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Abstract: Long time series of land cover changes (LCCs) are critical in the analysis of long-term
climate, environmental, and ecological changes. Although several moderate to fine resolution global
land cover datasets have been publicly released and they show strong consistency at the global
scale, they have large deviations at the regional scale; furthermore, high-quality land cover datasets
from before 2000 are not available and the classification consistency among different datasets is
not very good. Thus, long time series of land cover datasets with high quality and consistency are
in great demand but they are still unavailable, even at the regional scale. The Landsat series of
satellite imagery composed of eight successive satellites can be traced back to 1972 and it is, therefore,
possible to produce a long time series land cover dataset. In addition, the newly available satellite
data have the capability to construct time series satellite images and a time series analysis method
such as LCMM can be employed for making high-quality land cover datasets. Therefore, by taking
the advantages of the two categories of satellite data, we proposed a new time series land cover
mapping method based on machine learning and it, thereafter, is applied to Heihe River Basin
(HRB) for verification purposes. Firstly, the high-quality land cover datasets at HRB from 20112015,
which were retrieved using the LCMM method, are used for quickly and accurately making training
samples. Secondly, a strategy for transferring the training samples after 2011 to earlier years is
established. Thirdly, the random forest model is employed to train the selected yearly samples and a
land cover map for every year is subsequently made. Finally, comprehensive analysis and validation
are carried out for evaluation. In this study, a long time series land cover dataset including 1986,
1990, 1995, 2000, 2005, 2010, 2011, 2012, 2013, 2014, and 2015 is finally made and an average precision
of about 90% is achieved. It is the longest time series land cover map with 30 m resolution at HRB
and the dataset has good time continuity and stability.

Keywords: land cover; time series remote sensing; times series transfer learning; samples migration;
random forest; machine learning for remote sensing; Heihe River Basin

1. Introduction

Land cover changes (LCCs) are the result of human activities and natural evolution
and LCC has great impacts on the climate system and ecology [1]; it is subsequently
an important factor in studying environmental changes and climate change. Therefore,
a better understanding of LCC is necessary to provide a reference for evaluating the
vulnerability of carbon and water cycles [2,3] and other ecosystem processes related to
global or regional change [4]. Especially, long time series of land cover maps have been
available from long-term land cover mapping based on the sequence of remote sensing
detection, which has provided more information on land change in the analysis of long-
term climate, environmental, and ecological changes.
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Due to its capability of global coverage within a short period, remote sensing has
become widely used for global land cover mapping, as it can capture the changes of land
cover quickly. Until now, several moderate to fine resolution global land cover datasets have
been publicly released [5-12] and the spatial resolutions of these products are between 1 km
and 30 m. They show strong consistency at the global scale, but they have large deviations
at the regional scale. The main problems include: (1) most of the land cover datasets have
a relatively low resolution (500 m and lower) and their accuracies are usually lower than
75% [8,13]; among the released datasets, GlobeLand30 [14] and FROM-GLC30 [9] have
a spatial resolution of 30 m, and their overall accuracies are 80% and 72% respectively;
(2) the classification accuracy of these released datasets at the regional scale is much lower
than the claimed accuracy, especially at heterogeneous areas, which is difficult to meet the
modeling requirements, and (3) all the datasets are after 2000 and do not have long time
series and therefore cannot support the analysis of long-term climate, environmental, and
ecological changes.

Recently, satellite constellations and satellite-loaded sensors with large swath, such
as Sentinel-2, FORMOSAT-2, Chinese Huanjing-1, and GF-1, have been launched and
subsequently have the capability to scan the whole globe every few days at high resolution;
hence time series of remote sensing images are increasingly available. Some regional land
cover maps with an accuracy of over 90% have been made [3-18] by employing time series
analysis on satellite images. Furthermore, the authors of [19] developed a Land Cover
mapping method by using multi-classifiers and multisource remotely sensed imagery
(LCMM) by using HJ-1/CCD time series of images to make a finer land cover map at
Heihe River Basin (HRB) from 2011-2015 [19]. However, satellite image time series were
not available before 2011. Therefore, long time series of land cover datasets are in great
demand but still unavailable, even at the regional scale.

