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Abstract: Remote-sensing time-series datasets are significant for global change research and a better
understanding of the Earth. However, remote-sensing acquisitions often provide sparse time series
due to sensor resolution limitations and environmental factors such as cloud noise for optical data.
Image transformation is the method that is often used to deal with this issue. This paper considers
the deep convolution networks to learn the complex mapping between sequence images, called
adaptive filter generation network (AdaFG), convolution long short-term memory network (CLSTM),
and cycle-consistent generative adversarial network (CyGAN) for construction of sequence image
datasets. AdaFG network uses a separable 1D convolution kernel instead of 2D kernels to capture
the spatial characteristics of input sequence images and then is trained end-to-end using sequence
images. CLSTM network can map between different images using the state information of multiple
time-series images. CyGAN network can map an image from a source domain to a target domain
without additional information. Our experiments, which were performed with unmanned aerial
vehicle (UAV) and Landsat-8 datasets, show that the deep convolution networks are effective to
produce high-quality time-series image datasets, and the data-driven deep convolution networks can
better simulate complex and diverse nonlinear data information.

Keywords: sequence image datasets; adaptive filter generation network; convolution long short-term
memory network; cycle-consistent generative adversarial network; UAV dataset; Landsat-8 dataset

1. Introduction

Remote-sensing time-series datasets are an important product and can be applied to
research and applications in global changes, such as vegetation phenology changes, land
degradation, etc. The successful application of remote-sensing time-series datasets are
significant for earth science to expand the growth to a deeper level and to better understand
the Earth [1,2].

Time-series analysis usually requires the data to be dense and has equal time intervals
to facilitate the process. However, remote-sensing acquisitions often provide sparse time
series due to sensor resolution limitations and environmental factors [3], such as cloud
noise for optical data. In this case, it is difficult to conduct time-series analysis and construct
remote-sensing sequence image datasets.

A conventional method to solve missing data is a linear fitting method, and only uses
1D data for transformation. Seaquist et al. [4] used the ordinary kriging (OK) method to
improve the accuracy of a normalized difference vegetable index (NDVI). Berterretche
et al. [5] used a spatial interpolation method to interpolate leaf-area index (LAI) data.
Bhattacharjee et al. [6] compared the accuracy of remote-sensing data using different
spatial interpolation methods and concluded that the accuracy of OK was better than
inverse distance weight (IDW). The above methods can use the spatial information of
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remote-sensing images for spatial transformation, and cannot use temporal information of
remote-sensing images for temporal transformation.

Zhou et al. [7] used NDVI data of moderate-resolution imaging spectroradiometer
(MODIS) satellite to conduct simulation experiments and evaluate the Savitzky–Golay
(SG) filtering [8] and harmonic analysis of time-series (HANTS) model [9] refactoring
effect at different time intervals. According to the daily harmonic changes of land surface
temperature (LST), Crosson et al. [10] used the LST data of MODIS Terra and Aqua to
repair missing LST points by harmonic analysis. The above methods provide better 1D
data fitting for the construction of time-series data at different time intervals and are not
suitable for the transformation of high-dimensional time-series data.

The emergence of the enhanced spatial and temporal adaptive reflectance fusion model
(ESTARTFM) [11], spatial and temporal adaptive reflectance fusion model (STARTFM) [12],
a virtual image pair-based spatio-temporal fusion (VIPSTF) [13], and global dense feature
fusion convolutional network [14] had provided ideas for research on sequence construc-
tion. These models can obtain high spatio-temporal resolution fusion data, but they cannot
elaborate on the spatio-temporal evolution of sequence images and rely heavily on the
situation of the original data itself.

Remote-sensing sequence images are a kind of short-range complex and nonlinear
2D data [15], and spatio-temporal information must be considered during construction.
It is difficult to construct 2D images in the same way that construction is applied to 1D
data. It is difficult to use the conventional linear fitting method for construction. The deep
learning method can better simulate complex and diverse nonlinear data information, so it
is a better choice for time-series image transformation.

Yuval et al. [16] presented benthic mapping and accelerated segmentation through
photogrammetry and multi-level superpixels, and showed the accuracy of repeated surveys
using orthorectification and sparse label augmentation. This approach is appropriate for
any person who is interested in using photogrammetry for ecological surveys, especially
diver-based underwater surveys. Kalajdjieski et al. [17] proposed a novel approach evalu-
ating four different architectures that utilize camera images to estimate the air pollution
in those areas. These images were further enhanced with weather data to boost the classi-
fication accuracy. The proposed approach exploits the deep learning method combined
with data augmentation techniques to mitigate the class imbalance problem. In principle,
this approach is suitable for every application where image data is correlated with sensor
data, and using them in combination can be beneficial for the learning task. In particular,
the adoption of this method in multi-class classification settings with imbalanced classes is
particularly beneficial. Wang et al. [18] proposed an unsupervised data augmentation and
effective spectral structure extraction method for all hyperspectral samples. This method
not only improves the classification accuracy greatly with the newly added training sam-
ples but also further improves the classification accuracy of the classifier by optimizing the
augmented testing samples. However, as discussed previously, these data augmentation
methods cannot make full use of the spatio-temporal features of the original data, and the
transfer learning ability of its mapping model is weak. So these methods are not well-suited
for remote-sensing time-series data transformation.

Long et al. [19] used frame interpolation as a supervision signal to learn the Con-
volutional Neural Network (CNN) models for optical flow. However, their main target
is optical flow and the interpolated frames tend to be blurry. Liu et al. [20] developed a
CNN model for frame interpolation that had an explicit sub-network for motion estimation.
Their method obtains not only good interpolation results but also promising unsupervised
flow estimation results on KITTI 2012. Niklaus et al. [21] used a deep fully convolutional
neural network to estimate spatially adaptive 2D or separable 1D convolution kernels for
each output pixel and convolves input frames with them to render the intermediate frame.
The convolution kernel can capture local motion between input frames and the coefficients
for pixel synthesis. However, as discussed previously, these CNN-based single-frame
interpolation methods are not well-suited for multi-frame interpolation.
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Taking into account the limitations of the above conventional methods and video
interpolation methods, Pan et al. [22] used the convolutional long short-term memory
network to conduct the prediction of NDVI. This method can perform prediction based
on the state information of time-series, and it belongs to the method of multi-scene trans-
formation. However, its predicted results are affected by the length and missing degree
of sequence images. Zhu et al. [23] adopted the cycle-consistent generative adversarial
network to conduct style conversion between different pictures. This method can perform
bidirectional transformation between different pictures, and its generated results are not
affected by the missing degree of sequence images. However, the spectral transformation
ability of this method is lower than other deep convolution networks and its results are
affected by the noise degree of sequence images.

