in CNNs omits the signal reverse step. The process
of extracting features with a vanilla convolutional layer and then sampling them with a
pooling layer can be formulated as

y=(x0h) 2= (xxh) |2 ©)

where y represents the matrix of output feature maps. x and h are the input signal and
convolution kernel, respectively. Operators “©” and “x” represent the cross-correlation
and the convolution in the spotlight of digital signal processing, respectively, while  is the
reversal signal of h.

If the features are interval downsampled, the z-transform of Equation (9) is

Y(z) = PT(z 1) (izg;) (10)

Finally, P(z) is split into the product of several matrices by the Euclidean algorithm,
where the prediction and update operators are then determined. For the 1 x 3 convolution,
the matrix multiplication form of P(z) is the same as in Equation (8).
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Thus, the whole process of the lifting scheme is as Figure 2b. In the split step, the input
signal x is split by the lazy wavelet transform:

x = {xe = [X0, e, Xog, -], X0 = [X1, o0y X011, ] }- (11)

In the prediction step, the odd subset x, is predicted by the even subset x,:
Xo = Xo — P(xe) = x0 — (—=%,), (12)

where P stands for the prediction operator, and x, = [xy, ..., Xpx4 2, ...] is obtained by left
shifting x, one bit. After prediction, x, is a detail signal that contains some high-frequency
information. In the update step, x, is updated by the prediction output x,:

h
Xe = Xe + u(xo) =Xe+ hflxo/ (13)
0

where U is the update operator. The updated x, is a coarse signal that contains the low-
frequency signal and has the same average as the original signal x. Finally, the output
signal y is obtained by multiplying x. by a scaling factor hy.

. 4 ling 1
1x3 convolutional /| . poo 11n g ayT.r
laver y (interval samp 1ng/)//;//;/
Y Y/
Yy ////

=
=~

|

|

I

I

; |
—slip—L» y

|

| L I
| Ly X I
| Lifting Scheme J|

Figure 2. The method of downsampling after extraction is generally implemented with a vanilla con-

=~
» §§.

volutional layer and a pooling layer, while the lifting scheme is another alternative implementation.
The symbols x, h, and y denote the input signal, convolutional kernel, and output signal, respectively.
The lifting scheme contains three steps: split, prediction and update. These two methods have the
same x and y theoretically, and h = [hg, hi1, hy] in (a) is transformed into the prediction and update
operators as showned in (b).

3.2. Lifting Scheme Layer

An effective and practical lifting scheme layer is proposed in this section based on the
fundamentals illustrated in Section 3.1 to make full use of the detection network’s ability
to learn from data.
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Input

As shown in Figure 2b, both of the effects of applying the update operator U(-) and
the scaling operator S(-) on a signal are multiplying this signal by a coefficient. These
coefficients should be learnable and updated by the backpropagation algorithm to optimize
the network representation ability. For simplicity and parallelization, we adopt the 1 x 1
convolutional layer as U and S. The prediction operator P left shift the processed signal by
one bit, which enhances the information contact between adjacent elements. To maintain
the information contact property, an alternative for P is the 1 x 2 convolutional layer.
However, the 1 x 1 convolutional layer is adopted as P in this paper to reduce the number
of parameters and calculations.

The lifting scheme is a flexible algorithm to construct nonlinear wavelets. With the
lifting scheme, the nonlinearity of pooling layer can be easily maintained by using nonlinear
prediction and update operators. In this paper, ReLU function is used in P and U as
nonlinear function. Therefore, the operators of the lifting scheme layer are as follows:

P(-) = ReLU(1 x 1conv(-)), (14)
U(-) = ReLU(1 x 1conv(-)), (15)
S(-) =1 x lcono(-). (16)

The 2D lifting scheme is implemented in a separable way, where the 1D lifting scheme
is firstly applied on the rows and then on the columns of the 2D feature maps.

3.3. Lifting Scheme-Based Detection Network Flowchart

The proposed lifting scheme layer is a plug-and-play module that can be used as the
feature extraction density reduction approach in both one stage and two stages detection
network backbones without altering other modules. Figure 3 is the two stages detection
network flowchart based on the lifting scheme layer. The backbone extracts features by
vanilla Convolutional layers or the modules that are stacked by vanilla Convolutional
layers, such as the basicBlock and the bottleNeck, in ResNet [3]. The lifting scheme layer is
used in the modules that need to reduce feature extraction density, which can be an effective
substitution for the commonly used strided convolutional layer or the vanilla convolutional
layer followed by a pooling layer. CNN features are extracted by the backbone with these
two kinds of modules, which are used in both of the two stages. In the first stage, some
proposals are derived based on the CNN features and a selective algorithm. Then the
category and the precise location of the objects are predicted with the CNN features and
the proposals in the second stage.