In order to make long time series of land cover datasets of high spatial resolution
to support the analysis of long-term climate, environmental, and ecological changes, the
Landsat series of satellite imagery is the only choice. It is composed of eight satellites and
can be traced back to 1972. It provides data support for continuous detection of the global
surface and is of great significance; furthermore, it is freely available [20] and the emergence
of new computing tools, such as Google Earth Engine (GEE), provides powerful cloud
computing capabilities [21]. However, the 16-day revisiting period makes it very difficult
to construct time series data, so the methods based on time series analysis, such as LCMM,
cannot be employed to make a high-quality land cover map, especially at early stages.

In recent years, machine learning (ML) algorithms, such as random forest tree (RFT),
support vector machine (SVM), and neural network (NN), in remote sensing land cover
classification have been greatly improved in both efficiency and accuracy with the increase
of computation capability and the technological development of artificial intelligence.
However, the training samples, usually based on manual collecting or interpretation
from satellite images, stopped them from being used widely, especially on large-scale
applications. Furthermore, the timeliness of these methods did not allow them to be used
for emergency cases [22,23]. Subsequently, an automatic sampling strategy for retrieving
high-quality samples has become more and more important, especially for large-scale
remote sensing land cover mapping [8,24]. Because samples from historical land cover
maps and classification cases contain the prior information and knowledge that is helpful
to the classification of the current satellite images, transfer learning is employed to solve
the problems [25-28] and it has achieved good results for applications at the local scale.
However, the accuracy is degraded without considering the samples incorrectly introduced
by historical samples. In addition, these methods have not fully used the historical land
cover maps with multi-year coverage [22,29].
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Therefore, we propose a new time series land cover mapping method based on
machine learning and it is applied to HRB for verification purposes. Firstly, the high-
quality land cover datasets at HRB from 2011-2015, which were retrieved using the LCMM
method and can be downloaded at http:/ /westdc.westgis.ac.cn/data/6bbf9a3f-e7d8-4
255-9ecb-131e1543316d, accessed on 19 April 2021, are used for quickly and accurately
making training samples. Secondly, a strategy for transferring the training samples after
2011 to earlier years is established. Thirdly, the random forest model is employed to train
the selected yearly samples and the land cover maps for earlier years are subsequently
made. Finally, comprehensive analysis and validation are carried out for evaluation.

2. Materials and Methods
2.1. Study Area

The study area, HRB, is located at the northeast of the Tibetan plateau. Its geographical
coordinates are between 97.1°E-102.0°E and 37.7°N—-42.7°N, and it covers an area of
approximately 143,000 km?. HRB's elevation ranges from 2000-5000 m and it covers highly
heterogeneous landscapes including cold and arid landscapes at the upper stream, the
artificial oasis-riparian ecosystem-wetland-desert compound in the middle stream, and the
natural oasis and desert at the lower stream. Therefore, the complicated landscapes would
be a good test site for verifying the proposed method and this was the first reason behind
selecting HRB as the study area (Figure 1).
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Figure 1. The location of HRB (left) and the visualization of geographical characteristics including color composite from
remote sensing image (middle) and DEM (right).

HRB is a typical inland river basin in China, and it has served as an experimental
site for integrated watershed studies, land surface measurements, and hydrological obser-
vations for a very long time [30]. Many major research plans have been carried out here,
for example, the “Integrated research on the eco-hydrological process of the Heihe River
Basin” launched by the National Natural Science Foundation of China [31]. Under the
support of these projects, many ground experiments and much scientific research has been
carried out to collect a large number of ground measurements, remote sensing data, and
land surface parameters including high-quality land cover datasets. Therefore, HRB has
been well investigated and it is subsequently conducive to this study.
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2.2. Data and Preprocessing

In this study, four categories of data were used and they include TM and OLI from
Landsat series of satellites, SRTMGL1_003 from ASTER, land cover datasets of 2011-2015
from the LCMM method [19] using HJ-1/CCD data, and high-resolution images from
Google Earth for sample verification and validation. The details of these data are listed in
Table 1. Since the Landsat/TM images are not enough for land cover mapping before 1986,
the earliest year in this study is 1986. In total, 3257 scenes of TM/OLI images including
2084 Landsat5/TM and 1173 Landsat8/OLI surface reflectance images were used from
GEE in this study. The number of scenes for each year is listed in Table 2. Among them, the
number in 1986 is the least, with only 109 scenes, and the year 2014 has the most scenes,
439. In addition, the number of Landsat8/OLI is more than that of Landsat5/TM. Due to
the failure of the Landsat7 satellite, ETM+ was not used [32]. Figure 2 shows the seasonal
reflectance image composites for 1986 and 2014 and the composites of 2014 look better
than those of 1986 because of more available data (see statistics on Table 2). Especially, the
autumn composite of 1986 has a lot of noise induced by clouds, so the final land cover may
degrade. The details will be discussed in the discussion section.