To improve the accuracy of remote-sensing time-series data transformation, this paper
is inspired by the idea of Niklaus, Pan, and Zhu et al., and employs the advantage of
different deep convolutional neural networks to make up for the missing remote-sensing
data. The major novelty of this paper can be summarized as follows:

• We are one of the first attempts to use the advantage of the different convolution
networks to conduct spectral transformation for filling in missing areas of sequence
images and produce full remote-sensing sequence images.

• We combine the temporal and spatial neighborhood of sequence images to consider
the construction of scene-based remote-sensing sequence images. It does not rely
on other high-temporal-resolution remote-sensing data, and only construct datasets
based on the sequence itself. This provides a new idea for the construction of remote-
sensing datasets.

This paper shows that the data-driven models can better simulate complex and non-
linear spectral transformation, then get the generated result based on this transformation.
High-quality remote-sensing sequence datasets can be produced using different deep con-
volution networks. This enriches the research and development of the remote-sensing field.

The rest of the paper is organized as follows. Section 1 reviews related studies regard-
ing remote-sensing time-series data transformation. Section 2 describes the experimental
datasets and different deep convolution networks. Section 3 presents the experiments
and results, including a generalization of deep convolution networks in the time dimen-
sion, visual comparisons, and quantitative evaluation of constructed datasets with single
and multiple networks. Section 4 discusses the influence of hyper-parameters on the
transformation result. Section 5 concludes the paper.

2. Materials and Methods
2.1. Experimental Datasets

This paper uses unmanned aerial vehicle (UAV) datasets and Landsat-8 datasets for
experiments. Figure 1 shows the location of the UAV datasets. Figure 2 shows the location
of the Landsat-8 datasets.

UAV datasets are located in Sougéal marsh (western France, 48.52◦N, 1.53◦W), which
is part of the long-term socio-ecological research (LTSER) site Zone Atelier Armorique. This
site is a large flooded grassland of 174 hectares located in the floodplain of the Couesnon
River, upstream of Mont-Saint-Michel Bay [24]. The projection-type is France Lambert-93.
The spatial resolution is 0.02 m. The number of bands is 4: green, red, red-edge, and
near-infrared.

Landsat-8 datasets are located in the southeast of Gansu Province (34.73◦N, 105.50◦E),
which is 36 rows and 129 paths in the Worldwide Reference System (WRS-2). The images
of these datasets have a small amount of cloud noise in some months. The projection-type
is Universal Transverse Mercator (UTM). The spatial resolution is 30 m. The number of
bands is 7: coastal, blue, green, red, near-infrared, short-wave infrared-1, and short-wave
infrared-2.
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Figure 1. Location of unmanned aerial vehicle (UAV) dataset: 1, 2, 3 band composite.

Figure 2. Location of Landsat-8 dataset: 5, 4, 3 band composite.

2.2. Architecture of Networks
2.2.1. AdaFG Network

Given two images It1 and It2 at different times with the same spatial resolution, it is
reasonable to assume the image (Iestimated) at a certain time can be estimated by It1 and It2 .
As is shown in Equation (1):

Iestimated = b1(x, y) ∗ K1(x, y) + b2(x, y) ∗ K2(x, y) (1)

In Equation (1), b1(x, y) and b2(x, y) are the patches centered at (x, y) in It1 and It2 ,
and K1(x, y) and K2(x, y) are a pair of 2D convolution kernels; note that ∗ denotes a local
convolution operation. The pixel-dependent kernels K1 and K2 capture both motion and
re-sampling information required for transformation. The 2D kernels, K1 and K2, could be
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approximated by a pair of 1D kernels. That is, K1 could be approximated as k1,v ∗ k1,h and
K2 could be approximated as k2,v ∗ k2,h. Under this assumption, the main task is to estimate
each separable 1D kernel parameter k1,v, k1,h, k2,v, k2,h.

The adaptive filter generation network (AdaFG) consists of a contracting part, an
expanding part, a separable convolution part, and a backpropagation part [21]. The
architecture of the network is shown in Figure 3.

Figure 3. Overview of AdaFG architecture: (a–d) represent feature extracting part, feature expanding part, separable
convolution part, and backpropagation part, respectively.

The extracting part (Figure 3a) is used to extract features of training samples. This
part mainly contains five convolution layers (Conv-1, Conv-2, Conv-3, Conv-4 and Conv-5)
and pooling layers (Pool-1, Pool-2, Pool-3, Pool-4 and Pool-5). The number of filters in each
convolution layer is 32, 64, 128, 256, and 512.

The expanding part (Figure 3b) is used to recover the extracted features. This part
mainly contains four deconvolution layers (Deconv-1, Deconv-2, Deconv-3, and Deconv-4)
and upsampling layers (Upsample-1, Upsample-2, Upsample-3, and Upsample-4). The number
of filters in each deconvolution layer is 512, 256, 128, and 64.

The separable part (Figure 3c) is used to estimate the separable 1D kernel parameter.
This part directs the feature information in the last expansion layer into four sub-networks
(Subnet-1, Subnet-2, Subnet-3, and Subnet-4), with each sub-network evaluating one 1D ker-
nel.

The backpropagation part (Figure 3d) is used to update the weights of the network
in each layer. This part updates the weights of the network in each layer according to the
error between the generated result (Iestimated) and the reference image (Igt).

The detailed information of each layer of feature maps in the network is shown in
Table 1 (input image block W × H = 128 × 128, n represents the number of bands, k
represents the size of separable convolution kernel).
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Table 1. Detailed information of each layer of feature maps in the network.

