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Abstract: Accurate detection of tropical cyclones (TCs) is important to prevent and mitigate natural
disasters associated with TCs. Deep transfer learning methods have advantages in detection tasks,
because they can further improve the stability and accuracy of the detection model. Therefore, on the
basis of deep transfer learning, we propose a new detection framework of tropical cyclones (NDFTC)
from meteorological satellite images by combining the deep convolutional generative adversarial
networks (DCGAN) and You Only Look Once (YOLO) v3 model. The algorithm process of NDFTC
consists of three major steps: data augmentation, a pre-training phase, and transfer learning. First, to
improve the utilization of finite data, DCGAN is used as the data augmentation method to generate
images simulated to TCs. Second, to extract the salient characteristics of TCs, the generated images
obtained from DCGAN are inputted into the detection model YOLOV3 in the pre-training phase.
Furthermore, based on the network-based deep transfer learning method, we train the detection
model with real images of TCs and its initial weights are transferred from the YOLOv3 trained with
generated images. Training with real images helps to extract universal characteristics of TCs and
using transferred weights as initial weights can improve the stability and accuracy of the model. The
experimental results show that the NDFTC has a better performance, with an accuracy (ACC) of
97.78% and average precision (AP) of 81.39%, in comparison to the YOLOv3, with an ACC of 93.96%
and AP of 80.64%.

Keywords: tropical cyclone detection; meteorological satellite images; deep learning; deep transfer
learning; generative adversarial networks

1. Introduction

A tropical cyclone (TC) is a kind of catastrophic weather system with enormous
destructive force [1,2]. TCs encompass hurricanes, typhoons, and cyclone equivalents, and
they pose a serious threat to the safety of people’s lives and property and cause huge losses
to agricultural production and transportation [3-7]. Therefore, accurate detection of TCs is
the key to reducing the hazards [8,9].

Traditionally, the mainstream detection methods for TCs are numerical weather predic-
tion (NWP) models, which have done a great deal of work in the development of a forecast
system to provide guidance for TC prediction based on physics parameterizations and
modeling techniques [10,11]. For example, the Met Office has been objectively providing
real-time guidance for TC prediction and detection using its global numerical weather
forecast model in recent years [12]. However, the predicted error increases because of the
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initial value dependency if numerical dynamical models try to simulate farther into the
future [13].

The significant advantage of machine learning (ML) methods over traditional detection
methods based on NWP is that ML methods do not require any assumption [14]. Decision
trees (DT) are trained to classify different levels of TCs and the accuracy of TC prediction
prior to 24 h was about 84.6% [15]. In addition, a convective initiation algorithm was
developed from the Communication, Ocean, and Meteorological Satellite Meteorological
Imager based on the DT, random forest (RF), and support vector machines (SVM) [16,17].

Recently, deep learning models, as a subset of ML methods, have had good perfor-
mance in detection tasks [18-21]. For the detection task in images, object detection models
based on deep learning are mainly divided into two streams based on different processing
stages, which are one-stage detection models and two-stage detection models. YOLO
series [22-24], SSD [25], and RetinaNet [26] are typical one-stage detection models, and
R-CNN [27], Fast R-CNN [28], and Faster R-CNN [29] are classic two-stage detection
models. Broadly speaking, two-stage detection models obtain high accuracy by region
proposal with large-scale computing resources, whereas one-stage detection models have
better performance with finite computing resources.

Additionally, deep learning models have been introduced in TC detection as well,
for example, the use of deep neural networks (DNN) for existing TC detection [30], pre-
cursor detection of TCs [31], tropical and extratropical cyclone detection [32], TC track
forecasting [33], and TC precursor detection by a cloud-resolving global nonhydrostatic
atmospheric model [34]. However, deep learning models usually require a large number of
training samples, because it is difficult to achieve high accuracy in case of finite training
samples in computer vision and other fields [35-37]. At this time, transfer learning can
effectively alleviate this problem by transferring the knowledge from the source domain to
the target domain, and further improve the accuracy of deep learning models [38—41].