Table 1. Land cover datasets of 2011-2015 from the LCMM method using HJ-1/CCD data and high-resolution images.

Data Date Description Source

Major data in this study for land
cover mapping

The SRTMGLI1 version 3 data
SRTMGL1_003 2000 obtained terrain information SQCh Google earth engine data sets or USGS
as elevation and slope and assist

in classification

TM and OLI from Landsat 1986-2015 Google earth engine data sets or USGS

The land cover datasets with high
accuracy and consistency were
Land cover dataset from LCMM 2011-2015 used for quickly and accurately
method and HJ-1/CCD retrieving training samples for the
machine learning method They

made using HJ-1/CCD data

http:/ /westdc.westgis.ac.cn/data/6bbf9a3f-
e7d8-4255-9ecb-131e1543316d, accessed on
19 April 2021

The high-resolution data are used
Google Earth high-resolution images - for verifying the training samples  Historical data available from the Google earth
and validation

Table 2. Data and descriptions in this study.

Data Date Description
2015 Landsat 8 OLI SR 433
2014 Landsat 8 OLI SR 439
2013 Landsat 8 OLI SR 301
2011 Landsat 5 TM SR 302
2010 Landsat 5 TM SR 332
2005 Landsat 5 TM SR 364
2000 Landsat 5 TM SR 375
1995 Landsat 5 TM SR 291
1990 Landsat 5 TM SR 311
1986 Landsat 5 TM SR 109

In order to make a usable surface reflectance composite, the following preprocessing
procedures were carried out.

(1) The CFMASK algorithm [33] was used to generate the quality assessment (QA) band
and cloud contamination was subsequently removed.

(2) For Landsat 5 images, a negative buffering method [34] was employed to remove bad
pixels at edges.
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(3) The percentile reducer in GEE was used to mosaic the Landsat images within one
season and 25% was used as a threshold for better noise removing.

(4) Aiming at minimizing the missing data, a reconstruction algorithm [35] striving to
ensure the authenticity and integrity of the data was employed to reconstruct the
missing portion of the data.

spring(1986) summer(1986)

autumn(1986) winter(1986)

Figure 2. The seasonal reflectance image composites of 1986 (bottom) and 2014 (top).

2.3. The Land Cover Classification System

Based on the analysis of existing classification systems, such as IGBP [7] and GLC2000 [6],
the requirements from land process modeling at HRB, the characteristics of the HRB, and
the capability of the remotely sensed data used in this study, a specific classification system
was constructed, which is listed in Table 3. The criteria for building the classification system
are as follows:

(1) The classification system was a combination of the IGBP [7,8], GLC2000 [6], and
GlobCover [5] systems;

(2) Based on many ground campaigns at HRB, prior knowledge related to land cover
from these campaigns was used to determine the classification system.

(3) In order to make a consistent land cover dataset at HRB, the capability of the Landsat
series of data directly determined the classification system.
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Table 3. Land cover datasets of 2011-2015 from LCMM method using HJ-1/CCD data, and high-resolution images.

Code Type Description The Type at LCMM
11Maize
12 Spring wheat
Land types used in agriculture, horticulture, etc. 13 Highland barley
- / o 14 Rape
1 Croplands including corn, wheat, irrigation, dry land, and 15 cotton
other croplands 16 Alfalfa
17 Orchard
18 Other crops
Land with trees and their coverage being more .
o : : : 21 Evergreen coniferous forest
2 Forests than 30%, including deciduous forests and .
. 22 Deciduous broadleaf forest
evergreen coniferous forests
3 Grasslands Lands with herbaceous cover 31 Grasslands
4 Shrublands Deciduous shrubs and evergreen sohrubs with 40 Shrublands
coverage greater than 30%
5 Wetlands Aquatic her}aaceous plants are observable from the 51 Wetland
image as a non-water cover
6 Waterbodies Rivers, lakes, reservoirs/ponds. 41 Waterbodies
7 Urban and built-up Cities, villages, roads, and other manmade objects 61 Urban and build-up
Bare rocks, bare soils, desert, dry salt flats, dry
8 Barren land river, and lack bottoms, aqd all other types of land 71 Barren land
not covered by vegetation except unplanted
croplands and urban built-up areas
. . . 81 Snow and ice
9 Snow and ice Lands under perennial snow and ice