Type Kernel Size Stride Padding Feature Maps
(Filters ×W × H)

Input — — — 2n × 128 × 128
Conv-1 3 × 3 1 × 1

1 × 1

32 × 128 × 128
Pool-1 2 × 2 2 × 2 32 × 64 × 64
Conv-2 3 × 3 1 × 1 64 × 64 × 64
Pool-2 2 × 2 2 × 2 64 × 32 × 32
Conv-3 3 × 3 1 × 1 128 × 32 × 32
Pool-3 2 × 2 2 × 2 128 × 16 × 16
Conv-4 3 × 3 1 × 1 256 × 16 × 16
Pool-4 2 × 2 2 × 2 256 × 8 × 8
Conv-5 3 × 3 1 × 1 512 × 8 × 8
Pool-5 2 × 2 2 × 2 512 × 4 × 4

Deconv-1

3 × 3 1 × 1

512 × 4 × 4
Upsample-1 512 × 8 × 8
Deconv-2 256 × 8 × 8

Upsample-2 256 × 16 × 16
Deconv-3 128 × 16 × 16

Upsample-3 128 × 32 × 32
Deconv-4 64 × 32 × 32

Upsample-4 64 × 64 × 64
Subnet-1 k × 128 × 128
Subnet-2 k × 128 × 128
Subnet-3 k × 128 × 128
Subnet-4 k × 128 × 128

The size of the feature maps has different calculation equations in different layers of
the network. The calculation Equations (2)–(5) inside the convolutional layers, pooling
layers, deconvolution layers, and upsampling layers are as follows:

Wconv =
(
Winput − K + 2·P

)
/S + 1 (2)

Wpool =
(
Winput − K

)
/S + 1 (3)

Wdeconv =
(
Winput − 1

)
·S + K− 2·P (4)

Wupsample = 2·Winput (5)

In the above equations, Winput represents the input size of samples, K, S, and P
represent the size of kernel, stride, and padding, respectively. Wconv, Wpool , Wdeconv, and
Wupsample represent the output size of feature maps in convolutional layers, pooling layers,
deconvolution layers, and upsampling layers, respectively.

Furthermore, the upsampling layers can be executed in various ways, such as nearest-
neighbor, bilinear interpolation, and cubic convolution interpolation [25–27]. We use skip
connection [28,29] to let upsampling layers incorporate features from the contracting part
of the AdaFG network.

2.2.2. CLSTM Network

Convolution long short-term memory network (CLSTM) is an improvement based on
the long short-term memory network (LSTM) [22]. It mainly focuses on 2D image data and
extracts the spatial characteristics of each time point through the convolution operation.
Using the principle of LSTM in the time dimension is to learn long-term characteristics,
and then conducts long-term series prediction based on the characteristics. This network
can grasp the characteristics of space and time. Compared with the LSTM network, the
CLSTM network is an end-to-end network model. The transition of input to state and state
to state has a convolution structure [30]. The spatial characteristics are extracted through
the convolution operation of the image, and then consider the input of new data and the
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output of the previous time point through the input gate and the forget gate. Finally, the
output at this time point is determined through the output gate. The cell structure is shown
in Figure 4.

Figure 4. Cell structure of CLSTM.

The calculation Equations (6)–(10) inside the CLSTM cell are as follows:

ft = σ
(

W f ∗ [xt, ht−1] + b f

)
(6)

it = σ(Wi ∗ [xt, ht−1] + bi) (7)

ot = σ(Wo ∗ [xt, ht−1] + bo) (8)

ct = ftct−1 + ittanh(Wc ∗ [xt, ht−1] + bc) (9)

ht = ottanh(ct) (10)

In the above equations, ∗ denotes convolution operation, xt represents the input
of neurons at t, ct−1 and ct represent the cell state of neurons at t−1 and t, ht−1 and ht
represent the output of neurons at t−1 and t, W f and b f represent the weight and bias of
the forget gate ( ft), Wi and bi represent the weight and bias of the input gate (it), Wo and
bo represent the weight and bias of the output gate (ot), Wc and bc represent the weight
and bias of the cell state, and σ represents the sigmoid activation function.

2.2.3. CyGAN Network

Compared with traditional neural networks, the Generative Adversarial Network
(GAN) is an unsupervised learning network. GAN has a collapse problem when conducts
style conversion between different pictures. Its model is too uncontrollable for larger
pictures and more pixels [31,32]. The cycle-consistent generative adversarial network.

(CyGAN) is an improvement based on the GAN, the purpose of this network is to
realize the mutual transformation between a source domain (X) and the target domain
(Y) [23]. The structure diagram is shown in Figure 5. CyGAN network mainly contains
two mapping functions (GX→Y, FY→X) and two corresponding adversarial discriminators
(DY,DX). Meanwhile, there are two cycle-consistent losses: forward and backward cycle-
consistent losses.
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Figure 5. Structure diagram of CyGAN: (a,b) show forward and backward cycle-consistent loss.

According to the CyGAN diagram, CyGAN consists of three parts (forward confronta-
tion target, backward confrontation target, and cycle-consistency loss). The calculation
Equations (11)–(14) of the forward confrontation target, backward confrontation target,
cycle-consistent loss, and objective function are shown as follows:

LGAN(G, DY, X, Y) = EY∼Pdata(Y)[logDY(Y)] + EX∼Pdata(X)[log(1− DY(G(X)))] (11)

LGAN(F, DX , Y, X) = EX∼Pdata(X)[logDX(X)] + EY∼Pdata(Y)[log(1− DX(F(Y)))] (12)

Lcyc(G, F) = EY∼Pdata(Y)[‖G(F(Y))−Y‖1] + EX∼Pdata(X)[‖F(G(X))− X‖1] (13)

G∗, F∗ = argmin︸︷︷︸
G,F

max︸︷︷︸
DY ,DX

{
µ1Lcyc(G, F) + µ2(LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X))

}
(14)

In the above equations, X and Y represent the real image in the source domain and
target domain, G(X) and F(Y) represent generated images, Pdata(X) and Pdata(Y) represent
the distribution of real image in the target domain, ~ represents the obey relationship,
E represents the mathematical expectation function, µ1 and µ2 represent proportional
hyper-parameter of the cycle-consistent loss and the confrontation target.

2.3. Evaluation Indicator

Our research uses root mean square error (RMSE) and entropy function to evaluate
the quality of the generated result: RMSE measures the pixel error between a generated
image Iestimated and corresponding reference image Igt, as defined in Equation (15):

RMSE =

√
1

W×H
Σ
(∣∣∣∣Iestimated − Igt

∣∣∣∣
2

)
(15)

The entropy function based on statistical features is an important indicator to measure
the richness of image information. The information amount of a generated image Iestimated
is measured by the information entropy D(Iestimated), as defined in Equation (16):

D(Iestimated) = −
L

∑
i=0

Piln(Pi) (16)

In Equation (16), Pi is the probability of a pixel with a gray value of i in image, and L is
the total number of gray levels (L = 255). According to Shannon’s information theory [33],
there is the most information when there is maximum entropy.
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3. Results and Analysis
3.1. Experimental Strategy

The size of scenes in sequence in both datasets was 3072 × 5632. To get enough
training samples, all scenes in a sequence were cropped as a block with a size of 128 × 128.

