
remote sensing

Article

Graph Convolutional Networks by Architecture Search for
PolSAR Image Classification

Hongying Liu 1 , Derong Xu 1, Tianwen Zhu 1, Fanhua Shang 1,* , Yuanyuan Liu 1, Jianhua Lu 2 and Ri Yang 2

����������
�������

Citation: Liu, H.; Xu, D.; Zhu, T.;

Shang, F.; Liu, Y.; Lu, J.; Yang, R.

Graph Convolutional Networks by

Architecture Search for PolSAR Image

Classification. Remote Sens. 2021, 13,

1404. https://doi.org/10.3390/

rs13071404

Academic Editor: Lionel Bombrun

Received: 21 February 2021

Accepted: 30 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,
Xidian University, Xi’an 710071, China; hyliu@xidian.edu.cn (H.L.); drxu@stu.xidian.edu.cn (D.X.);
twzhu@stu.xidian.edu.cn (T.Z.); yyliu@xidian.edu.cn (Y.L.)

2 Xi’an Satellite Control Center, Xi’an 710043, China; jhualu@xidian.edu.cn (J.L.); ryang@xidian.edu.cn (R.Y.)
* Correspondence: fhshang@xidian.edu.cn

Abstract: Classification of polarimetric synthetic aperture radar (PolSAR) images has achieved good
results due to the excellent fitting ability of neural networks with a large number of training samples.
However, the performance of most convolutional neural networks (CNNs) degrades dramatically
when only a few labeled training samples are available. As one well-known class of semi-supervised
learning methods, graph convolutional networks (GCNs) have gained much attention recently to
address the classification problem with only a few labeled samples. As the number of layers grows
in the network, the parameters dramatically increase. It is challenging to determine an optimal
architecture manually. In this paper, we propose a neural architecture search method based GCN
(ASGCN) for the classification of PolSAR images. We construct a novel graph whose nodes combines
both the physical features and spatial relations between pixels or samples to represent the image.
Then we build a new searching space whose components are empirically selected from some graph
neural networks for architecture search and develop the differentiable architecture search method
to construction our ASGCN. Moreover, to address the training of large-scale images, we present a
new weighted mini-batch algorithm to reduce the computing memory consumption and ensure the
balance of sample distribution, and also analyze and compare with other similar training strategies.
Experiments on several real-world PolSAR datasets show that our method has improved the overall
accuracy as much as 3.76% than state-of-the-art methods.

Keywords: polarimetric synthetic aperture radar; neural architecture search; graph convolutional
network

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) data has wide applications in agri-
culture, forestry, geology, ocean, etc. [1–4]. In agriculture, PolSAR data are used for
identification crop species, monitoring crop growth and assessment land conditions [5].
In forestry, PolSAR data are adopted to monitor the fire and excessive logging as well
as estimate the biomass in forest [6]. In geology, PolSAR data are employed to analyze
information such as geological structure, mineral distribution, surface roughness, ground
coverage, and soil moisture [7]. Polarimetric SAR data classification is the key for data
interpretation and one of the important research for PolSAR data processing.

The current classification methods for PolSAR generally can be categorized as the un-
supervised, supervised, and semi-supervised learning. The unsupervised method does not
need to use labeled samples for training, while the supervised classification method utilizes
a certain number of labeled samples to train a classifier, and then classify the unlabeled
samples. More recently, the semi-supervised learning has attracted increasing attention.
It uses a few labeled samples and a large number of unlabeled samples for classification.
With the development of deep learning, the networks with more complex architectures can

Remote Sens. 2021, 13, 1404. https://doi.org/10.3390/rs13071404 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5961-5569
https://orcid.org/0000-0002-1040-352X
https://doi.org/10.3390/rs13071404
https://doi.org/10.3390/rs13071404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13071404
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/7/1404?type=check_update&version=1

Remote Sens. 2021, 13, 1404 2 of 17

be designed for classification, and have improved classification performance in the case of
only a few labeled samples.

As one of the semi-supervised learning methods, the graph convolutional network
(GCN) [8,9] is graph structured learning network, and it has wide application in modeling
social networks, segmentation large point clouds, and predicting biomolecular structure.
In SemiGCN [9], a graph using binary weights is constructed and then several graph
convolutional layers are stacked following by a Softmax function, in which the labels
propagate to the unlabeled samples for semi-supervised classification. However, the above
mentioned works mainly construct their networks manually. They need to design delicate
networks for the given data. As it is known, the performance of deep learning algorithms
heavily depends on the architectures of neural networks, which costs considerable effort
for experts to select and determine a suitable one for a specific application. The network
with an optimal architecture is still uncovered, which is also challenging. In this paper,
inspired by the success of Neural Architecture Search (NAS) [10], we propose a new
graph convolutional network based on architecture search, called ASGCN, for PolSAR
classification. We first build a fine-grained graph with varying weights, and then propose
a weight-based mini-batch strategy to partition the graph into subgraphs. Moreover, we
construct a searching space for the architecture search of ASGCN, and utilize the subgraphs
to search an optimal architecture for classification.

The main contributions of this paper can be summarized as follows: We propose a
novel ASGCN based on architecture search to automatically find the optimal network
structure for feature learning and classification. A new search space is constructed for
our ASGCN, which provides a variety of possibilities for model selection. Then a new
training method is also presented, which can ensure the balance and diversity of sample
distribution, and decrease memory and computational costs.

The rest of this paper is organized as follows. Section 2 briefly introduces the back-
ground. Our method of constructing ASGCN is presented in Section 3. Section 4 illustrates
the experiments and results. The conclusion and future work are discussed in Section 5.

2. Background
2.1. The Classification Methods of PolSAR Data

Most of the classification methods are unsupervised in the early years. Researchers
rely on analyzing scattering matrix and covariance matrix for classification. For example,
in [11], the authors perform polarimetric decomposition to yield the H/a components
and then utilize a complex Wishart classifier. In [12], the pixels are divided into different
scattering categories based on Freeman and Durden decomposition [13], and then fine-
grained classification is achieved by applying the Wishart classifier iteratively. Recently
the statistical analyzing and machine learning methods are applied to categorization.
For instance, the minimum stochastic distance is compared and analyzed in [14]. The
Fuzzy K-means algorithm is employed for classification [15,16]. In [17–21], the authors
calculate statistics of the covariance matrix for classification pixels. In [22], a new super-
pixel generation method named as fuzzy super-pixel (FS) is proposed for PolSAR image
classification. The deep learning-based methods have also been presented, for instance, in
Wishart Deep Belief Network (W-DBN) [23], the restricted Boltzman machines are stacked
to model PolSAR data and for classification.