Deep transfer learning studies how to make use of knowledge transferred from other
fields by DNN [42]. On the basis of different kinds of transfer techniques, there are four
main categories: instance-based deep transfer learning, mapping-based deep transfer
learning, network-based deep transfer learning, and adversarial-based deep transfer learn-
ing [42-46]. Instance-based deep transfer learning refers to selecting partial instances from
the source domain to the training set in the target domain [43]. Mapping-based deep
transfer learning refers to mapping partial instances from the source domain and target
domain into a new data space [44]. Network-based deep transfer learning refers to reusing
the partial network and connection parameters in the source domain and transferring
it to be a part of DNN used in the target domain [45]. Adversarial-based deep transfer
learning refers to introducing adversarial technologies such as generative adversarial nets
(GAN) to find transferable formulations that apply to both the source domain and the
target domain [46]. It is also worth noting that GAN has advantages in image processing
and few-shot learning [47-49].

In order to improve the accuracy of a TC detection model in case of finite training
samples, on the basis of deep transfer learning, we propose a new detection framework of
tropical cyclones (NDFTC) from meteorological satellite images by combining the deep
convolutional generative adversarial networks (DCGAN) and You Only Look Once (YOLO)
v3 model.

The main contributions of this paper are as follows:

(1) Inview of the finite data volume and complex backgrounds encountered in meteoro-
logical satellite images, a new detection framework of tropical cyclones (NDFTC) is
proposed for accurate TC detection. The algorithm process of NDFTC consists of three
major steps: data augmentation, a pre-training phase, and transfer learning, which
ensures the effectiveness of detecting different kinds of TCs in complex backgrounds
with finite data volume.

(2) We used DCGAN as the data augmentation method instead of traditional data aug-
mentation methods such as flip and crop. DCGAN can generate images simulated to
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TCs by learning the salient characteristics of TCs, which improves the utilization of
finite data.

(3) We used the YOLOv3 model as the detection model in the pre-training phase. The
detection model is trained with the generated images obtained from DCGAN, which
can help the model to learn the salient characteristics of TCs.

(4) In the transfer learning phase, YOLOV3 is still the detection model, and it is trained
with real TC images. Most importantly, the initial weights of the model are weights
transferred from the model trained with generated images, which is a typically
network-based deep transfer learning method. After that, the detection model can
extract universal characteristics from real images of TCs and obtain a high accuracy.

2. Materials and Methods

The flowchart of the NDFTC in this paper is illustrated in Figure 1. The framework
can be summarized in the following steps: (1) a dataset based on meteorological satellite
images of TCs is created; (2) the dataset is divided into three sub-datasets, which are
training dataset 1, training dataset 2, and test dataset; (3) DCGAN is used as the data
augmentation method to generate images simulated to TCs; (4) the generated images
obtained from DCGAN are inputted into the detection model YOLOvV3 in the pre-training
phase; and (5) the detection model is trained with real images of TCs and its initial weights
are transferred from the YOLOV3 trained with generated images.

Training dataset 1 Generated Images Weight files

Training dataset 2 Final weight files

Test dataset

Figure 1. Overview of the proposed new detection framework of tropical cyclones (NDFTC).

2.1. Deep Convolutional Generative Adversarial Networks

As one of the research hotspots of artificial intelligence, generative adversarial net-
works (GAN) have developed rapidly in recent years and are widely used in image genera-
tion [50], image repair [51], visual prediction of typhoon clouds [52], and other fields.

GAN contains a generator and a discriminator [50]. The purpose of the generator is
to make the discriminator unable to distinguish between the real images and generated
images, whereas the purpose of the discriminator is to distinguish between real and
generated images as much as possible. For the generator, an n-dimensional vector is
required for input and the output is an image. The generator can be any model that can
produce images, such as the simple fully connected neural network. For the discriminator,
the input is a picture, and the output is the label of the picture. Similarly, the discriminator
structure is similar to the generator structure, such as a network that contains convolution,
and so on.

Deep convolutional generative adversarial networks (DCGANSs) are an improvement
on the original GAN [53]. The improvement does not include strict mathematical proof and
the main contents of the improvement are as follows. Both the generator and discriminator
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use convolutional neural networks (CNN). Batch normalization is used in both generators
and discriminators. Neither the generator nor the discriminator uses the pooling layer.
The generator uses ReLU as the activation function except tanh for the output layer. The
discriminator retains the structure of CNN, and the generator replaces the convolution
layer with fractionally strided convolution. All layers of the discriminator use Leaky ReLU
as the activation function.