This paper mainly conducted three aspects. The first aspect was a generalized applica-
tion in the time dimension using different deep convolution networks. The second and
third aspects were mainly to construct datasets in different time series using single and
multiple networks, and this was implemented among multiple sequences. Corresponding
experimental data are described in the following paragraphs in detail.

Before describing the experimental data in every aspect, we will first introduce some
symbols used below. We represent image scene in different sequences, and Iti , I′ti

, I ′′ti
represent different sequence images acquired at time ti (ti = 1, . . . ,12). In AdaFG network,
the mapping model is expressed as f[It1 , It2 ,It3 ]

, where [It1 , It2 , It3] represents training
image triples, It1 and It2 represent the training image pairs, It3 represents the reference
image, t1 and t2 represent the month of training image pairs acquired, and t3 represents the
month of the reference image acquired. f[It1 , It2 ,It3 ]

(
I′t1

, I′t2

)
represents output image with

mapping model f[It1 , It2 ,It3 ]
and input scenes I′t1

and I′t2
. In CLSTM network, the mapping

model is expressed as f[It1 ,..., Itn ,Itn+1 ]
, where [It1 , . . . , Itn , Itn+1] represents training image

multi-group, It1 , . . . , Itn represent the training images, Itn+1 represents the reference image,
t1, . . . ,tn represent the month of training images acquired, and tn+1 represents the month
of the reference image acquired. f[It1 ,..., Itn ,Itn+1 ]

(
I′t1

, . . . , I′tn

)
represents output image with

mapping model f[It1 ,..., Itn ,Itn+1 ]
and input scenes I′t1

, . . . , I′tn
. In CyGAN network, the output

image is expressed as f[It1 , It2 ]

(
I′t1

)
, where f[It1 , It2 ]

represents a mapping model trained by

training image pair [It1 , It2] with reference image It2 . I′t1
in the brackets represents the

input used to generate the output image.
Table 2 shows the sequences used in the first aspect and the dates of all scenes acquired

in them. Figure 6 shows the visual effect of training and testing images using different
deep convolution networks in the first aspect.

Table 2. Name and date of experimental datasets in the first aspect.

Datasets Image Names Image Dates

UAV

I4 April 2019
I5 May 2019
I6 June 2019
I7 July 2019
I8 August 2019

Landsat-8

I′4 April 2014
I′7 July 2014
I′2 February 2014
I′8 August 2014
I′12 December 2014

The second and third aspects mainly constructed remote-sensing sequence datasets
with multiple sequences. The remote-sensing sequence here mainly reflected two aspects:
non-equidistant missing images in the same sequence and non-equidistant missing images
of the same scene in a different sequence. It was difficult to find an analysis method to
analyze these sequences in a unified and integrated manner. The number of images in a
year was relatively small, and the time interval between images was uncertain.
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Figure 6. Visual effect of training (It) and testing (I′t ) images using different deep convolution networks in the first aspect:
(A) UAV and (B) Landsat-8 images; (a–c) show the visual effect using AdaFG, CLSTM, and CyGAN network, respectively.

Figure 7A shows available UAV images from 2017 to 2019 and Landsat-8 images from
2013 to 2015 in the second and third aspects. It is obvious that there are many missing
images for the frequency of one image per month. Figure 7B shows one construction
strategy with a single network. In UAV datasets, the crimson, red, and light-red points
mark the first, second, and third-level generated result, in which training and testing
images are listed in Table 3. In Landsat-8 datasets, the dark-green and light-green points
mark the first and second generated result, in which training and testing images are listed
in Table 4. Figure 7C shows one construction strategy with multiple networks. The red,
green, and purple points mark the generated result with AdaFG, CyGAN, and CLSTM
network in both datasets, in which training and testing images are listed in Tables 5 and 6.

Table 3. Training, testing, and output images with AdaFG in UAV datasets.

Color. Training Images Testing Images Output Images

Crimson

I4, I5, I1

I′4, I′5

f[I4,I5,I1]

(
I′4, I′5

)
I4, I5, I3 f[I4,I5,I3]

(
I′4, I′5

)
I4, I5, I6 f[I4,I5,I6]

(
I′4, I′5

)
I4, I5, I7 f[I4,I5,I7]

(
I′4, I′5

)
I4, I5, I8 f[I4,I5,I8]

(
I′4, I′5

)
I′4, I′5, I′9

I4, I5

f[I ′4,I ′5,I ′9]
(I4, I5)

I′4, I′5, I′10 f[I ′4,I ′5,I ′10]
(I4, I5)

I′4, I′5, I′12 f[I ′4,I ′5,I ′12]
(I4, I5)

Red I ′′7 , I ′′10, I ′′11 I′7, I′10 f[I ′′7 ,I ′′10,I ′′11]

(
I′7, I′10

)

Light-red

I′4, I′5, I′11 I4, I5 f[I ′4,I ′5,I ′11]
(I4, I5)

I′10, I′11, I′1

I ′′10, I ′′11

f[I ′10,I ′11,I ′1]
(

I ′′10, I ′′11
)

I′10, I′11, I′2 f[I ′10,I ′11,I ′2]
(

I ′′10, I ′′11
)

I′10, I′11, I′3 f[I ′10,I ′11,I ′3]
(

I ′′10, I ′′11
)

I′10, I′11, I′4 f[I ′10,I ′11,I ′4]
(

I ′′10, I ′′11
)

I′10, I′11, I′5 f[I ′10,I ′11,I ′5]
(

I ′′10, I ′′11
)

I′10, I′11, I′6 f[I ′10,I ′11,I ′6]
(

I ′′10, I ′′11
)

I′10, I′11, I′8 f[I ′10,I ′11,I ′8]
(

I ′′10, I ′′11
)

I′10, I′11, I′9 f[I ′10,I ′11,I ′9]
(

I ′′10, I ′′11
)

I′10, I′11, I′12 f[I ′10,I ′11,I ′12]

(
I ′′10, I ′′11

)
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Figure 7. Strategy for constructing sequence datasets in the second and third aspect: (A) available UAV images from 2017
to 2019 and Landsat-8 images from 2013 to 2015; (B) one construction strategy with single network; (C) one construction
strategy with multiple networks.
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Table 4. Training, testing, and output images with CyGAN in Landsat-8 datasets.