82 Glaciers

2.4. Methodology

The objective of this study is to make the longest time series land cover dataset at
HRB (1986-2015) with high accuracy, high spatial resolution, and excellent consistency to
support the analysis of long-term climate, environmental, and ecological changes from
the perspective of the regional scale or the river basin scale. The Landsat series of satellite
imagery composed of eight successive satellites can be traced back to 1972 and it is,
therefore, the only choice to work on it. The statistics of data availability in Table 2 and
the surface reflectance composites of 1986 and 2014 in Figure 2 further prove that Landsat
series satellite data are feasible for this work. However, several factors stopped us from
making high-quality and excellent-consistency land cover datasets by only using Landsat
series satellite data and they are concluded as follows:

(1) Many comprehensive classification methods, such as GlobeLand30 [14] using Landsat
series satellite data have been developed but the ones with high accuracy usually
require manual intervention; thus, more than 10 years’ land cover maps with areas
over 140,000 km? do not allow a lot of manual intervention.

(2) Although methods based on time series analysis like LCMM have the capability for
making high-quality land cover datasets [19], a 16-day revisiting period of Landsat
series satellite data does not support constructing time series data at HRB.

(3) Although machine learning methods, such as FROM-GLC30 [9] have a lot of advan-
tages and have been employed to map land cover using remote sensing imagery, they
are usually limited by sampling amount and representativity; the requirement for
consistency on data of these methods cannot be met by Landsat series satellite data
(see Figure 2), while they are applied to make a long time series land cover dataset.

In order to solve the above problems, we proposed a new time series land cover
mapping method based on machine learning by taking the advantages of multiple satellite
data and the well explored HRB is taken as the experimental site for land cover mapping
and thereafter validation. The procedure of the proposed method is illustrated in Figure 3
and the major idea is described as follows:
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(1) The new satellite data with high frequency, such as HJ-1/CCD and Sentinel2/MSI,
were firstly used to construct monthly time series surface reflectance and they were
subsequently used in the LCMM method [19] for time series analysis to make the
high-quality land cover datasets at HRB from 2011-2015. In this study, the land cover
dataset at HRB from 2011-2015 was made, and publicly released at the Western Data
Center of China (http://westdc.westgis.ac.cn/, accessed on 19 April 2021) [19] and
this dataset was well tested by many applications under the support of the HIWATER
project [31], so it was directly used in this study. This takes advantage of the newly
available satellite data.

(2) Instead of making the land cover year by year for 10 years, the machine learning
method was chosen as the classifier to lower the labor and time costs. While employ-
ing machine learning, the training sample is always the key to its performance and
it usually requires a lot of labor for manual sampling; subsequently, an automatic
sampling strategy was established in this study to retrieve enough accurate training
samples from the high-quality land cover dataset at step 1 by comprehensively using
the land cover maps from all five years. The details of the strategy are presented in
Section 2.4.2.

(3) Due to the inconsistency of seasonal surface reflectance composites in Figure 2, the
samples from step 2 could only satisfy the requirement for 2011-2015 and could
not be directly transferred for application at earlier years; therefore, a strategy for
transferring the training samples to earlier years was established. The details of the
strategy are presented in Section 2.4.3.

(4) Due to its advantages (detailed in Section 2.4.4.), the random forest model was
employed to train the selected yearly samples and the land cover map for every year
was subsequently made. A long time series land cover dataset including 1986, 1990,
1995, 2000, 2005, 2010, 2011, 2013, 2014, and 2015 was made.

(5) Finally, comprehensive analysis and validation were carried out for evaluation.