2.2. You Only Look Once (YOLO) v3 Model

The detection model of NDFTC is the YOLOv3 model [24]. The reason why YOLOv3
is used as the detection model is that the detection speed of YOLOV3 is at least 2 times
faster than SSD, RetinaNet, and Faster R-CNN [24], which can realize real-time detection
of TCs and provide guarantee for disaster prevention and mitigation of TCs. In addition,
YOLOVS3 refers to the idea of feature pyramid networks and it ensures accurate detection
of both large-size and small-size objects.

The base network of the YOLOv3 is Darknet-53. Darknet-53 uses successive 3 x 3 and
1 x 1 convolutional layers. It has 53 convolutional layers in total, as shown in Figure 1,
which is why it is called Darknet-53. In addition, a large number of residual blocks
are added to Darknet-53 to prevent the exploding gradient problem from network layer
deepening. In the model, batch normalization is placed before the activation function
Leaky ReLU, which alleviates the gradient disappearance problem. It should be noted that
the concat is not the numerical addition operation for different feature graphs, but rather a
direct concatenation. This means that the feature map is concatenated directly according to
the channel dimension.

As for the change in image size during TC detection, the input meteorological satellite
images has a size of 512 x 512 pixels. The model outputs feature maps of three sizes. The
first feature map is obtained by down-sampling 32 times, and the size is 16 x 16 pixels. The
second feature map is obtained by down-sampling 16 times, and the size is 32 x 32 pixels.
The third feature map is obtained by down-sampling 8 times, and the size is 64 x 64 pixels.
The above down-sampling is done under the guidance of YOLOv3 model by Redmon
et al., which is a uniform operation of YOLOv3 and aims to obtain TC features at different
scales and thus improve the detection accuracy of different kinds of TCs. Besides, the third
dimension of these three feature maps is 18. Because there are three anchor boxes and each
box has 1-dimensional confidence values, 4-dimensional prediction values (x, y?,w?, h?),
and 1-dimensional object class numbers, the final calculation formula is (3 x (4 + 1 + 1))
and the result is 18.

It is important to note that once the number of anchor boxes is determined, confidence
values, prediction values, and object class numbers are also determined [23]. In general, an
anchor box has 1-dimensional confidence values, because it is the IOU of the bounding box
and the prediction box, reflecting the detection effect of this anchor box [22]. An anchor box
has 4-dimensional prediction values, reflecting the coordinate information of the anchor
box [22]. An anchor box has only 1-dimensional object class numbers, because our study
only detects TC and not other objects.

2.3. Loss Function

The loss function is the error between the predicted value and the real value, which is
one of the important parameters to determine the detection performance. The loss of the
NDFTC includes the loss of DCGAN and the loss of YOLOvV3.

2.3.1. Loss Function of DCGAN

The loss function of DCGAN includes the loss function of generator G and the loss
function of discriminator D. When the generator is trained, parameters of the discriminator
are fixed. When training the discriminator, parameters of the generator are fixed.

The purpose of the generator is to make the discriminator unable to distinguish
between the real TC images and the generated TC images. First, the adversarial loss is



Remote Sens. 2021, 13, 1860

50f 14

introduced. G(X) represents the TC images generated by the generator, Y represents the
real images corresponding to it, and D(-) represents the discriminant probability of the
generated images. The adversarial loss is as follows:

LE = log(1 — D(G(X)) )

By minimizing Formula (1), the generator can fool the discriminator, which means
that the discriminator cannot distinguish between real images and generated images. Next,
the L1 loss function is introduced to measure the distance between generated images and

real images.
Py Py
Ly =} Y NG f) = Y@L 2
i=1j=1
where (i, j) represents pixel coordinates, and P, and P, are the width and height of TC
images, respectively.
The generator’s total loss function is as follows:

Lc =MLY + AL, (3)

where A1 and A, are empirical weight parameters. The generator can generate high-quality
images of TCs by minimizing Formula (3).