Color Training Images Testing Images Output Images

Dark-green

I′1, I′2
I1

f[I ′1,I ′2]
(I1)

I′1, I′8 f[I ′1,I ′8]
(I1)

I′1, I′12 f[I ′1,I ′12]
(I1)

I1, I3
I′1

f[I1,I3]

(
I′1
)

I1, I5 f[I1,I5]

(
I′1
)

I1, I10 f[I1,I10]

(
I′1
)

I ′′12, I ′′6
I′12

f[I ′′12,I ′′6 ]

(
I′12
)

I ′′12, I ′′9 f
[I ′′12,I ′′9 ]

(
I′12
)

I ′′12, I ′′11 f
[I ′′12,I ′′11]

(
I′12
)

I′12, I′1

I ′′12

f[I ′12,I ′1]
(

I ′′12
)

I′12, I′2 f[I ′12,I ′2]
(

I ′′12
)

I′12, I′4 f[I ′12,I ′4]
(

I ′′12
)

I′12, I′7 f[I ′12,I ′7]
(

I ′′12
)

I′12, I′8 f[I ′12,I ′8]
(

I ′′12
)

Light-green

I′1, I′6
I1

f[I ′1,I ′6]
(I1)

I′1, I′9 f[I ′1,I ′9]
(I1)

I′1, I′11 f[I ′1,I ′11]
(I1)

I′12, I′3 I ′′12
f[I ′12,I ′3]

(
I ′′12
)

I′12, I′10 f[I ′12,I ′10]

(
I ′′12
)

Table 5. Training, testing, and output images with AdaFG, CyGAN, and CLSTM in UAV datasets.

Networks. Training Images Testing Images Output Images

AdaFG

I4, I5, I1

I′4, I′5

f[I4,I5,I1]

(
I′4, I′5

)
I4, I5, I3 f[I4,I5,I3]

(
I′4, I′5

)
I4, I5, I6 f[I4,I5,I6]

(
I′4, I′5

)
I4, I5, I7 f[I4,I5,I7]

(
I′4, I′5

)
I4, I5, I8 f[I4,I5,I8]

(
I′4, I′5

)
I′4, I′5, I′9

I4, I5

f[I ′4,I ′5,I ′9]
(I4, I5)

I′4, I′5, I′10 f[I ′4,I ′5,I ′10]
(I4, I5)

I′4, I′5, I′12 f[I ′4,I ′5,I ′12]
(I4, I5)

I ′′7 , I ′′10, I ′′11 I′7, I′10 f[I ′′7 ,I ′′10,I ′′11]

(
I′7, I′10

)
CyGAN I′4, I′11 I4 f[I ′4,I ′11]

(I4)

I′10, I′12 I ′′10 f[I ′10,I ′12]

(
I ′′10
)

CLSTM

I′10, I′11, I′8, I′9 I ′′10, I ′′11
f[I ′10,I ′11,I ′8]

(
I ′′10, I ′′11

)
f[I ′10,I ′11,I ′9]

(
I ′′10, I ′′11

)
I′7, I′8, I′9, I′10, I′11, I′12

I′1, I′2, I′3, I′4, I′5, I′6
I ′′7 , I ′′8 , I ′′9 , I ′′10, I ′′11, I ′′12

f[I ′7,...,I ′12,I ′1]
(

I ′′7 , . . . , I ′′12
)

f[I ′7,...,I ′12,I ′2]
(

I ′′7 , . . . , I ′′12
)

f[I ′7,...,I ′12,I ′3]
(

I ′′7 , . . . , I ′′12
)

f[I ′7,...,I ′12,I ′4]
(

I ′′7 , . . . , I ′′12
)

f[I ′7,...,I ′12,I ′5]
(

I ′′7 , . . . , I ′′12
)

f[I ′7,...,I ′12,I ′6]
(

I ′′7 , . . . , I ′′12
)
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Table 6. Training, testing, and output images with AdaFG, CyGAN, and CLSTM in Landsat-
8 datasets.

Networks Training Images Testing Images Output Images

AdaFG

I′4, I′7, I′2
I4, I7

f[I ′4,I ′7,I ′2]
(I4, I7)

I′4, I′7, I′8 f[I ′4,I ′7,I ′8]
(I4, I7)

I′4, I′7, I′12 f[I ′4,I ′7,I ′12]
(I4, I7)

I4, I7, I3
I′4, I′7

f[I4,I7,I3]

(
I′4, I′7

)
I4, I7, I5 f[I4,I7,I5]

(
I′4, I′7

)
I4, I7, I10 f[I4,I7,I10]

(
I′4, I′7

)

CyGAN

I ′′12, I ′′6
I′12

f
[I ′′12,I ′′6 ]

(
I′12
)

I ′′12, I ′′9 f
[I ′′12,I ′′9 ]

(
I′12
)

I ′′12, I ′′11 f
[I ′′12,I ′′11]

(
I′12
)

I′1, I′6
I1

f[I ′1,I ′6]
(I1)

I′1, I′9 f[I ′1,I ′9]
(I1)

I′1, I′11 f[I ′1,I ′11]
(I1)

I′12, I′10 I ′′12 f[I ′12,I ′10]

(
I ′′12
)

CLSTM

I′11, I′12, I′7, I′8 I ′′11, I ′′12
f[I ′11,I ′12,I ′7]

(
I ′′11, I ′′12

)
f[I ′11,I ′12,I ′8]

(
I ′′11, I ′′12

)
I′5, I′6, I′7, I′8 I′1, I′2, I′3, I′4 I ′′5 , I ′′6 , I ′′7 , I ′′8

f[I ′5,...,I ′8,I ′1]
(

I ′′5 , . . . , I ′′8
)

f[I ′5,...,I ′8,I ′2]
(

I ′′5 , . . . , I ′′8
)

f[I ′5,...,I ′8,I ′3]
(

I ′′5 , . . . , I ′′8
)

f[I ′5,...,I ′8,I ′4]
(

I ′′5 , . . . , I ′′8
)

3.2. Experimental Details

Hyper-parameters selection: We used a separate convolution kernel of size 11 in the
AdaFG network, used stacks of 3 × 3 CLSTM network layer, and set µ1 =350, µ2 =1/32 in
CyGAN network. Meanwhile, we used the mean square error (MSE) as the loss function.
The optimizer used in the training was Adamax with β1= 0.9, β2= 0.99, and a learning rate
of 0.001. Compared to other network optimizers, Adamax could achieve better convergence
of the model [34].