The classical supervised algorithms include: support vector machine (SVM) [24,25],
sparse coding classifiers, boosting, and random forest [26–28], multi-objective optimization-
based approach [29]. Recently, the convolutional neural networks (CNNs) and their
variants are applied for feature extraction and classification in [30–32].

In semi-supervised learning, the model uses a few labeled samples and a large number
of unlabeled samples for classification. In [33], the authors proposed a combined method
which utilize both an unsupervised clustering and a multi-layer perceptron for sample
labeling. In [34], the co-training based techniques are introduced in classification. A stochas-
tic expectation-maximization algorithm was proposed in [35]. The graph-based methods

Remote Sens. 2021, 13, 1404 3 of 17

have also been exploited for their solid mathematical foundation [36–38]. In these methods,
a graph is defined using both the labeled and unlabeled samples as nodes, then the class
labels spread through edges according to a designed optimization function thus complete
classification on all the samples. Not only the traditional semi-supervised methods, i.e.,
co-training, and the graph based methods [39–45], but also the deep learning techniques
are utilized for classification. In [46], a sparse manifold regularization (DSMR) together
with a deep neural network is proposed for PolSAR feature extraction. A graph-based deep
CNN for semi-supervised label propagation is presented in [47] for PolSAR categorization.

2.2. Neural Architecture Search

Neural Architecture Search (NAS) is an important branch of automatic machine
learning (AutoML) [48], which aims to find an automatic architecture instead of designing
a neural network manually. It is a technique of automatically searing an architecture
for an artificial neural network, and it has been used to search for effective architectures
that can outperform hand-designed architectures. Search space, search strategy, and a
performance evaluation metric are three core elements of an NAS algorithm [49]. Search
space is a set of network architectures that can be searched, namely, the solution space.
Search strategy is used to find the optimal network architecture in the search space. A
performance evaluation metric is designed to evaluate the performance of the searched
network architecture. The first work in NAS was proposed in [10], and obtained promising
results based on reinforcement learning algorithm. However, its high computational
cost has prevented a widespread adoption of this method. In order to solve this issue,
differentiable architecture search (DARTS) [50] has been proposed, which makes the search
space differentiable and greatly reduces the time consumption of search. This brings great
opportunities for the search of network architecture. DARTS can express the structure
(search space) and allow efficient architecture search using gradient descent. NAS has
been applied in a variety of areas in computer vision. However, the construction of graph
convolutional network using NAS for PolSAR classification is rarely in literatures.

2.3. Graph Neural Networks

Here we introduce six graph neural networks and common modules below.

(1) SemiGCN [9]: This is a spectral based graph convolution network. It proposes the
graph convolutional rule to use the first-order approximation of spectral convolution
on graphs.

(2) Max-Relative GCN (MRGCN) [51]: It adopts residual/dense connections, and dilated
convolution in GCNs to solve vanishing gradient and over smoothing problem. It
deepens the network from several layers to dozens of layers.

(3) EdgeConv [52]: The EdgeConv is an edge convolution module and is proposed for
construction dynamic graph CNN to model the relationship between cloud points.
It concatenates the feature of the center point with the feature difference of the two
points, and then inputs them into MLP. The EdgeConv ensures that the edge features
integrate the local relationship between the points and the global information of
the points.

(4) Graph Attention Network (GAT) [53]: GAT uses attention coefficient to aggregate the
features of neighbor vertices to the central vertex. Its basic idea is to update the node
features according to the attention weight of each node on its adjacent nodes. GAT
uses masked self attention layer to solve induction problems.

(5) Graph Isomorphism Network (GIN) [54]: This network mixes with the original
features of the central node after each hop aggregation operation of the adjacent
features of the graph nodes. In the process of feature blending, a learnable parameter
is introduced to adjust its own features, and the adjusted features are added with the
aggregated adjacent features.

Remote Sens. 2021, 13, 1404 4 of 17

(6) TopKPooling [55]: It is a graph pooling method, and is used in graph U-Net. Its main
idea is to map the embedding of nodes into one-dimensional space, and select the top
K nodes as reserved nodes.

3. Proposed Method

In this section, we propose the ASGCN to deal with the classification of PolSAR
images. We show how to build the fine grained graph, how to divide batch, and how to
search the optimal architecture. Their details are described as follows.

3.1. Graph Construction

Given a PolSAR dataset which contains NA samples or pixels. Each sample i is
represented by its feature vector xi ∈ Zb×1, i = 1, 2, ..., NA, and b is the number of features.
Each pixel contains scattering signals from surrounding area, and may be a combination of
backscattered reflections from many surrounding objects. Here, we build an undirected
graph, and its nodes are the pixels or samples from the PolSAR image. The edges connecting
nodes represent the relations between nodes. One edge connects two nodes, and the weight
on the edge denotes the similarity between the two nodes. Considering that the covariance
matrix follows a complex Wishart distribution, we utilize the revised Wishart distance [16]
to measure the covariance matrix difference between two samples i and j with covariance
matrix. It is computed as follows:

dW(xi, xj) = ln(
|∑i |
|∑j |

) + Tr(∑−1
i ∑j)− θ, (1)

where θ equals to 3 under symmetry assumption that the returned radar signals is a three-
dimensional (3-D) complex scattering vector since the combinations of HV and VH are
identical. ∑i is the covariance matrix for sample i, and Tr(·) denotes the trace of a matrix.
Furthermore, besides the covariance matrix, the distributions of other features from PolSAR
data are still unknown. Here, we use a common Euclidean distance dE to measure the
difference between two samples i and j with other features as follows:

dE(xi, xj) =‖ xi − xj ‖2 . (2)

The revised Wishart distance dW and the Euclidean distance dE may be in a different
scale, thus we normalize them to the same scale, that is, d′W , d′E ∈ [0, 1].

Since we use multiple features, e.g., 41 features, from the PolSAR data, both of the
above distance measurements should be taken into account as follows:

dF(xi, xj) = αd′W(xi, xj) + (1− α)d′E(xi, xj), (3)

where α ∈ [0, 1] is a coefficient to balance the contribution between the two distances.
Moreover, the spatial correlation for PolSAR image is also important for classification.