The purpose of the discriminator D is to distinguish between the real TC images
and the generated TC images. To achieve this goal, the adversarial loss function of the
discriminator is as follows:

LE? = ~log(D(Y)) ~ log(1 — D(G(X)) 4

For Equation (4), if the real image is wrongly judged as the generated image, or the
generated image is wrongly judged as the real image, then an infinite situation will appear
in Formula (4), which means that the discriminator should still be optimized. If the value of
Formula (4) decreases gradually, it means that the discriminator is trained better and better.

2.3.2. Loss Function of YOLOv3

The loss function of YOLOvV3 includes boundary box loss, confidence loss, and clas-
sification loss. The smaller the loss value, the better the performance of the model. The
parameters involved in the loss function are introduced below.

The model divides the input image into an S x S grid. Each grid cell is responsible for
detecting TCs if the center of a TC falls into a grid cell. The grid cell predicts B bounding
boxes and confidence scores. These scores reflect how confident the model is that the box
contains an object.

The first part of the total loss function is the boundary box loss, which is used to
measure the difference between the real box and the predicted box, as follows:

Lbox = 523[(xf - x§)2 + (v —y;?)z + (wf - wf)z + (W - h§)2] 5)
=

where i is the number of bounding boxes, and (xlp , yf, wlp , hf ) is the positional parameter

of the predicted box. x7 and y” represent the center point coordinates of the predicted box,
and w” and h? represent the width and height of the predicted box, respectively. Similarly,

(xf , y‘lg , w‘lg , h‘ig ) is the parameter of the true box.
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The second part of the total loss function is the confidence loss, which reflects how
confident the model is that the box contains an object. The confidence loss is as follows:

s2xB
Lconf = — Z [h; x Inc; + (1 — h;) x In(1 — ¢;)] 6)
i=1

where ¢; represents the probability of the object in the anchor box i. h; € {0,1} represents
whether the object is present in the anchor box i, in which 1 means yes and 0 means no.
The third part of the total loss function is the classification loss as follows:

s2xB
Lejgss = — Z Z [hik X lncik] 7)
i=1 ke&classes

where c;; represents the probability of the object of class k in the anchor box i. hy € {0,1}
represents whether the object of class k is present in the anchor box i, in which 1 means yes
and 0 means no. In this paper, there is only one kind of object, so k = 1.

To sum up, the total loss function of the YOLOv3 model is as follows:

Liotar = MLpox + /\2Lconf + A3Lclass 8)
where A, Ay, and A3 are empirical weight parameters, and A; = Ay = A3 = 1 in this paper.

2.4. Algorithm Process
According to the above description, the specific algorithm process is shown as follows.
Algorithm 1 The algorithm process of NDFTC.

Start

Input: 2400 meteorological satellite images of TCs; the images were collected from 1979 to 2019 in
the South West Pacific Area.

A. Data Augmentation

(1) A total of 600 meteorological satellite images are input into the DCGAN model. The selection
rule for these images is to randomly select 18 images from the TCs that occur every year
(1979-2010), which contains the common characteristics of TCs over these years.

(2) A total of 1440 generated images with TC characteristics are obtained in the DCGAN model.
These generated images are only used as training samples in the pre-training phase.

B. Pre-Training Phase

(3) The generated images obtained from step (2) are inputted into the YOLOv3 model.

(4) Feature extraction and preliminary detection of the generated images are completed.

(5) The weight trained to 10,000 times in step (4) is reserved in this phase.

C. Transfer Learning

(6) A total of 1800 meteorological satellite images are still available after step (1). A total of 80% of
these data are used as the training samples in this phase. In other words, 1440 meteorological
satellite images from 1979 to 2011 are used as training samples.

(7) The model starts to train with training samples of step (6) and weights of step (5) are initial
weights in this phase, which is a typically network-based deep transfer learning method.

(8) A total of 360 meteorological satellite images from 2011 to 2019 are used as the testing samples.
Then, the test is completed.

Output: detection results, accuracy, average precision.

End

3. Experimental Results
3.1. Data Set

The data set we used includes meteorological satellite observation images in the
Southwest Pacific area from 1979 to 2019. These images, provided by the National Institute
of Informatics, are meteorological satellite images with a size of 512 x 512 pixels. For
more details on the meteorological satellite images we used in this study [54], see the
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website: http://agora.ex.nii.ac.jp/digital-typhoon/search_date.html.en#id2 (accessed on
29 March 2021).