Stage2
3

Qutput

CNN Features

P: Prediction operator. P(.) = ReLU(1x1conv(.))
U: Update operator. U(.) = ReLU(1x1conv(.))

S: Scaling operator. S(.) = 1x1conv(.)

Candidate Boxes

Proposal

Figure 3. Two stage detection network flowchart based on lifting scheme layer. Different from the existing two-stage

detection networks, the lifting scheme layer is used as the sparse density feature extraction module in the backbone CNN,

which is superior to the frequently used strided convolution in detection precision. A series of candidate boxes are generated

in the first stage, and then they are classified in the second stage. The candidate box that is classified as a ship and exceeds
the IOU threshold is reserved in the output.
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4. Experimental Results

In military and civilian remote sensing target detection, aircraft and ship detection are
usually of great practical value, among which ship detection has more datasets to evaluate
the generalization ability and application prospect of the proposed method. Therefore,
in this section, experiments are conducted on the remote sensing ship detection task on
both the SAR image dataset and the optical remote sensing image dataset to evaluate the
proposed lifting scheme-based sparse density feature extraction method.

4.1. Dataset Description
4.1.1. SAR Image Dataset

Two SAR image datasets are used in the experiments, including SSDD [24] and AIR-
SarSHIP-1.0 [25].

SSDD is a dataset of ships in SAR images, which contains a total of 1160 images
and 2456 ships, and the average number of ships is 2.12. In SSDD, ships are in various
environments, such as image resolution, ship size, sea condition, and sensor type, as shown
in Figure 4a. The dataset is divided into a training set with 80% images from the total and
a validation set with the rest images.

a) SSDD samples.
(a) p

(b) AIR-SarSHIP-1.0 samples.

(c) DOTA samples.

Figure 4. Samples from the datasets. Three remote sensing ship datasets are used in the experiments to evaluate the proposed
method, including two SAR datasets SSDD and AIR-SarSHIP-1.0, and one optical remote sensing image dataset DOTA-ship.

AIR-SarSHIP-1.0 is a wide-width SAR ship target public sample data set based on
Gaofen-3 satellite data. The dataset contains 31 SAR images, and the scene types include
ports, islands, reefs, and sea surfaces of different levels of sea conditions. Each image is cut
into 36 slices, and each slice is resized to 512 x 512. The dataset contains 180 slices, where
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70% are in the training set, while the rest slices are in the validation set. Samples from
AIR-SarSHIP-1.0 dataset are shown in Figure 4b.

4.1.2. Optical Remote Sensing Image Dataset

The ship images in DOTA [26] are used as the single-class dataset for the optical remote
sensing target detection experiment. DOTA is a large-scale dataset for object detection in
aerial images, the size of each image of which ranges from 800 x 800 to 4000 x 4000. In this
paper, the images are divided into 1028 slices in the size of 512 x 512. The training set
contains 80% images from the total, while the validation set contains the rest 20% images.
Samples from the DOTA-ship dataset are shown in Figure 4c.

4.2. Evaluation Metrics
4.2.1. Detection Performance Metrics

Two universally agreed and standard metrics are used to evaluate the detection
performance of the remote sensing target detection methods, namely precision-recall curve
(PR curve) and average precision. These metrics are based on the overlapping area ratio
(intersection over union, IOU) between detections and ground truth which is formulated as

area(detection N ground_truth)
Iou = - .
area(detection U ground_truth)

(17)

Precision-recall curve (PR curve). The precision measures the percentage of true
positives in the detected positive samples. The recall measures the percentage of the
correctly detected positive samples in the ground truth. They are formulated as

TP
Precision = ———— 1
recision TP+ P’ (18)
TP

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
In the object-level detection, a detection is labeled as true positive if IOU exceeds a
predefined threshold A. Otherwise, the detection is labeled as false positive. In this paper,
A is defined as 0.5.
Average precision (AP). The AP is the area under the PR curve that computes the
average value of precision over the interval from recall = 0 to recall = 1. The higher AP
value indicates the better detection performance. AP5y denotes the AP at A = 0.5.

4.2.2. Network Efficiency Metrics

It is important to evaluate the detection network efficiency for landing practical appli-
cations. In this paper, we use inference time to evaluate the detection speed, the number
of parameters (#params) to evaluate the space occupancy, and billion float operations
(BFLOPs) to measure the computational complexity.