2.4.1. Land Cover Dataset at HRB from LCMM Method

LCMM is a comprehensive land cover mapping method using multiple classifiers and
multisource remotely sensed imagery. Multisource remotely sensed data have advantages
in spatial resolution (VHSR images from Google Earth), temporal resolution (monthly
HJ-1/CCD images), and spectrum (Landsat/TM). In the meantime, multiple classifiers
including time series analysis, SVM, thresholding, object-based method, and decision trees
were all employed for different classification purposes. All the classifiers and data were
successfully integrated by LCMM, and a land cover dataset at HRB with a high accuracy
of over 90% was made in a simple and efficient way, which has been largely downloaded
(463 downloads on 12 January 2020) from the datacenter website and widely used for
different applications and scientific research, such as vegetation parameter retrieval [36],
eco-hydrological modeling [37], land process modeling [38] and so on. However, only
land cover maps in 2011-2015 were made because of data availability. In addition, this
land cover dataset is monthly, so it needs to be aggregated to a yearly map based on the
classification system in Table 3 before using and the mapping rules for different classes can
be found in Table 3. In addition, the accuracy can be improved further after 2015, because
the Sentinel-2/MSI data from ESA and GF1/6-WFV data from China can compose a higher
frequency of time series images with better quality.
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Figure 3. Illustration of the procedures of the proposed method.

2.4.2. Automatically Sampling Strategy from 2011-2015 Land Cover Dataset

Now that high-quality land cover maps at HRB in 2011-2015 are available, the training
samples for machine learning methods can be automatically retrieved through random
stratified sampling based on the land cover maps. However, the land cover maps are
not 100% accurate, so the errors in land cover maps will lead to the wrong samples
and they will subsequently degrade the quality of final land cover maps. Therefore, an
automatically sampling mechanism needs to be established to further improve the accuracy
of samples. The following sampling rules will further guarantee the sampling accuracy
from the sample amount, sample refining, and sample distribution; Figure 4 illustrates the
sampling procedures.
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Based on previous research, land cover classification for large areas requires a larger
number of samples and training samples are better when proportional to their ar-
eas [39,40]. The authors of [39] indicated that the training sample size should account
for approximately 0.25% of the study area. HRB’s area exceeds 140,000 square kilome-
ters and the samples were, therefore, close to 400,000 pixels. However, the barren land
at HRB has an area more than 80% of the total area and most of the samples for barren
land can be greatly reduced without degrading the training; therefore, 50,000 samples
were selected for training purposes while considering the calculation efficiency and
classification accuracy.

The varied pixels in five years have relatively low confidence and only pixels with
a consistent category in all five years are therefore used for sampling. This rule
further confines the land cover map for sampling to guarantee the accuracy of the
final samples.

The confined land cover map was objectized and the number of samples was dis-
tributed to each object (land cover feature). For each object, 50% of the samples were
randomly distributed to the central part of the object and the others were randomly
distributed to the part close to its boundary. The central part of an object has typical
characteristics such as the corresponding land cover and the boundary is usually easy
to be confused with the neighboring land cover; therefore, this rule will improve the
classification of boundaries.

Segment Sampling .

BN —_—

LR

The consistent categories Edge segmentation The random sampling results
in all five years

Figure 4. Illustration of sampling strategy from land cover maps of 2011-2015.

Based on the above rules, the samples were retrieved and they were subsequently put

into machine learning models (the random forest model was chosen in this study and the
reasons will be discussed in Section 2.4.4.) for training.

2.4.3. Sample Transferring Strategy for Earlier Years

The trained random forest model looks perfect to be used for land cover mapping

directly in earlier years (before 2011); however, the seasonal surface reflectance composites
for each year were not as consistent as expected (see Figure 2) and the accuracy by directly
using the trained model was subsequently degraded. Figure 5 gives an example of land
cover classification based on machine learning transferring. The model used in 2010, 2005,
and 2000 was the same one that was trained by the samples collected in Section 2.4.2. It is
obvious that the results are not temporally consistent, especially for barren land and forests.
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Figure 5. A classification example at HRB based on machine learning model transferring.

In addition, the large number of samples did not allow manual checking. Therefore, a
sample transferring strategy for earlier years needs to be established to lower the labor and
time costs while guaranteeing the sampling accuracy. The major procedures for the sample
transferring are as follows:
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(1) The trained random forest model was applied to each year’s seasonal surface re-
flectance composites to produce a land cover map as a reference.