Time Complexity: We used the python machine learning library to execute the deep
convolution networks. To improve computational efficiency, we organized our layer in
computer unified device architecture (CUDA). Our deep convolution networks were able
to generate a 256 × 256 image block in 4 s. Obtaining the overall scene image (image size
3072 × 5632) took about 18 min under the acceleration of the graphics processing unit
(GPU) [35].

3.3. Experimental Results
3.3.1. Generalization of Networks

Table 7 shows the quantitative evaluation indicator between the generated result and
reference image in the first aspect. The table shows that the entropy value produced by
using the AdaFG network was higher than that using other networks, and the RMSE [36]
value produced by using the AdaFG network was lower than that using other networks
in both datasets. Figure 8 shows the visual effect and pixel error between the generated
result and reference image using different networks in both datasets and illustrates that
the generated result using different networks was close to the reference image. Figure 9
shows the spectral curves between the generated result and reference image using different
networks at different coordinates (vegetation, lake, grass, forest) and illustrates that using
different networks could maintain better spectral features between the generated result
and the reference image in both datasets.
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Table 7. Quantitative evaluation between the generated result and the reference image.

Datasets Generated
Results

Reference
Images Entropy RMSE (Pixel)

UAV

f[I4,I5,I6]

(
I′4, I′5

)
I6

3.658 1.128
f[I3,I4,I5,I6]

(
I′3, I′4, I′5

)
3.625 1.758

f[I4,I6]

(
I′4
)

3.592 3.585
f[I4,I5,I7]

(
I′4, I′5

)
I7

3.355 0.952
f[I3,I4,I5,I7]

(
I′3, I′4, I′5

)
3.330 1.300

f[I4,I7]

(
I′4
)

3.305 3.077
f[I4,I5,I8]

(
I′4, I′5

)
I8

3.482 0.954
f[I3,I4,I5,I8]

(
I′3, I′4, I′5

)
3.455 1.421

f[I4,I8]

(
I′4
)

3.426 3.690

Landsat-8

f[I ′4,I ′7,I ′2]
(I4, I7)

I′2
3.064 1.144

f[I ′4,I ′7,I ′2]
(I4, I7) 2.975 1.537

f[I ′1,I ′2]
(I1) 2.905 2.694

f[I ′4,I ′7,I ′8]
(I4, I7)

I′8
3.830 1.170

f[I ′4,I ′7,I ′8]
(I4, I7) 3.830 1.681

f[I ′1,I ′8]
(I1) 3.777 5.017

f[I ′4,I ′7,I ′12]
(I4, I7)

I′12

2.994 0.929
f[I ′4,I ′7,I ′12]

(I4, I7) 2.848 1.484
f[I ′1,I ′12]

(I1) 2.796 2.629

3.3.2. Single Network Datasets

In the second aspect, we constructed single network datasets according to the char-
acteristics of different deep convolutions networks and existing images in both datasets.
There were no reference images in this aspect. Figure 10 shows the generated results of
UAV images using the AdaFG network from 2017 to 2019 and the visual effects of three-
level generation according to the construction strategy in Table 3. Figure 11 shows the
generated results of Landsat-8 images using the CyGAN network from 2013 to 2015 and
the visual effects of two-level generation according to the construction strategy in Table 4.
It appears that as the level of generation increased, the spectral features of the generated
result became worse. This may be caused by the propagation of pixel error as the level of
generation increased.

3.3.3. Multiple Network Datasets

In the third aspect, we constructed multiple network datasets to reduce the pixel error
of the generated result caused by a single network. There were no reference images in this
aspect. Figure 12 shows the generated results of UAV images using AdaFG, CLSTM, and
CyGAN network from 2017 to 2019 and the visual effects of the generated results according
to the construction strategy in Table 5. Figure 13 shows the generated results of Landsat-8
images using AdaFG, CLSTM, and CyGAN network from 2013 to 2015 and the visual
effects of the generated results according to the construction strategy in Table 6. It appears
that the visual effects of multiple network datasets are better than a single network.
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Figure 8. (a) Visual effect and (b) pixel error between generated result and reference image using different deep convolution
networks: (A) UAV and (B) Landsat-8 datasets.
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Figure 9. Spectral curves between generated result and reference image using different deep convolution networks at
different coordinates: (A) UAV and (B) Landsat-8 datasets.

Figure 10. Generated results of UAV images using AdaFG network from 2017 to 2019 according to construction strategy in
Table 3: existing images and generated results in (A) 2019 sequence, (B) 2018 sequence, and (C) 2017 sequence.
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Figure 11. Generated results of Landsat-8 images using CyGAN network from 2013 to 2015 according to construction
strategy in Table 4: existing images and generated results in (A) 2015 sequence, (B) 2014 sequence, and (C) 2013 sequence.
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Figure 12. Generated results of UAV images using AdaFG, CLSTM, and CyGAN network from 2017 to 2019 according to
construction strategy in Table 5: existing images and generated results in (A) 2019 sequence, (B) 2018 sequence, and (C)
2017 sequence.
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Figure 13. Generated results of Landsat-8 images using AdaFG, CLSTM, and CyGAN network from 2013 to 2015 according
to construction strategy in Table 6: existing images and generated results in (A) 2015 sequence, (B) 2014 sequence, and (C)
2013 sequence.

3.3.4. Comparisons Between Single and Multiple Networks Datasets

In the second and third aspects, we conducted quantitative indicator evaluation
between single network datasets and multiple network datasets. Table 8 shows the quanti-
tative evaluation indicator between the generated results using a single network (AdaFG,
CyGAN) and multiple networks. The table shows that the RMSE value produced by
using a single network (AdaFG, CyGAN) was higher than that using multiple networks in
both datasets.
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Table 8. Quantitative evaluation indicator between the generated results using a single network (AdaFG, CyGAN) and
multiple networks.