In this paper, a total of 2400 real TC images were used. Among them, 600 real images
were input into DCGAN model to produce 1440 generated images for training the detection
model in the pre-training phase. Additionally, 80% of the remaining 1800 real TC images,
which were from 1979 to 2011, were used to train the model. A total of 20% of the remaining
1800 real TC images, which were from 2011 to 2019, were used to test the model.

In other words, in the transfer learning phase, the selection rule for training and test
data was based on the time when the TC was captured by the meteorological satellite. A
total of 80% of the data used for training was historical data occurring from 1979 to 2011,
whereas 20% of the data used for testing was recent data occurring from 2011 to 2019. Such
a data selection method of training with historical data and testing with recent data is
effective in the application of deep learning in meteorology [55], and thus we also adopted
this data selection method.

3.2. Experiment Setup

In order to show the superiority of NDFTC in the training process and detection
results, a TC detection model for comparison was also trained, which was only based on
YOLOv3 and did not use NDFTC. In order to train and test this TC detection model for
comparison, we still used 2400 real TC images, 80% of which were used for training and
20% for testing.

For the sake of fairness, the total number of training times for both NDFTC and
YOLOv3 was 50,000. For the NDFTC, it used generated TC images to train 10,000 times,
and then it used real TC images to train 40,000 times. For the detection model only based
on YOLOVS3, it was trained 50,000 times using real TC images. In the training process, the
change of loss function values of NDFTC and detection model only based on YOLOv3 are
shown in Figure 2.

0.4

0.37

0.21

0.1754

0.150 4

0.1251

0.100 4

0.075

Loss function values

0.050 1

0.025 4

0.000 1

1000

2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000 3500 4000
Batches Batches

(a) (b)

Figure 2. (a) The change of loss function values of YOLOV3 to train real TC images; (b) the change of loss function values of
NDFTC to train real TC images.

Figure 2 visualizes the change of loss function values of YOLOv3 and NDFTC in
the training process. Compared with the TC detection model only including YOLOv3,
the NDFTC proposed in this paper had smaller loss function values and a more stable
training process.

In order to show the stability of NDFTC during the training process from another
perspective, the changes of region average IOU are also visualized in Figure 3. Region
average IOU is the intersection over union (IOU) between the predicted box and the ground
truth [22]. It is one of the most important indicators to measure the stability of models in
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the training process, and is commonly found in deep learning models such as YOLOv1 [22],
YOLOV2 [23], YOLOV3 [24], and YOLOV4 [56]. In general, the closer it is to 1, the better the
model is trained.

1.0

0.8
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= 0.6
&
=3}
o
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0 200,000 400,000 600,000 800,000 0 100,000 200,000 300,000 400,000 300,000 800,000 700,000
Batches Balches
(a) (b)

Figure 3. (a) The change in region average IOU of YOLOV3 to train real TC images; (b) the change in region average IOU of
NDFTC to train real TC images.

In Figure 3, the region average IOU of the models in the training process was generally
decreasing. However, the region average IOU of YOLOV3 oscillated more sharply when
the training reached a later stage. Compared with the TC detection model only including
YOLOV3, the NDFTC oscillated less in the whole training process. This means that the
NDFTC converged faster and was more stable in the training process.

3.3. Results and Discussion

In order to evaluate the detection effect of the NDFTC proposed in this paper, ACC
and AP were used as evaluation indexes.

ACC refers to accuracy, which means the proportion of TCs detected correctly by the
model in all images. The definition of ACC is as follows:

Accuracy :% )

where TP refers to the number of TC images detected correctly by the model, and ALL
refers to the number of all images.

AP refers to average precision, which takes into account cases such as detection error
and detection omission phenomenon, and it is a common index for evaluating YOLO series
models such as YOLOv1, YOLOV2, and YOLOv3 by Redmon et al. [22-24]. AP is defined
by precision and recall:

.. TP
Precision TP+ EP (10)
TP
Recall “TPrEN (11

where TP refers to the number of TCs correctly recognized as TCs by the detection model,
FP refers to the number of other objects recognized as TCs by the detection model, and
FN refers to the number of TCs recognized as other objects by the detection model [57,58].
Then the P-R curve can be obtained by using the recall of TCs as the x-coordinate and the
precision of TCs as the y-coordinate [59], and the area under the curve is AP, which is the
index that evaluates the detection effectiveness of the NFDTC.
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Figure 4 shows the ACC and AP of NDFTC and other models in the test set when the
training times were 10,000, 20,000, 30,000, 40,000, and 50,000. Apparently, Figure 4 reflects
that NDFTC performed better than YOLOv3 and other models with the same training
times. Finally, the experimental results show that the NDFTC had better performance,
with an ACC of 97.78% and AP of 81.39%, in comparison to the YOLOv3, with an ACC of
93.96% and AP of 80.64%.