(2) The training samples in Section 2.4.2. were compared with the land cover refer-
ence map from step 1 and the unmatched samples were removed from the sample
collection.

(3) The surface reflectance composites were automatically checked to remove those
samples whose surface reflectance was abnormal, such as noise, cloud contamination,
and cloud shadow.

(4) Finally, if the number of samples was lower than the requirement, some new samples
would be manually added to correct the amount of the samples. Although some
manual work is required, only a few samples need to be added, which greatly reduced
the labor and time costs while compared to all-labor sampling.

Based on the above procedures, the samples for every year before 2011 were collected
and were subsequently put into the random forest model for training. Finally, the land
cover maps before 2011 were made.

2.4.4. Machine Learning Model Selection

After training samples are collected, many classifiers can be employed to implement
land cover classification, such as maximum likelihood classifier (MLC) [41,42], Support
Vector Machine (SVM) [43] classifier, and Random Forest (RF) classifier [44—46]. The
advantages of MLC include simplicity, computational efficiency, and robustness, but its
accuracy is usually limited by its simplicity. The SVM classifier has been widely used for
its outstanding performance in remote sensing classification, especially for instances with
fewer samples [47]. Much research has reported that the RF classifier performs well [48];
in addition, the RF classifier is robust and accurate while dealing with high-dimensional
data, such as multi-spectral and multi-temporal remote sensing images [44,49,50], which is
more suitable for the multi-feature dimensions constructed in this paper. Therefore, the RF
classifier was employed as the training model and the parameters were set as follows: the
number of trees was 100 because it proved it can achieve a better result when considering
the classification accuracy and efficiency; the number of variables per split was set to 0
(default), which means the square root of the number of variables; the min leaf population
is 1 (default) and the bag fraction was 0.5 (default).

3. Results and Validation
3.1. Classification Results

Based on the procedure in Section 2., the land cover maps from 1986-2015 were
produced and they are shown in Figure 6.

3.2. Validation
The procedure for validating the classification results is as follows:

(1) Randomly sample from the classification map by land cover types. The sample
number for each class was determined by the area ratio of the class. The sampling
details are shown in Table 4.

(2) Locate the samples precisely on the remotely sensed images, including seasonal
composites of Landsat-OLI/TM and VHSR images from Google Earth.

(3) Manually interpret the land cover types of the samples by carefully inspecting the
remotely sensed images and VHSR images from Google Earth.

(4) Make a confusion matrix for each year. Table 4 gives an example of the confusion
matrix of 2014. The overall accuracy of classification in 2014 is 93.68%, and the kappa
coefficient is 0.92. Because of its easy confusion with forests and grassland, shrubland
had the lowest accuracy, whose producer’s accuracy (PA) was only 77.78%. Except
that, the user’s accuracy (UA) of grassland and bare land is a little bit lower than 90%,
the PAs and UAs of the other classes are all over 90%.
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Figure 6. The long time series of land cover maps at HRB based on the proposed method.
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Table 4. Confusion matrix for the 2014 HRB land cover map.

©

Type CR! FR 2 GR3 SR* WE 5 WB ¢ UB’ BL 8 SI Total PA (%) 10
Copland 114 1 1 3 0 0 0 3 0 122 93.44
Forest 0 95 1 0 0 0 0 0 0 106 89.62
Grassland 0 0 132 0 1 0 0 4 0 137 96.35
Shrub land 0 0 1 63 0 0 0 17 0 81 77.78
Wetland 0 0 0 0 55 2 0 0 0 57 96.50
Water 1 0 0 0 2 75 0 0 0 78 96.16
UB7 5 0 0 0 0 0 95 2 0 102 93.14
Barren 0 0 3 0 0 0 5 231 3 242 95.45
Snow /ice 0 0 0 0 0 0 0 6 74 80 92.50
Total 120 9 148 66 58 77 100 263 77 1005
UA (%) 1 95.00 98.96 89.19 95.45 94.83 97.40 95.00 87.83 96.10

Overall accuracy = 93.68%, Kappa = 0.92. 1CR= cropland, 2 FR = forest, 3 GR = grassland, 4 SR = shrubland, > WE = wetland, ® WB = water
body, 7 UB = Urban and build-up, 8 BL = bare land, ? SI = snow/ice, 1° UA = user’s accuracy and !! PA = producer’s accuracy.