4.3. Compared Methods

Baseline is Cascade R-CNN [34], whose backbone is ResNet-50 [3]. Another compared
algorithm is Faster R-CNN [14]. Experimental results on SSDD and AIR-SarSHIP-1.0 are
listed in Tables 1 and 2, respectively.

In the experiments with baseline cascade R-CNN, we compare our proposed method
Cascade R-CNN-LS with three sparse density feature extraction methods. The detailed
illustrations are as follows.

1.  Cascade R-CNN. The baseline in the experiment. It is a two-stage detection network
with the ResNet-50 backbone. Strided convolutional layer is the sparse density feature
extraction module in the backbone.
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2. Cascade R-CNN-CP. The structure and settings are the same as the baseline except
that the strided convolutional layer is substituted by a stride 1 convolutional layer
(vanilla convolutional layer) followed by a pooling layer. Thus, this method is to
evaluate the feature downsampling after extraction method and compare it with the
strided convolution method. The pooling layer used in this paper is max-pooling.

3. Cascade R-CNN-DCN. Deformable convolutional layer substitutes all of the stride
1 and strided convolutional layers with the size of 3 x 3 in one module if its condi-
tion is set “True”. This network is to evaluate the effectiveness of the deformable
convolution in remote sensing target detection and illustrate the advancement of our
proposed method.

4.  Cascade R-CNN-LS. The proposed lifting scheme layer is used as the sparse density
feature extraction module to replace the strided convolutional layer in the baseline.
Other structures and settings of Cascade R-CNN-LS are the same as the baseline.

Table 1. Experiment results on SSDD with Cascade R-CNN and Faster R-CNN as baselines. The postfixes of “CP”, “DCN”,
and “LS” in the Method column indicate the different sparse density feature extraction modules in the network, which
are pooling after extraction, deformable convolution, and the proposed lifting scheme layer, respectively. The evaluation
metrics include detection performance metrics of average precision at IOU threshold = 0.5 (AP5p) and network efficiency
metrics of inference time (IT), the number of parameters (#params), and billion float operations (BFLOPs). The values in the
parentheses in the AP5g column represent the increment compared with the baselines. The best results are in bold.

Method Backbone APs5 (%) IT (ms) #Params (MB) BFLOPs
Cascade R-CNN ResNet-50 90.8 46.3 552 91.05
Cascade R-CNN-CP ResNet-50-CP 92.8 (+2.0) 38 552.6 96.49
Cascade R-CNN-DCN ResNet-50-DCN 92.1 (+1.3) 43 557 83.86
Cascade R-CNN-LS ResNet-50-LS 92.6 (+1.8) 39 541 90.65
Faster R-CNN ResNet-50 90.6 37.5 330 63.66
Faster R-CNN-LS ResNet-50-LS 92.0 (+1.4) 34.6 322.5 63.26

Table 2. Experiment results on AIR-SarSHIP-1.0. The postfixes of “CP”, “DCN”, and “LS” in the Method column indicate
the different sparse density feature extraction modules in the network, which are pooling after extraction, deformable
convolution, and the proposed lifting scheme layer, respectively. The evaluation metrics include detection performance
metrics of average precision at IOU threshold = 0.5 (AP5() and network efficiency metrics of inference time (IT), the number
of parameters (#params), and billion float operations (BFLOPs). The values in the parentheses in the AP5y column represent
the increment compared with the baselines. The best results are in bold.

Method Backbone APs5 (%) IT (ms) #Params (MB) BFLOPs
Cascade R-CNN ResNet-50 67.8 55.55 552 91.05
Cascade R-CNN-CP ResNet-50-CP 68.3 (+0.5) 54 552.6 96.49
Cascade R-CNN-DCN ResNet-50-DCN 69.6 (+1.8) 55 557 83.86
Cascade R-CNN-LS ResNet-50-LS 72.0 (+4.2) 37 541 90.65
Faster R-CNN ResNet-50 70.0 37 330 63.66
Faster R-CNN-LS ResNet-50-LS 70.1 (+0.1) 37.3 322.5 63.26

4.4. Results on SAR Image Datasets

The experimental results on the SAR image dataset SSDD and AIR-SarSHIP-1.0 are
listed in Tables 1 and 2, respectively. For both datasets, Cascade R-CNN-CP is superior
to the baseline Cascade R-CNN with respect to the detection performance metric APs.
However, the value of BFLOPs of Cascade R-CNN-CP is higher than Cascade R-CNN,
which indicates higher computational complexity. These results draw the same conclusions
as Springenberg et al. [15].