Datasets Single Network Multiple Network Reference Images RMSE (Pixel)

UAV

f[I ′4,I ′5,I ′11]
(I4, I5) f[I ′4,I ′11]

(I4) I ′′11
4.953
4.702

f[I ′10,I ′11,I ′12]

(
I ′′10, I ′′11

)
f[I ′10,I ′12]

(
I ′′10
)

I′12
3.847
3.787

f[I ′10,I ′11,I ′9]
(

I ′′10, I ′′11
)

f[I ′10,I ′11,I ′9]
(

I ′′10, I ′′11
)

I′9
2.723
2.638

f[I ′10,I ′11,I ′8]
(

I ′′10, I ′′11
)

f[I ′10,I ′11,I ′8]
(

I ′′10, I ′′11
)

I8
2.879
1.933

f[I ′10,I ′11,I ′6]
(

I ′′10, I ′′11
)

f[I ′7,...,I ′12,I ′6]
(

I ′′7 , . . . , I ′′12
)

I6
3.483
1.228

f[I ′10,I ′11,I ′5]
(

I ′′10, I ′′11
)

f[I ′7,...,I ′12,I ′5]
(

I ′′7 , . . . , I ′′12
)

I′5
2.967
1.304

f[I ′10,I ′11,I ′4]
(

I ′′10, I ′′11
)

f[I ′7,...,I ′12,I ′4]
(

I ′′7 , . . . , I ′′12
)

I′4
3.100
1.664

f[I ′10,I ′11,I ′3]
(

I ′′10, I ′′11
)

f[I ′7,...,I ′12,I ′3]
(

I ′′7 , . . . , I ′′12
)

I3
3.864
2.704

f[I ′10,I ′11,I ′2]
(

I ′′10, I ′′11
)

f[I ′7,...,I ′12,I ′2]
(

I ′′7 , . . . , I ′′12
)

I′2
3.504
1.580

f[I ′10,I ′11,I ′1]
(

I ′′10, I ′′11
)

f[I ′7,...,I ′12,I ′1]
(

I ′′7 , . . . , I ′′12
)

I1
3.188
2.377

Landsat-8

f[I ′1,I ′2]
(I1) f[I ′4,I ′7,I ′2]

(I4, I7) I′2
2.695
1.144

f[I ′1,I ′8]
(I1) f[I ′4,I ′7,I ′8]

(I4, I7) I′8
5.017
1.170

f[I ′1,I ′12]
(I1) f[I ′4,I ′7,I ′12]

(I4, I7) I′12
2.777
0.929

f[I1,I3]

(
I′1
)

f[I4,I7,I3]

(
I′4, I′7

)
I3

2.632
1.286

f[I1,I5]

(
I′1
)

f[I4,I7,I5]

(
I′4, I′7

)
I5

3.375
1.411

f[I1,I10]

(
I′1
)

f[I4,I7,I10]

(
I′4, I′7

)
I10

3.990
1.968

f[I ′12,I ′8]
(

I ′′12
)

f[I ′11,I ′12,I ′8]
(

I ′′11, I ′′12
)

I′8
5.022
1.841

f[I ′12,I ′7]
(

I ′′12
)

f[I ′11,I ′12,I ′7]
(

I ′′11, I ′′12
)

I′7
4.399
1.729

f[I ′12,I ′4]
(

I ′′12
)

f[I ′5,...,I ′8,I ′4]
(

I ′′5 , . . . , I ′′8
)

I′4
2.771
1.313

f[I ′12,I ′3]
(

I ′′12
)

f[I ′5,...,I ′8,I ′3]
(

I ′′5 , . . . , I ′′8
)

I3
3.367
2.140

f[I ′12,I ′2]
(

I ′′12
)

f[I ′5,...,I ′8,I ′2]
(

I ′′5 , . . . , I ′′8
)

I′2
2.606
2.122

f[I ′12,I ′1]
(

I ′′12
)

f[I ′5,...,I ′8,I ′1]
(

I ′′5 , . . . , I ′′8
)

I′1
2.686
2.629

4. Discussions
4.1. Separable Convolution Kernel Sizes

We observed that the separable convolution kernel size of the AdaFG network had an
impact on the generated result, and conducted a visual comparison between the generated
result and reference image using different separable convolution kernel sizes. We selected
separable convolution kernels with sizes of 11, 13, and 15 to train the AdaFG network.
Table 9 shows the quantitative evaluation indicator and Figure 14 the visual effect and
pixel error between the generated result and reference image using different separable
convolution kernel sizes.
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Table 9. Quantitative evaluation between the generated result and reference image using different separable convolution
kernel sizes.

Datasets Kernel Sizes Generated Results Reference Images RMSE (Pixel)

UAV

11
f[I4,I5,I6]

(
I′4, I′5

)
I6 1.128

f[I4,I5,I7]

(
I′4, I′5

)
I7 0.952

f[I4,I5,I8]

(
I′4, I′5

)
I8 0.954

13
f[I4,I5,I6]

(
I′4, I′5

)
I6 1.437

f[I4,I5,I7]

(
I′4, I′5

)
I7 1.273

f[I4,I5,I8]

(
I′4, I′5

)
I8 1.416

15
f[I4,I5,I6]

(
I′4, I′5

)
I6 1.444

f[I4,I5,I7]

(
I′4, I′5

)
I7 1.560

f[I4,I5,I8]

(
I′4, I′5

)
I8 1.418

Landsat-8

11
f[I ′4,I ′7,I ′2]

(I4, I7) I′2 1.144
f[I ′4,I ′7,I ′8]

(I4, I7) I′8 1.170
f[I ′4,I ′7,I ′12]

(I4, I7) I′12 0.929

13
f[I ′4,I ′7,I ′2]

(I4, I7) I′2 1.689
f[I ′4,I ′7,I ′8]

(I4, I7) I′8 2.533
f[I ′4,I ′7,I ′12]

(I4, I7) I′12 1.402

15
f[I ′4,I ′7,I ′2]

(I4, I7) I′2 1.938
f[I ′4,I ′7,I ′8]

(I4, I7) I′8 2.875
f[I ′4,I ′7,I ′12]

(I4, I7) I′12 1.633

4.2. Stacked CLSTM Network Layers

We observed that the number of stacked CLSTM network layers had an impact on the
generated result, and conducted a visual comparison between the generated result and
reference image using different stacked CLSTM network layers. We selected 1 × 1, 2 × 2,
and 3 × 3 stacked CLSTM network layers to train the CLSTM network. Table 10 shows the
quantitative evaluation indicator and Figure 15 the visual effect and pixel error between
the generated result and reference image using different stacked CLSTM network layers.

Table 10. Quantitative evaluation between the generated result and reference image using different stacked CLSTM network layers.