The nearby samples may come from the same category. The spatial distance between
samples i and j is defined as:

dS(i, j) =
√
(hi − hj)2 + (ui − uj)2, (4)

where (hi, ui), i = 1, 2, ..., NA, represents the coordinate for the sample i in a PolSAR
imagery. Then we have the weighted feature distance D:

D(xi, xj) = log(dS(i, j))dF(xi, xj). (5)

Note that here the logarithm function used for dS is to shrink its value to a smaller
scale, which can be comparable to the value of dF. Based on the defined distance D, we

Remote Sens. 2021, 13, 1404 5 of 17

construct a K-nearest neighbor (KNN) graph A ∈ RNA×NA , in which the first K weights for
each node on the edges are calculated and the others are represented with 0.

3.2. Weight-Based Mini-Batch for Large-Scale Graph

Since most of the datasets acquired by remote sensing systems are back-scattered
observation to the broad area, they are in very large scale. When converting them to graph
structure, the memory and computational costs may greatly increase. To address this issue,
we propose a weight-based mini-batch strategy to transform a large graph into multiple
subgraphs, and then select certain numbers of subgraphs according to their weights for
learning, as shown in Figure 1.

SubgraphSubgraph

Figure 1. Our weight-based graph partition strategy. Left: The whole graph A are partitioned into p
parts: A1, A2, ..., Ap, which are represented by the black blocks using a graph clustering algorithm.
Right: We sample q black blocks according to the weights vi (i = 1, 2, ..., p) to form a batch, which is
in colored block.

Firstly, the nodes in the whole graph A are partitioned into p(1 ≤ p ≤ NA) parts:
A1, A2, ..., Ap using graph clustering algorithm METIS [56] which is a fast algorithm to
partition graphs. Note that the METIS consists of three stages: coarsening, partitioning and
uncoarsening. In the coarsening stage, a graph is transformed into a sequence of smaller
graphs. Then a 2-way partition is computed to partition the vertices into two parts in the
partitioning stage. In the uncoarsening stage, the partition is projected back to the original
graph by passing through intermediate partitions. Compared with other graph clustering
approaches, METIS can construct proper partitions in the graph such that within-clusters
links are much more than between-clusters links to capture the community structure of
the graph better and faster. Therefore, we utilized this algorithm. Each part has the same
numbers of nodes except the final subgraph, and a weight representing how many times
the part has been selected. Let the weight vector be v = [v1, v2, ..., vp]. The higher value of
the weight, the bigger the probability it being selected. In every epoch, it samples q clusters
to form a new batch according to the probability shown in weight vector v. The initial
value of v is vi = 1, i = 1, 2, ..., p. If part i has been selected m(0 ≤ m ≤ p) times in current
epoch, then the weight vi is updated as

vi = vi −
m
TE

,

where TE denotes the total epochs in the training phase. As the number of selection one
part increases, it will get lower probability to form a batch. By using this simple method,
we can ensure that each part has the opportunity to connect, and avoid the repeated use of
the same part of the graph caused by random selection, which results in the instability of
the training phase.

Remote Sens. 2021, 13, 1404 6 of 17

3.3. The Architecture of Our ASGCN

In order to determine a superior architecture to construct our ASGCN for the input
data, we present a NAS method to find a better solution. Firstly, we build a search space O,
which contains many operators. Unlike using the common operations, such as convolution
and maxpooling as that in CNN, we select nine operators which are effective in other
GCN works. They include: the MultiLayer Perceptron (MLP), SemiGCN [9], MRGCN [51],
EdgeConv [52], GAT [53], GIN [54], TopKPooling [55], skip-connect, and zero operations.
Among them, MLP operation is a full connection layer which makes a map of the input
features to the out features without considering the edge between two nodes. Skip-connect
is a residual graph connection [57], which reduces the probability of over fitting. Zero
denotes the mapping function equals to zero.

We show our search strategy in Figure 2. It is inspired by the method in DARTS [50].
Suppose that our GCN consist of M cells, and each cell consists of NT layers. Each layer li

is a latent representation. Each directed edge between two layers outputs a feature map
at every forward propagation of neural network. The output of the layer is obtained by
applying a reduction operation (e.g., concatenation) to all the intermediate nodes. The
operation of each edge in the search space O is parameterized by architectural parameters
γ(i,j), and γ

(i,j)
op is the architecture parameter of operation op ∈ O from the i-th layer to j-th

layer (i < j). The output of i-th layer and one of inputs for j-th layer c(i,j)(li) is given as:

c(i,j)(li) = ∑
op∈O

exp(γ(i,j)
op)

∑op′∈O
exp(γ(i,j)

op′
)

o(w(i,j)
op , li), (6)

where o(·, ·) ∈ O is some convolution operation in the search space O, and w(i,j)
op is the

weight parameter of the graph convolution op from the i-th layer to j-th layer. Each
intermediate layer is based on the addition of all previous layers:

l j = ∑
i<j

c(i,j)(li). (7)

Architecture
Searching

O1

O2 O9

O1

O2

O2

O1O9

O9

MLP

Cell

Cell

Cell

MLP

Input

Output

C0

1l

2l

3l

4l

1l

2l

3l

4l

Figure 2. The architecture searching for our architecture search method based graph convolutional
network (ASGCN). In this example, there is one cell which includes four layers: l1, l2, l3, l4. The
connection between layers are searched from the operation space O, which contains nine operations:
O1, O2, ..., O9.

At the end of search, Equation (6) is replaced by: c(i,j)(li) = arg maxop∈O γ
(i,j)
op .

The trainable parameters are architecture parameters γ and the weight of cell or
network w, and they are alternately trained. The loss function is denoted by Lval which is a
cross-entropy on validation set. When w is fixed, γ is updated by minimizing Lval(w, γ) on
the validation dataset, given as

γ = arg min
γ

Lval(w, γ) (8)

Remote Sens. 2021, 13, 1404 7 of 17

When γ is fixed, w is updated by minimizing Ltrain(w, γ) on the train dataset, given as

w = arg min
w

Ltrain(w, γ) (9)

With the solutions of architecture parameters γ and the weight w, we can determine
one cell for our ASGCN. Similar to other NAS implementations, our ASGCN is formed by
stacking Nc such cells together. Then we can fine-tune the whole network to optimize all
the weights with the training set.

3.4. Comparison on Methods of Graph Partition

Besides our weight-based mini-batch for large-scale graph, we analyse three other
ways of partition a graph. First, we consider dividing the large graph A into Nq small
non-overlapping graphs. Assuming that the number of nodes in each subgraph is q, the
subgraphs are expressed as:

A1 = A[1 : q, 1 : q],

A2 = A[q + 1 : 2q, q + 1 : 2q],

......