97.78 18 8139
81

81 T 8064
9% 9389 93,96 2011 013
91,83 80
) 8072 89.79 - 79.06
9 8.3 —~ 79 ;
=

o 7892
p 77.94
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B 7712 711 7725
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79.58 ==Y (VLOv] YOLOv2 YOLOW3 NDFTC 76 o
2 —8—=Y0OLOv] YOLOvZ YOLOV3 NDFIC
& 73
10,000 20,000 30,000 40,000 /0,000 10,000 20,000 30,000 40,000 50,000
Training times. ITraining limes
(a) (b)
Figure 4. Performance of NDFTC and other models with ACC and AP: (a) ACC of NDFTC and other models; (b) AP of
NDFTC and other models.

In order to evaluate the detection effect on different kinds of TCs, all TCs in the test
set were divided into five categories. According to the National Standard for Tropical
Cyclone Grade (GB/T 19201-2006), TC intensity includes tropical storm (TS), severe tropical
storm (STS), typhoon (TY), severe typhoon (STY), and super typhoon (SuperTY). The ACC
performance of the NDFTC and other models on the test set is shown in Table 1. It shows
that the NDFTC generally had a higher ACC. The best result was from NDFTC for SuperTY
detection, and at that time the ACC reached 98.59%.

Table 1. ACC performance of the NDFTC and other models on the test set for five kinds of TCs.

Model Typhoon 10,000 20,000 30,000 40,000 50,000
Types Times Times Times Times Times

TS 71.21 80.30 87.88 90.91 92.42

STS 83.46 86.47 89.47 90.98 94.74

YOLOv3 TY 85.59 88.29 90.09 91.89 92.79
STY 88.75 90.00 91.25 92.50 95.00

SuperTY 88.89 91.11 93.33 93.33 94.44

TS 87.50 92.50 92.50 95.00 97.50

STS 88.46 91.35 9231 93.27 98.07

NDFTC TY 89.41 92.94 94.12 95.29 96.47
STY 91.67 93.33 95.00 96.67 98.33

SuperTY 91.55 94.37 95.77 97.18 98.59

Next, the AP performance of the NDFTC and other models on the test set is shown
in Table 2. It can be found that the NDFTC basically had a higher AP. The best result was
from NDFTC for STY detection, which was 91.34%.



Remote Sens. 2021, 13, 1860 10 of 14

Table 2. AP performance of the NDFTC and other models on the test set for five kinds of TCs.

Model Typhoon 10,000 20,000 30,000 40,000 50,000
Types Times Times Times Times Times

TS 60.91 61.24 63.96 68.26 66.85

STS 80.77 83.46 83.59 82.42 86.84

YOLOv3 TY 79.16 76.93 79.91 80.90 78.11
STY 88.66 89.12 87.12 87.60 88.63

SuperTY 82.82 81.14 83.23 81.43 79.81

TS 67.16 69.12 63.55 67.96 63.89

STS 78.13 74.64 84.15 81.40 82.22

NDFTC TY 79.76 83.60 81.57 86.70 83.04
STY 89.23 86.97 89.79 84.89 91.34

SuperTY 84.03 85.20 79.89 80.50 82.52

Last but not least, an example of TC detection results is shown in Figure 5, which is
the super typhoon Marcus in 2018. It can be found that the NDFTC had a more detailed
detection result, because the prediction box of NDFTC fit Marcus better. More importantly,
compared with the TC detection model only including YOLOvV3, the detection result of
NDEFTC was more consistent with the physical characteristics of TCs, because the spiral
rainbands at the bottom of Marcus were also included in the detection box of NDFTC.