Datasets Stacked Numbers Generated Results Reference Images RMSE (pixel)

UAV

1 × 1
f[I3,I4,I5,I6]

(
I′3, I′4, I′5

)
I6 2.681

f[I3,I4,I5,I7]

(
I′3, I′4, I′5

)
I7 2.096

f[I3,I4,I5,I8]

(
I′3, I′4, I′5

)
I8 2.186

2 × 2
f[I3,I4,I5,I6]

(
I′3, I′4, I′5

)
I6 1.976

f[I3,I4,I5,I7]

(
I′3, I′4, I′5

)
I7 1.556

f[I3,I4,I5,I8]

(
I′3, I′4, I′5

)
I8 1.617

3 × 3
f[I3,I4,I5,I6]

(
I′3, I′4, I′5

)
I6 1.758

f[I3,I4,I5,I7]

(
I′3, I′4, I′5

)
I7 1.300

f[I3,I4,I5,I8]

(
I′3, I′4, I′5

)
I8 1.421

Landsat-8

1 × 1
f[I ′4,I ′7,I ′2]

(I4, I7) I′2 2.265
f[I ′4,I ′7,I ′8]

(I4, I7) I′8 3.386
f[I ′4,I ′7,I ′12]

(I4, I7) I′12 1.935

2 × 2
f[I ′4,I ′7,I ′2]

(I4, I7) I′2 1.780
f[I ′4,I ′7,I ′8]

(I4, I7) I′8 2.697
f[I ′4,I ′7,I ′12]

(I4, I7) I′12 1.577

3 × 3
f[I ′4,I ′7,I ′2]

(I4, I7) I′2 1.537
f[I ′4,I ′7,I ′8]

(I4, I7) I′8 1.681
f[I ′4,I ′7,I ′12]

(I4, I7) I′12 1.484
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Figure 14. (a) Initial image, (b–d) Visual effect and (e–g) pixel error between the generated results and reference image
using separable convolution kernel sizes 11, 13, and 15: (A) UAV and (B) Landsat-8 datasets.
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Figure 15. (a) Initial image, (b–d) Visual effect and (e–g) pixel error between the generated result and reference image using
stacks of 1 × 1, 2 × 2, and 3 × 3 CLSTM network layers: (A) UAV and (B) Landsat-8 datasets.
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4.3. Proportional Hyper-Parameters

We observed that the proportional hyper-parameters of the CyGAN network had an
impact on the generated result, and conducted a visual comparison between the generated
result and reference image using different proportional hyper-parameters. We selected
µ1 = 250, µ2 = 1/16, µ1 = 350, µ2 = 1/32 and µ1 = 450, µ2 = 1/64 to train the
CyGAN network. Table 11 shows the quantitative evaluation indicator and Figure 16
visual effect and pixel error between the generated result and reference image using
different proportional hyper-parameters.

Table 11. Quantitative evaluation between the generated result and reference image using different
proportional hyper-parameters.

Datasets µ1,µ2
Generated

Results
Reference

Images RMSE (Pixel)

UAV

250,1/16
f[I4,I6]

(
I′4
)

I6 3.643
f[I4,I7]

(
I′4
)

I7 3.271
f[I4,I8]

(
I′4
)

I8 3.836

350,1/32
f[I4,I6]

(
I′4
)

I6 3.585
f[I4,I7]

(
I′4
)

I7 3.077
f[I4,I8]

(
I′4
)

I8 3.690

450,1/64
f[I4,I6]

(
I′4
)

I6 3.814
f[I4,I7]

(
I′4
)

I7 3.263
f[I4,I8]

(
I′4
)

I8 3.698

Landsat-8

250,1/16
f[I ′1,I ′2]

(I1) I′2 2.824
f[I ′1,I ′8]

(I1) I′8 5.708
f[I ′1,I ′12]

(I1) I′12 2.875

350,1/32
f[I ′1,I ′2]

(I1) I′2 2.694
f[I ′1,I ′8]

(I1) I′8 5.017
f[I ′1,I ′12]

(I1) I′12 2.629

450,1/64
f[I ′1,I ′2]

(I1) I′2 2.695
f[I ′1,I ′8]

(I1) I′8 5.553
f[I ′1,I ′12]

(I1) I′12 2.777
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Figure 16. (a) Initial image, (b–d) Visual effect and (e–g) pixel error between the generated result and reference image using
different proportional hyper-parameters: (A) UAV and (B) Landsat-8 datasets.

5. Conclusions

The paper provides a remote-sensing sequence image construction scheme that can
transform spectral mapping estimation and pixel synthesis into an easier process of using
different deep convolution networks to construct remote-sensing sequence datasets. The
major conclusions of this paper can be summarized as follows:

(1) The proposed AdaFG model provides a new method of generating remote-sensing
images, especially for high-spatial-resolution images. CLSTM and CyGAN models can
make up for the shortcoming of the AdaFG network model, which only performs single-
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scene generation and is affected by the missing degree of sequence images. The models
can better capture and simulate complex and diverse nonlinear spectral transformation
between different temporal images, and get better-generated images based on the models.

(2) Using separable convolution kernel of size 11 in AdaFG network, stacks of 3 × 3
CLSTM network layer, and µ1 =350, µ2 =1/32 in CyGAN network lead to better-generated
results. Experiments show that the deep convolution network models can be used to get
generated images to fill in missing areas of sequence images and produce remote-sensing
sequence datasets.

The proposed AdaFG model is an image transformation method based on triple
samples according to its structure, and its structure uses an adaptive separable convolution
kernel. The spectral transformation ability of this model is higher than CLSTM and CyGAN
models. However, this method only performs single-scene generation and its results are
affected by the missing degree of sequence images. The proposed CLSTM model is an
image transformation method based on multi-tuple samples according to its structure,
and its structure is single-step stacked prediction. This model can perform predictions
based on the state information of the time-series data. However, its results are affected
by the length and missing degree of sequence images. The proposed CyGAN model is an
image transformation method based on two-tuple samples according to its structure, and
its structure uses cycle-consistent strategy and variable proportional hyper-parameters.
This model can perform bidirectional transformation between different pictures, and its
generated results are not affected by the degree of missing sequence images. However, the
spectral transformation ability of this method is weak and its results are affected by the
noise degree of sequence images.

When constructing remote-sensing time-series image datasets, it is necessary to make
full use of the advantages of different deep convolution networks. When the missing degree
of the sequence is small, using AdaFG and CLSTM model constructs the construction of
remote-sensing time-series image datasets. When the missing degree of the sequence is
larger, using the CyGAN model constructs the construction of remote-sensing time-series
image datasets. Regardless of the quality and missing degree of sequence images, it is
necessary to use the AdaFG model for the construction of remote-sensing time-series
image datasets. In future work, we will make full use of the advantages of different deep
convolution networks to construct a larger area remote-sensing sequence datasets.
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