ANq = [Nq × q− q + 1 : Nq × q, Nq × q− q + 1 : Nq × q].

(1) Fixed method: A common method is to use these Nq subgraphs for training, and this
is called fixed method.

(2) Shuffle: Another method is shuffle. We can randomly select q nodes to constitute a
subgraph for training in each epoch.

(3) ClusterGCN [58]: In this method, a strategy called stochastic multiple partitions is
proposed. It firstly utilizes the graph clustering algorithm METIS [56], to gather Ne
clusters. Then, in each epoch, it randomly samples Ns (Ns ≤ Ne) clusters and their
between-cluster links to form a new batch to solve the unbalanced label distribu-
tion problem.

Obviously, for the Fixed method, it causes great data loss. As shown in the Figure 1,
the white area of the adjacency matrix is the unused data. The amount of lost data is
(NA × NA − Nq × q× q)/NA × NA and the data utilization rate is Nq × q× q/NA × NA.
Assuming that Nq can be divide by NA, then we have Nq = NA/q, and the data utilization
rate is NA× q/NA×NA = q/NA. The larger q is, the bigger data utilization rate is. q = NA
means the whole graph is used for training. For the ClusterGCN method, the selection
of number of nodes in a cluster is crucial. If the cluster is too large, it will cause a serious
imbalance of sample distribution. As in the clustering process, data of the same category
is naturally easy to be gathered together. As a result, the data of each batch are biased
towards certain categories. If the cluster is too small, it is no different from the Shuffle
method.

Different from ClusterGCN, we propose to select nodes according to a certain weight.
We set the number of clusters as p for clustering, and each cluster has its own weight
vi. When a cluster is selected too frequently, the weight will be reduced. The probability
of being selected is also reduced. In this way, we can avoid serious imbalance of sam-
ple distribution and increase the diversity of training samples, which leads to a stable
training process.

4. Experiments and Analysis

We evaluated our proposed method on real-world PolSAR data: Flevoland, and San
Francisco datasets. The detail of them are below. The Flevoland dataset is an L-band
four-look PolSAR data with a resolution of 1 × 6 m. It has a size of 750 × 1024 pixels and
was acquired by NASA/JPL AIRSAR in 1989 from Netherlands. This dataset contains 15
terrains including: stem beans, rapeseed, bare soil, potatoes, beet, wheat, peas, wheat2,
lucerne, barley, wheat3, grasses, forest, water, and buildings, which is widely used to

Remote Sens. 2021, 13, 1404 8 of 17

evaluate the classification methods. The San Francisco dataset is the bay area with the
golden gate bridge and its size is 1300 × 1300 pixels. It is C-band, single-look, and full-
polarimetric SAR data acquired by RADARSAT-2 sensors, and includes five classes: water,
vegetation, low-density urban, high-density urban, and the developed.

We conducted all the experiments on a computer with two 1080Ti GPUs (each with
11 GB memory). Our method was compared with five state-of-the-art algorithms consisting
of two supervised methods: the SVM [24] and CNN [30], the unsupervised methods
with pre-training: FS [22], W-DBN [23], and the semi-supervised methods: DSMR [46] and
SemiGCN [9]. The coding was with PyTorch [59] and the GCN operators were implemented
using Pytorch Geometric [60]. The initial random seed of the algorithm was fixed for fair
comparison. We carried out each experiment for 20 times and reported both the average
overall accuracy (OA) and standard deviation. In Flevoland and San Francisco datasets,
the feature vectors were both with b = 41. Moreover, the Lee filtering [61] with 5 × 5
window size was applied to all the datasets for pre-processing to reduce the influence from
the speckle noise of the PolSAR data. The parameters of algorithms are set as follows:

• SVM [24]: It was implemented with LibSVM (https://www.csie.ntu.edu.tw/~cjlin/
libsvm/, accessed on 1 Apirl 2021). The kernel function was Radial Basis Function
with gamma = 1 and penalty coefficient = 2 for Flevoland dataset, and gamma = 2
and penalty coefficient = 3 for San Francisco dataset.

• FS [22]: The number of super-pixels K was chosen among the interval [500, 3000], and
the compactness of the super-pixels mpol is selected in the interval [20, 60].

• W-DBN [23]: W-DBN had two hidden layers, and node numbers were set to 50 and
100, respectively. The thresholds τ0 was chosen in the interval [0.95, 0.99]. The learning
rate was set to 0.01. ρ0 was set to 0, and the window size was set to 3 or 5.

• CNN [30]: The network included two convolution layers, two max-pooling layers
and one fully connected layer. The sizes of the filters in two convolutional layers
were 3 × 3 and 2 × 2, respectively, and the pooling size was 2 × 2. The momentum
parameter was 0.9, and the weight decay rate was set to 5× 10−4.

• DSMR [46]: The number of nearest neighbors and the regularization parameter λ

were among the interval [10, 20] and [1 × 10−3, 1 × 10−4], respectively. The weight
decay rate β is chosen in [1× 10−4, 1× 10−3].

• SemiGCN [9]: The number of hidden units was set to 32 or 64. The number of layers in
the network was 3 or 4. Both normalization and self-connections were used. Learning
rate and weight decay were set to 10−3 and 5× 10−3, respectively.

• ASGCN (ours): The coefficient α of distance weighting was in the range [0, 1]. The
number of subgraphs p was in the range [2000, 3000]. Learning rate and weight decay
were 10−3 and 5× 10−3, respectively. The numbers of cells, and hidden units were
discussed in the experiment.

4.1. Architecture and Parameter Discussion

In this subsection, we take the Flevoland dataset as an example to analyze the archi-
tecture and parameters.

(1) Weight-based Mini-batch Algorithm
We verified our proposed strategy: weight-based mini-batch for graph partition and

the results are shown in Figure 3. We used the searched architecture for comparison. The
number of cells was 3, and the number of layers was 3. The graph was clustered into
2000 subgraphs. Other parameters were set as follows: The value of K in KNN algorithm:
32, batch size (16, 50, 300), learning rate: 0.001, weight decay: 0.0005, hidden units: 32,
gradient clip: 5. We compared the convergence curves of test loss and OA values of four
methods: ClusterGCN [58], Shuffle, Fixed, and the Weights (ours).