-

(b)

Figure 5. An example of TC detection results, which is the super typhoon Marcus in 2018. (a) The detection result of
YOLOV3; (b) the detection result of NDFTC.

4. Discussion

To begin with, the complexity of NDFTC is explained here. Compared to the complex
network architecture and huge number of parameters of YOLOv3, the complexity of
DCGAN, which is a relatively simple network, could be negligible [60]. Therefore, the
complexity of the NDFTC in this paper was approximately equal to that of the YOLOv3
model, conditional on a finite data set and the same scale of computing resources. More
importantly, compared with the YOLOv3 model, NDFTC further improved the detection
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accuracy of TCs with almost no increase in complexity, which proves that NDFTC ensures
generalization performance.

Then, the way in which the generated and real images are used in different phases
needs to be emphasized again. In 2020, Maryam Hammami et al. proposed a CycleGAN
and YOLO combined model for data augmentation and used generated data and real data
to train a YOLO detector, in which generated data and real data are simultaneously input
into YOLO for training [61]. In our study, the detector was trained using only generated
images in the pre-training phase and only real images in the transfer learning phase, which
is a typically network-based deep transfer learning method. Additionally, the average IOU
and loss function values during the training process are plotted in this paper to reflect the
stability of NDFTC.

Furthermore, it is necessary to explain the proportion of the data set allocated. In
NDFTC, the initial dataset is composed of meteorological satellite images of TCs, and
when it is divided into training dataset 1, training dataset 2, and test dataset according
to Algorithm 1, then training datasets 1 and 2 must include the real images of TC. This
means that training datasets 1 and 2 must contain TC features at the same time, which is a
prerequisite for the adoption of NDFTC.

Finally, we need to explain the reason why 80% of the real images of TC were used
for training and the rest for testing. In general, for finite datasets that are not very large,
such a training and testing ratio is a common method in the field of deep learning [62,63].
It is generally believed that when the total number of images in the dataset reaches tens of
thousands or even hundreds of thousands, the proportion of the training set can exceed
90% [63]. Of course, considering that the dataset of TCs used in this paper has only
thousands of images, 80% was acceptable. More importantly, for object detection tasks
with finite datasets, setting a smaller training dataset usually leads to lower accuracy, so
we chose the common ratio of 80% over others.

5. Conclusions

In this paper, on the basis of deep transfer learning, we propose a new detection
framework of tropical cyclones (NDFTC) from meteorological satellite images by combining
the DCGAN and YOLOv3. The algorithm process of NDFTC consists of three major
steps: data augmentation, a pre-training phase, and transfer learning, which ensures
the effectiveness of detecting different kinds of TCs in complex backgrounds with finite
data volume. We used DCGAN as the data augmentation method instead of traditional
data augmentation methods because DCGAN can generate images simulated to TCs by
learning the salient characteristics of TCs, which improves the utilization of finite data.
In the pre-training phase, we used YOLOV3 as the detection model and it was trained
with the generated images obtained from DCGAN, which helped the model learn the
salient characteristics of TCs. In the transfer learning phase, we trained the detection
model with real images of TCs and its initial weights were transferred from the YOLOv3
trained with generated images, which is a typically network-based deep transfer learning
method and can improve the stability and accuracy of the model. The experimental results
show that the NDFTC had better performance, with an ACC of 97.78% and AP of 81.39%,
in comparison to the YOLOv3, with an ACC of 93.96% and AP of 80.64%. On the basis
of the above conclusions, we think that our NDFTC with high accuracy has promising
potential for detecting different kinds of TCs and we believe that NDFTC could benefit
current TC-detection tasks and similar detection tasks, especially for those tasks with finite
data volume.
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Abbreviations

The following abbreviations are used in this manuscript:
TC Tropical cyclone

TCs Tropical cyclones

NDFTC  New detection framework of tropical cyclones
GAN Generative adversarial nets

DCGAN  Deep convolutional generative adversarial networks
YOLO You Only Look Once

NWP Numerical weather prediction
ML Machine learning

DT Decision trees

RF Random forest

SVM Support vector machines
DNN Deep neural networks
RelLU Rectified linear unit

TP True positive

TN True negative

FP False positive

FN False negative

ACC Accuracy

AP Average precision

(0)8) Intersection over union
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