As Table 1 shows, our proposed lifting scheme method improves AP5y by 1.8% com-
pared with the baseline Cascade R-CNN while reducing 5.84 BFLOPs compared with
Cascade R-CNN-CP, verifying that our method achieves a better balance between detection
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precision and network efficiency. The proposed Cascade R-CNN-LS does not achieve an
essential decrease in #Params and BFLOPs because there are only 5 layers in ResNet-50
that are altered by the lifting scheme layer for sparse density feature extraction. However,
our method has the potential in improving the efficiency of backbones with more sparse
density feature extraction layers. The deformable convolution-based method reaches an
improvement over the baseline, but its number of parameters is larger, and it has lower
APs5y compared with Cascade R-CNN-LS. The backbone of Faster R-CNN is ResNet-50
with stride 2 convolutional layer as the feature extraction density reduction module. As a
plug-and-play module, the lifting scheme layer is also validated on another baseline, Faster
R-CNN, to demonstrate its robustness with respect to different detection frameworks.
The results show that Faster R-CNN-LS enhances the APsy by 1.4% with similar #Params
and BFLOPs of the baseline.

The advancement of the proposed lifting scheme-based method is also verified on
the AIR-SarSHIP-1.0 dataset as in Table 2. Cascade R-CNN-LS increases APsy by 4.2%
over the baseline with fewer #Params and BFLOPs. It is noted that lifting scheme-based
method (Cascade R-CNN-LS) even performs much better than the downsampling after
extraction approach (Cascade R-CNN-CP). An explanation is that the lifting scheme is
a similar implementation to the downsampling after extraction approach as proved in
Section 3, but the lifting scheme layer is an adaptive layer whose parameters are updated
during training, and the downsampling method in the lifting scheme layer is separable
downsampling, instead of the max-pooling used in Cascade R-CNN-CP. We attribute the
enhancement to these differences between these two methods.

The superiority of Cascade R-CNN-LS in detection performance is also indicated by
the RP curves in Figure 5a,b, where the lines of Cascade R-CNN-LS of both datasets are
located at the top-right direction of the lines of baseline. For both datasets, the lifting
scheme-based method reaches the best performance. For the same recall, networks with
lifting scheme-based sparse density feature extraction method have higher precision,
showing that our method is more sensitive to the slight differences between two similar
objects and, thus, has less false alarm rate. On the other hand, the lifting scheme-based
method has higher recall over baselines with the same precision, indicating that our method
can detect more true targets. For Figure 5b, the deviations of different curves are larger than
for other subfigures and the values of recall are particularly small. The reason is that target
detection on AIR-SarSHIP-1.0 is more difficult than the other two datasets. The images in
AIR-SARSHIP-1.0 have a high false alarm rate due to the land background interference.
Because of the imaging principle of Gaofen-3, the dataset has a large intra-class variation
on ship targets which leads to the small values of recall. Cascade R-CNN cannot handle
these problems well and, thus, deviates greatly from other methods.

Figures 6 and 7 show some detection results in the validation set of SSDD and AIR-
SarSHIP-1.0, respectively. The ground truth, detection results of Cascade R-CNN and Cas-
cade R-CNN-LS are displayed in the 1st, 2nd, and 3rd columns in these figures. For SSDD
dataset, Cascade R-CNN fails to detect some targets as shown in the 2nd, 3rd, 4th, and
5th samples, while Cascade R-CNN-LS performs better both in small and middle size
target detection. In addition, there is a false detection by Cascade R-CNN in the 1st sample.
Cascade R-CNN-LS is also superior to Cascade R-CNN on AIR-SarSHIP-1.0 dataset as
illustrated in Figure 7. In the 1st and 3rd samples, Cascade R-CNN fails to detect the targets,
which are correctly detected by Cascade R-CNN-LS. In the 4th and 5th samples that contain
multiple targets, Cascade R-CNN-LS correctly detects more targets than Cascade R-CNN.
In the 2nd sample, false detection occurs with Cascade R-CNN, while it does not occur
with Cascade R-CNN-LS. From these samples, it is observed that Cascade R-CNN-LS is
more sensitive to small objects and able to detect these targets correctly. This is because
Cascade R-CNN uses a strided convolutional layer to reduce feature density, which may
lose the information about adjacent pixels and miss the small objects. In contrast, the lifting
scheme has the advantage in the information contact between the adjacent pixels and, thus,
tends to detect the small objects instead of missing them.
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Figure 5. Precision-recall curves on three remote sensing image datasets of two pairs of detection
networks, including (1) Cascade R-CNN and Cascade R-CNN-LS, (2) Faster R-CNN and Faster
R-CNN-LS. For all the datasets, Cascade R-CNN-LS consistently performs the best, and the lifting
scheme-based method is superior to the strided convolution in both experiments with the baselines
of Cascade R-CNN and Faster R-CNN.
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Ground truth Cascade R-CNN Cascade R-CNN-LS