Experimental results indicated that our algorithm achieved better performance and
more comprehensive data utilization than other methods. The convergence curve for the
loss of our method was more stable than that of Shuffle and Fixed methods. Our method
gained lower loss than that of the three other methods. Moreover, the OA of our weight-

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Remote Sens. 2021, 13, 1404 9 of 17

based method was the highest among theses three methods, since the weight assignment
avoided imbalance of sample distribution and also resulted in a higher accuracy. The
Shuffle method adopted random sampling each time, and the result was more unstable
than that of other methods. The Fixed method utilized the same subgraphs, therefore its
OA did not change in each epoch.

0 20 40 60 80 100

Epochs

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T
es

t L
os

s

ClusterGCN
Weights
Fixed
Shuffle

(a) Test Loss

0 20 40 60 80 100

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
A

ClusterGCN
Weights
Fixed
Shuffle

(b) OA

Figure 3. The test loss and overall accuracy (OA) of our weight-based mini-batch strategy (i.e., Weights) compared with
other methods: ClusterGCN [58], Fixed and Shuffle.

(2) Ablation Study on Architectures
In order to better understand the effects of the choices of hyper-parameters, we

conducted ablation studies on the the number of cells and hidden units for the ASGCN.
Firstly, fixing the parameters: the number of nearest neighbors and batch size were 30

and 400, respectively, we searched and showed the result of the top architecture in Figure 4.
The name on each edge represented one of the operations from our search space. The edge
without a name was a skip-connection. The inputs of each cell consisted of two previous
cell outputs. The input of the first cell consisted of two identical graphs aggregated by MLP
from original graph data. It can be seen that this cell included operations: gin, mr_conv,
semi_gcn, and edge_conv.

Then we stacked the cells ranging from 2 to 4, and varied the number of units in
16, 32, 64, 128 for each architecture. The overall accuracies were obtained and listed in
Table 1. It can be seen when the number of cells was 3 and the number of units is 32, the
OA was the highest 99.31%, and the memory consumption was about 0.0568 MB. When
the number of cells increased, the depth of the networks and the memory consumption
also grew dramatically. However, the OA decreased. This indicated that the ASGCN could
not be too deep which may result in over-fitting for this dataset, and three cells each with
32 units was a better choice for this dataset.

c_{k-2}

0

SemiGCN
2

EdgeConv

c_{k-1} SemiGCN
1MRGCN

EdgeConv
c_{k}

skip-connect

GIN
skip-connect

skip-connect

skip-connect

Figure 4. The searched result of our ASGCN method, which stacks three cells, each including three
layers on the Flevoland dataset. Here, k = 1, 2, 3, and c_{k-1}, c_{k-2}, and c_{k} are feature maps for
each cell.

Remote Sens. 2021, 13, 1404 10 of 17

Table 1. The OA and memory consumption vary with the number of cells and hidden units for our
ASGCN method on the Flevoland dataset.

Number of Cells Hidden Units Params. (MB) Test OA (%)

2 16 0.0115 94.31
2 32 0.0388 97.21
2 64 0.1412 95.51
2 128 0.5362 95.98

3 16 0.0161 95.19
3 32 0.0568 99.31
3 64 0.2118 99.01
3 128 0.8168 98.37

4 16 0.0207 94.77
4 32 0.0747 98.96
4 64 0.2825 98.65
4 128 1.0974 97.47

(3) Parameter Discussion
Moreover, we showed the influences of the number of nearest neighbors and the batch

sizes on classification accuracy OA with the above architectures in Figure 5a,b, respectively.
The influence caused by different numbers of nearest neighbors on the final results was
great. It indicated that higher classification accuracy could be obtained when the number
of nearest neighbors was near to 32. When it increased, OA could not be significantly
improved, but it was not good if it was too small. For example, 5 and 20 adjacent neighbors
may have caused loss of important connection information and led to the degradation of
algorithm performance. It is worth noting that the time consumption of different number
of nearest neighbors in the search and evaluation process had no significant difference, but
the time cost in the phase of graph construction was much larger.

When the graph was divided into 2000 subgraphs, the performances with batch size
16 and 32 were poor. When the batch size exceeded 100, the classification accuracy of
the algorithm became higher and started to remain stable. Small batch size resulted in
incomplete information, thus the network could not process a large graph, and OA tended
to float up and down.

5 20 32 40 50 60 70 80

Number of nearest neighbors

80

82

84

86

88

90

92

94

96

98

100

O
A

(%
)

(a) OA varies with the number of nearest neighbors.

16 32 50 100 300 500

The batch size

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

O
A

(%
)

(b) OA varies with the batch sizes.

Figure 5. Classification accuracy versus the number of nearest neighbors and the batch sizes on the Flevoland dataset. The
batch size is fixed to 300 in (a), and the number of nearest neighbors is fixed to 32 in (b). Other parameter settings in (a) and
(b) are the same as described in Section 4.1(1).

Remote Sens. 2021, 13, 1404 11 of 17

4.2. Results on the Flevoland Dataset

For this dataset, the other parameters are as follows. The number of hidden units
was set to 32. The number of cells and the number of layers were both 3. The dataset was
divided into 2000 partitions, and batch size was 300. The number of nearest neighbors K
was 32, and gradient clip was 5.

The classification maps are shown in Figure 6 and the accuracies are listed in Table 2.
The mis-classified pixels of ASGCN were least and the OA was the highest at 99.31%
among all the methods, and our method achieved high performance improvement in
most categories, such as bare soil, wheat, peas, and water. It was 13.81% higher than that
of the classical SVM in terms of OA. The performance of SVM was limited by the few
labeled samples. Though CNN could take advantage of the labeled samples, it may have
over-fitted with only 1% labeled samples for training, and yield an OA of 88.15%. The
semi-supervised methods DSMR was inferior to that of the GCN based methods: SemiGCN
and ASGCN, which is probably because the graph convolutional network could extract
more differentiated features for classification. Moreover, since SemiGCN was constructed
manually, its architecture may not have been optimal for this dataset, and its OA was lower
than that of our ASGCN. By using the weight-based cluster method and differentiable
neural architecture search applied to a reasonable search space, our algorithm effectively
avoided over-fitting and unbalanced distribution of samples.It effectively improved the
classification performance.

Table 2. The classification accuracy of all methods with 1% training samples on the Flevoland dataset.