The OAs and Kappa coefficients for each year are listed in Table 5 and it shows
that almost all of OAs are over or close to 90%. An average accuracy of 90.32% and an
average kappa coefficient of 0.88 were achieved. The OA in 1986 is 85.2% and the result is
degraded by the lack of data. Therefore, the proposed method is effective by combining
high-precision samples with historical data to produce a land cover dataset.

Table 5. Accuracy of each year. OA (%) = Overall accuracy (%).

Years 2015 2014 2013 2011 2010 2005 2000 1995 1990 1986
OA (%) 93.5 93.7 91.3 89.6 89.8 89.9 91.1 90.3 88.8 85.2
Kappa 0.924 0.927 0.891 0.879 0.881 0.881 0.896 0.887 0.868 0.827

In order to further verify the land cover dataset in this study, the land cover maps at
HRB from both GlobeLand30 and the proposed method were compared at close views in
2000 and 2010 at the first place, which is shown in Figure 7. Based on the visual comparison,
the advantages of the proposed method can be concluded as follows:

(1) The classification accuracy of the proposed method is much higher than that of the
GlobeLand30. For example, the small villages on A and C are accurately classified in
our map and they are completely missed in the GlobeLand30 one.

(2) The temporal consistency is better than that of the GlobeLand30. B1 (2000) and D1
(2010) from the GlobeLand30 were very different; Bl had a large area of shrub and
water, but D1 did not. In contrast, B3 (2000) and D3 (2010) from the proposed method
are very consistent.

(3) Waterbodies can be better classified with seasonal composites in our method. Only
limited data used in GlobeLand30 caused the waterbodies to not be discerned.

In order to better illustrate the temporal consistency of our land cover maps at longer
time series, the time series of major land covers, such as cropland, built-ups, and water-
bodies for every five years from 1986-2015 were plotted. Figure 8 shows two close-view
examples of time series land covers from 1986-2015. The cropland and built-ups have
been continuously increasing. Furthermore, the total areas at HRB for every five years
since 1986 for the major land covers, such as built-ups and urban, snow and ice, forest, and
cropland, were calculated and plotted in Figure 9. The increasing cropland and built-ups
are consistent with the increasing human activities. The decreasing of snow and ice is
strongly related to the global warming trend. The time series analysis of land covers
further supports the effectiveness of the proposed method for long time series of land
cover mapping.
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Figure 9. The area variations for every five years since 1986 for the major land covers at HRB.

4. Conclusions and Discussions

In this paper, a time series land cover mapping method is proposed to produce long
time series of a land cover dataset with high accuracy and consistency, especially for earlier
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years with fewer and lower quality data. The proposed method takes the advantages
of time series Landsat images and the high-quality land cover datasets from the LCMM
method; the high-quality land cover datasets from LCMM are used for quickly locating the
accurate training samples and the RF classifier is employed to train the collected samples
of each year to finally get the land cover maps. Based on the comprehensive validation,
an average classification accuracy of 90.32% and an average kappa coefficient of 0.88 are
achieved, which is suited for most of the applications and research at HRB. Compared to
some other land cover datasets, such as LCMM, GlobeLand30 [11], and FROM-GLC30 [9],
the proposed method is more applicable for long time series analysis while land process
modeling because of the following advantages:

(1) It has the longest time series land cover dataset at HRB with 30 m spatial resolution,
which starts from 1986.

(2) It has an average classification accuracy of over 90% and has high temporal consis-
tency, making it the best land cover map at HRB among the available ones.

(3) The automatic strategy for collecting training samples from high-quality land cover
maps and transferring samples to earlier years makes it efficient and accurate. There-
fore, the proposed method provides a solution for making high-quality land cover
maps of earlier years, even though new and high-quality data are not available.

Although the new method is developed for HRB, the methodology can be extended to
other regions, which is the next plan of our research. While the new method can be applied
to other regions, the land cover map from LCMM needs to be made for the first time and
it will take a lot of work; therefore, instead of making land cover maps from LCMM, the
strategy for transferring the training samples at HRB to other regions needs to be explored
in the perspective of practical use.
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