Figure 6. Detection results on SSDD samples. The 1st column displays the samples from the ground truth, while the 2nd
and 3rd columns are the detection results of the relative samples of Cascade R-CNN and Cascade R-CNN-LS, respectively.
The lifting scheme-based network tends to detect small objects better than the strided convolution as the 2nd and the 5th

rows show.
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Ground truth Cascade R-CNN

P

Cascade R-CNN-LS

Figure 7. Detection results on AIR-SarSHIP-1.0 samples. The 1st column displays the samples from
the ground truth, while the 2nd and 3rd columns are the detection results of the relative samples of
Cascade R-CNN and Cascade R-CNN-LS, respectively. The lifting scheme-based network tends to
detect small objects better than the strided convolution as the 1st and the 3rd rows show.

4.5. Results on Optical Remote Sensing Image Dataset

We conduct experiments on the DOTA-ship dataset to evaluate the applicability of the
proposed method on the optical remote sensing target detection to verify that our approach
is flexible to more application scenarios. Experimental results in Figure 5c and Table 3 show
that the proposed method is superior to the strided convolution in both Cascade R-CNN
and Faster R-CNN. Cascade R-CNN-LS and Faster R-CNN-LS have increased the AP5y by
1.3% and 0.7%, respectively, while they are more efficient than the relative baselines with
respect to the metrices of inference time, number of parameters, and BFLOPs. Detection
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results of samples are shown in Figure 8, which indicates the proposed method reaches
a better detection performance than the baseline. In the 1st and 4th samples in Figure 8,
Cascade R-CNN fails to catch some small targets, while Cascade R-CNN-LS catches them
correctly. In the 3rd sample, Cascade R-CNN misses a small target and has a false alarm,
while the detection results of Cascade R-CNN-LS are the same as the ground truth. Cascade
R-CNN even fails to detect some middle and big size targets as in the 2rd and 5th samples,
which is inferior to Cascade R-CNN-LS.

Ground truth Cascade R-CNN Cascade R-CNN-LS

#

Figure 8. Detection results on DOTA-ship samples. The 1st column displays the samples from the
ground truth, while the 2nd and 3rd columns are the detection results of the relative samples of
Cascade R-CNN and Cascade R-CNN-LS, respectively. The lifting scheme-based network detects
targets correctly in these samples, while Cascade R-CNN fails to detect some small, middle, and large
size targets and has false alarms.
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Table 3. Experiment results on DOTA with Cascade R-CNN and Faster R-CNN as baselines. The postfixes of “CP” and “LS”
in the Method column indicate the different sparse density feature extraction modules in the network, which are pooling

after extraction and the proposed lifting scheme layer, respectively. The evaluation metrics include detection performance

metrics of average precision at IOU threshold = 0.5 (AP5p) and network efficiency metrics of inference time (IT), the number

of parameters (#params), and billion float operations (BFLOPs). The values in the parentheses in the AP5y column represent

the increment compared with the baselines. The best results are in bold.

Method Backbone APs5g (%) IT (ms) #Params (MB) BFLOPs
Cascade R-CNN ResNet-50 76.6 44.49 552 91.05
Cascade R-CNN-CP ResNet-50-CP 77.8 (+1.2) 40 552.6 96.49
Cascade R-CNN-LS ResNet-50-LS 77.9 (+1.3) 45 541 90.65
Faster R-CNN ResNet-50 75.8 44.8 330 63.66
Faster R-CNN-LS ResNet-50-LS 76.5 (+0.7) 40 322.5 63.26
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5. Conclusions

This paper has introduced the lifting scheme into deep learning for remote sensing
target detection and proposed a lifting scheme-based sparse density feature extraction
method to achieve higher detection precision than the frequently used strided convolutional
layer. This paper firstly proves that the lifting scheme has an inner relationship with the
method that extracts features by a vanilla convolutional layer and then downsamples them
by a pooling layer, and then a lifting scheme layer is constructed as the sparse density
feature extraction method in the network backbone. Experimental results on both SAR and
optical remote sensing image target detection indicate that the proposed method performs
better than the strided convolutional layer in both computational complexity and detection
precision. The lifting scheme-based sparse density feature extraction method is promising
for remote sensing target detection.
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