Methods SVM [24] FS [22] W-DBN [23] CNN [30] DSMR [46] SemiGCN [9] ASGCN (Ours)

Stembeans 83.22 ± 1.893 85.13 ± 1.952 90.73 ± 2.331 93.33 ± 2.132 99.82 ± 1.568 97.67 ± 1.512 97.77 ± 1.231
Rapeseed 89.01 ± 1.251 79.23 ± 1.614 90.57 ± 2.451 97.45 ± 2.270 90.28 ± 1.412 97.73 ± 1.486 94.71 ± 1.529
Bare Soil 88.16 ± 1.810 76.39 ± 1.642 91.71 ± 2.953 97.73 ± 2.245 86.67 ± 1.356 97.29 ± 1.302 99.23 ± 0.831
Potatoes 95.28 ± 1.833 83.18 ± 1.846 85.67 ± 2.851 91.27 ± 2.315 99.79 ± 1.632 92.78 ± 1.230 99.34 ± 0.911

Beet 86.35 ± 1.917 95.23 ± 1.832 99.86 ± 2.135 99.69 ± 2.412 99.76 ± 1.237 95.54 ± 1.759 98.91 ± 0.938
Wheat2 84.47 ± 1.905 76.35 ± 1.512 89.34 ± 2.412 84.91 ± 2.561 86.21 ± 1.242 94.62 ± 1.637 98.74 ± 1.579

Peas 87.56 ± 1.258 85.31 ± 1.831 92.81 ± 2.137 85.09 ± 2.418 98.47 ± 1.122 94.06 ± 1.448 98.94 ± 0.422
Wheat3 76.73 ± 2.018 85.11 ± 1.677 89.92 ± 2.168 99.79 ± 2.111 95.56 ± 1.193 99.59 ± 1.649 99.22 ± 1.144
Lucerne 87.18 ± 1.316 85.81 ± 1.525 89.05 ± 2.144 70.23 ± 2.104 83.84 ± 1.258 86.73 ± 1.857 96.70 ± 1.700
Barley 82.26 ± 1.643 86.18 ± 1.984 88.73 ± 2.587 33.73 ± 2.139 98.36 ± 1.269 97.89 ± 1.268 99.34 ± 0.621
Wheat 81.38 ± 1.700 85.12 ± 1.713 90.52 ± 2.584 95.21 ± 2.516 92.03 ± 1.144 92.57 ± 1.372 98.93 ± 1.137

Grasses 94.88 ± 1.676 82.56 ± 1.656 89.43 ± 2.691 45.32 ± 2.547 64.51 ± 1.581 86.75 ± 1.592 99.08 ± 1.356
Forest 81.09 ± 1.748 91.63 ± 1.872 89.22 ± 2.687 99.87 ± 2.138 98.50 ± 1.343 99.11 ± 1.337 98.93 ± 1.483
Water 83.59 ± 1.420 79.20 ± 1.757 91.19 ± 2.783 88.26 ± 2.147 83.16 ± 1.214 98.93 ± 1.441 99.98 ± 0.473

Buildings 80.73 ± 1.627 76.16 ± 1.729 90.73 ± 2.553 87.42 ± 2.159 99.73 ± 1.231 96.43 ± 1.022 92.58 ± 1.650
OA 85.50 ± 1.907 84.02 ± 1.738 90.33 ± 2.486 88.15 ± 2.279 92.31 ± 1.311 95.55 ± 1.036 99.31 ± 1.732

4.3. Results on the San Francisco Dataset

For this dataset, the number of hidden units was set to 24. The number of cells and
the number of layers were both 3. The dataset was divided into 2000 partitions, and batch
size was 300. The number of nearest neighbors K was 32, and gradient clip was 5.

The searched architecture for this dataset is shown in Figure 7. Moreover, Figure 8
shows visual classification results, and Table 3 is the corresponding classification result of
each category. The results showed that our ASGCN achieved the best accuracy at 96.80%
among the studied algorithms. The semi-supervised methods: DSMR, SemiGCN and
ASGCN, had greater improvement in classification performance compared with others
as they can employed both the labeled and unlabeled samples to train the network. The
classification accuracy of CNN was better than that of the SVM. However, CNN was a
little inferior to that of the W-DBN. It is probably because only 1% labeled samples greatly
weakened the fitting capability of the network. Compared with SemiGCN, our method
attained higher OA. This is likely because its search space covered more possible situations
and it could automatically search the most suitable network structure for the this dataset.

Remote Sens. 2021, 13, 1404 12 of 17

(a) Pauli image (b) Groud truth (c) SVM

(d) FS (e) W-DBN (f) CNN

(g) DSMR (h) SemiGCN (i) ASGCN (our)

Stembeans Rapeseed Bare Soil Potatoes Beet Wheat2 Peas Wheat3

Lucerne Barley Wheat Grasses Forest Water Buildings

Figure 6. Classification results of different methods on the Flevoland dataset. (a) Pauli RGB image. (b) Ground truth,
(c) support vector machines (SVM) [24], (d) fuzzy super-pixel (FS) [22], (e) Wishart Deep Belief Network (W-DBN) [23],
(f) convolutional neural network (CNN) [30], (g) sparse manifold regularization (DSMR) [46], (h) semi-graph convolutional
network (SemiGCN) [9], and (i) ASGCN (ours).

c_{k-2} 0
EdgeConv

1

GIN

c_{k-1}

TopKPooling

GAT
c_{k}

skip-connect

2

EdgeConv
skip-connect

MLP
skip-connect

skip-connect

Figure 7. The searched result of our ASGCN method, which stacks three cells, each including three
layers on the San Francisco dataset. Here, k = 1, 2, 3, and c_{k-1}, c_{k-2}, and c_{k} are feature maps
for each cell.

Remote Sens. 2021, 13, 1404 13 of 17

(a) Pauli image (b) Groud truth (c) SVM

(d) FS (e)‘W-DBN (f) CNN

(g) DSMR (h) SemiGCN (i) ASGCN (our)

Water Vegetation Low-Density Urban High-Density Urban Developed

Figure 8. Classification results of different methods on the San Francisco dataset. (a) Pauli RGB image, (b) Ground truth,
(c) SVM [24], (d) FS [22], (e) W-DBN [23], (f) CNN [30], (g) DSMR [46], (h) SemiGCN [9], and (i) ASGCN (ours).

Remote Sens. 2021, 13, 1404 14 of 17

Table 3. Classification accuracy of all methods with 1% training samples on the San Francisco dataset.

Methods Water Vegetation Low-Density
Urban

High-Density
Urban Developed OA

SVM [24] 98.69 ± 1.988 84.45 ± 1.486 50.74 ± 1.364 73.53 ± 1.659 60.92 ± 1.422 85.39 ± 1.907
FS [22] 90.63 ± 1.776 79.77 ± 1.675 61.33 ± 1.987 80.13 ± 1.888 68.21 ± 1.811 83.25 ± 1.803

W-DBN [23] 99.77 ± 2.780 89.56 ± 2.913 57.64 ± 2.761 83.72 ± 2.661 65.21 ± 2.703 89.75 ± 2.770
CNN [30] 98.56 ± 2.257 81.71 ± 2.164 53.24 ± 2.538 85.03 ± 2.252 62.35 ± 2.290 87.73 ± 2.267

DSMR [46] 99.89 ± 1.464 91.63 ± 1.634 69.34 ± 1.656 87.78 ± 1.552 74.91 ± 1.589 92.40 ± 1.529
SemiGCN [9] 98.93 ± 1.469 92.03 ± 1.730 92.23 ± 1.489 91.21 ± 1.349 91.09 ± 1.147 94.57 ± 1.469

ASGCN (ours) 99.87 ± 0.881 93.77 ± 1.258 93.64 ± 1.109 93.92 ± 1.529 82.33 ± 1.178 96.80 ± 1.393

5. Conclusions

In this work, we propose a new neural network ASGCN based on architecture search
for PolSAR image classification. The PolSAR data is represented by a fine grained graph,
and a searching space is constructed for the automatical search of an optimal ASGCN. Our
method avoids a great deal of work building networks manually. Addressing the memory
cost caused by large scale graph, we proposed a weight-based mini-batch strategy, which
greatly reduced the memory cost in a single epoch and maintained stable convergence.
The experimental results on typical datasets, i.e., Flevoland and San Francisco, from dif-
ferent radar systems indicate that our method outperforms state-of-the-art methods for
classification in the majority of the tested cases. The advantages of our ASGCN have been
demonstrated by the experiments. That is, (1) Our ASGCN can avoid the conventionally
manual design of the architecture which may result in tedious work in tuning the structure
and hyper-parameters. (2) The proposed search space enables our model to find appro-
priate graph convolutional architecture for PolSAR classification. It may provide some
inspirations for similar application. (3) The presented weight-based mini-batch strategy
can decrease the memory cost and ensure training of large-scale dataset. However, similar
to other NAS-based algorithm, our ASGCN costs more time for search of an optimal archi-
tecture than the training of other semi-supervised algorithms, such as the DSMR [46], and
SemiGCN [9]. Anyway, our ASGCN enhances the classification accuracy compared with
some of the state-of-the-art methods. This may provide inspirations for the construction of
new GCN and other automatic design of networks for PolSAR classification. In the future,
more techniques will be studied to speed up the search process of our ASGCN. Moreover,
we will investigate other graph clustering approaches in [62,63] to improve our weighted
mini-batch strategy.

Author Contributions: Conceptualization and methodology, H.L., F.S. and T.Z.; writing, D.X., Y.L.,
R.Y. and J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Nos. 61976164,
61876220, 61876221, 61836009 and U1701267), the Project supported the Foundation for Innovative Research
Groups of the National Natural Science Foundation of China (No. 61621005), the Program for Cheung
Kong Scholars and Innovative Research Team in University (No. IRT_15R53), the Fund for Foreign Scholars
in University Research and Teaching Programs (the 111 Project) (No. B07048), the Science Foundation
of Xidian University (Nos. 10251180018 and 10251180019), the National Science Basic Research Plan in
Shaanxi Province of China (Nos. 2020JM-194 and 2019JQ-657), and the Key Special Project of China High
Resolution Earth Observation System-Young Scholar Innovation Fund.

Acknowledgments: We thank the reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2021, 13, 1404 15 of 17

References
1. Lee, J.S.; Ainsworth, T.L. An overview of recent advances in polarimetric SAR information extraction: Algorithms and applications.

In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010;
pp. 851–854.

2. Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci.
Remote Sens. 1997, 35, 68–78. [CrossRef]

3. Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009.
4. Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-valued convolutional neural network and its application in polarimetric SAR

image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [CrossRef]
5. McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004,

30, 525–542. [CrossRef]
6. Freeman, A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens.

2007, 45, 2583–2592. [CrossRef]
7. Ulaby, F.T.; Elachi, C. Radar Polarimetry for Geoscience Applications; Artech House, Inc.: Norwood, MA, USA, 1990.
8. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and

Applications. arXiv 2018, arXiv:1812.08434.
9. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International

Conference on Learning Representations, Toulon, France, 24–26 April 2017.
10. Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. In Proceedings of the 5th International Conference

on Learning Representations, Toulon, France, 24–26 April 2017.
11. Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.J.; Schuler, D.L.; Cloude, S.R. Unsupervised classification using polarimetric

decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258.
12. Lee, J.S.; Grunes, M.R.; Pottier, E.; Ferro-Famil, L. Unsupervised terrain classification preserving polarimetric scattering

characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731.
13. Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998,

36, 963–973. [CrossRef]
14. Silva, W.B.; Freitas, C.C.; Sant’Anna, S.J.; Frery, A.C. Classification of segments in PolSAR imagery by minimum stochastic

distances between Wishart distributions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1263–1273. [CrossRef]
15. Du, L.; Lee, J. Fuzzy classification of earth terrain covers using complex polarimetric SAR data. Int. J. Remote Sens. 1996,

17, 809–826. [CrossRef]
16. Kersten, P.R.; Lee, J.S.; Ainsworth, T.L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy

clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 519–527. [CrossRef]
17. Vasile, G.; Ovarlez, J.P.; Pascal, F.; Tison, C. Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution

Polarimetric SAR Images. IEEE Geosci. Remote Sens. Lett. 2010, 48, 1809–1826. [CrossRef]
18. Pallotta, L.; Clemente, C.; De Maio, A.; Soraghan, J.J. Detecting Covariance Symmetries in Polarimetric SAR Images. IEEE Geosci.

Remote Sens. Lett. 2017, 55, 80–95. [CrossRef]
19. Pallotta, L.; Maio, A.D.; Orlando, D. A Robust Framework for Covariance Classification in Heterogeneous Polarimetric SAR

Images and Its Application to L-Band Data. IEEE Geosci. Remote Sens. Lett. 2019, 57, 104–119. [CrossRef]
20. Pallotta, L.; Orlando, D. Polarimetric covariance eigenvalues classification in SAR images. IEEE Geosci. Remote Sens. Lett. 2018,

16, 746–750. [CrossRef]
21. Eltoft, T.; Doulgeris, A.P. Model-Based Polarimetric Decomposition With Higher Order Statistics. IEEE Geosci. Remote Sens. Lett.

2019, 16, 992–996. [CrossRef]
22. Guo, Y.; Jiao, L.; Wang, S.; Wang, S.; Liu, F.; Hua, W. Fuzzy superpixels for polarimetric SAR images classification. IEEE Trans.

Fuzzy Syst. 2018, 26, 2846–2860. [CrossRef]
23. Liu, F.; Jiao, L.; Hou, B.; Yang, S. POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information. IEEE

Trans. Geosci. Remote Sens. 2016, 54, 1–17. [CrossRef]
24. Fukuda, S.; Hirosawa, H. Polarimetric SAR image classification using support vector machines. IEICE Trans. Electron. 2001,

84, 1939–1945.
25. Lardeux, C.; Frison, P.L.; Tison, C.; Souyris, J.C.; Stoll, B.; Fruneau, B.; Rudant, J.P. Support vector machine for multifrequency

SAR polarimetric data classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4143–4152. [CrossRef]
26. She, X.; Yang, J.; Zhang, W. The boosting algorithm with application to polarimetric SAR image classification. In Proceedings of

the 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 779–783.
27. Zou, T.; Yang, W.; Dai, D.; Sun, H. Polarimetric SAR image classification using multifeatures combination and extremely

randomized clustering forests. EURASIP J. Adv. Signal Proc. 2009, 2010, 1–9. [CrossRef]
28. He, C.; Li, S.; Liao, Z.; Liao, M. Texture classification of PolSAR data based on sparse coding of wavelet polarization textons.

IEEE Trans. Geosci. Remote Sens. 2013, 51, 4576–4590. [CrossRef]
29. Salehi, M.; Sahebi, M.R.; Maghsoudi, Y. Improving the accuracy of urban land cover classification using Radarsat-2 PolSAR data.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 1394–1401.

http://doi.org/10.1109/36.551935
http://dx.doi.org/10.1109/TGRS.2017.2743222
http://dx.doi.org/10.5589/m03-069
http://dx.doi.org/10.1109/TGRS.2007.897929
http://dx.doi.org/10.1109/36.673687
http://dx.doi.org/10.1109/JSTARS.2013.2248132
http://dx.doi.org/10.1080/01431169608949047
http://dx.doi.org/10.1109/TGRS.2004.842108
http://dx.doi.org/10.1109/TGRS.2009.2035496
http://dx.doi.org/10.1109/TGRS.2016.2595626
http://dx.doi.org/10.1109/TGRS.2018.2852559
http://dx.doi.org/10.1109/LGRS.2018.2881485
http://dx.doi.org/10.1109/LGRS.2018.2889682
http://dx.doi.org/10.1109/TFUZZ.2018.2814591
http://dx.doi.org/10.1109/TGRS.2016.2514504
http://dx.doi.org/10.1109/TGRS.2009.2023908
http://dx.doi.org/10.1155/2010/465612
http://dx.doi.org/10.1109/TGRS.2012.2236338

Remote Sens. 2021, 13, 1404 16 of 17

30. Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.Q. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci.
Remote Sens. Lett. 2016, 13, 1935–1939. [CrossRef]

31. Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Gill, E.; Molinier, M. A new fully convolutional neural network for semantic
segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS J. Photo. Remote Sens. 2019, 155, 223–236.
[CrossRef]

32. Bi, H.; Xu, F.; Wei, Z.; Xue, Y.; Xu, Z. An active deep learning approach for minimally supervised PolSAR image classification.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 9378–9395. [CrossRef]

33. Hänsch, R.; Hellwich, O. Semi-supervised learning for classification of polarimetric SAR-data. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. 987–990.

34. Uhlmann, S.; Kiranyaz, S.; Gabbouj, M. Semi-supervised learning for ill-posed polarimetric SAR classification. Remote Sens. 2014,
6, 4801–4830. [CrossRef]

35. Niu, X.; Ban, Y. An adaptive contextual SEM algorithm for urban land cover mapping using multitemporal high-resolution
polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1129–1139. [CrossRef]

36. Zhu, X.J. Semi-Supervised Learning Literature Survey; University of Wisconsin-Madison: Madison, WI, USA, 2005.
37. Subramanya, A.; Talukdar, P.P. Graph-based semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 2014, 8, 1–125.

[CrossRef]
38. Liu, W.; He, J.; Chang, S.F. Large graph construction for scalable semi-supervised learning. In Proceedings of the 27th International

Conference on Machine Learning (ICML 2010), Haifa, Israel, 21–24 June 2010.
39. Liu, H.; Wang, Y.; Yang, S.; Wang, S.; Feng, J.; Jiao, L. Large polarimetric SAR data semi-supervised classification with

spatial-anchor graph. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1439–1458. [CrossRef]
40. Liu, H.; Zhu, D.; Yang, S.; Hou, B.; Gou, S.; Xiong, T.; Jiao, L. Semisupervised feature extraction with neighborhood constraints

for polarimetric SAR classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3001–3015. [CrossRef]
41. Liu, H.; Yang, S.; Gou, S.; Zhu, D.; Wang, R.; Jiao, L. Polarimetric SAR feature extraction with neighborhood preservation-based

deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1456–1466. [CrossRef]
42. Liu, H.; Yang, S.; Gou, S.; Chen, P.; Wang, Y.; Jiao, L. Fast classification for large polarimetric SAR data based on refined

spatial-anchor graph. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1589–1593. [CrossRef]
43. Liu, H.; Yang, S.; Gou, S.; Liu, S.; Jiao, L. Terrain Classification based on Spatial Multi-attribute Graph using Polarimetric SAR

Data. Appl. Soft Comput. 2018, 68, 24–38. [CrossRef]
44. Liu, H.; Wang, Z.; Shang, F.; Yang, S.; Gou, S.; Jiao, L. Semi-supervised tensorial locally linear embedding for feature extraction

using PolSAR data. IEEE J. Sel. Top. Signal Proc. 2018, 12, 1476–1490. [CrossRef]
45. Liu, H.; Wang, F.; Yang, S.; Hou, B.; Jiao, L.; Yang, R. Fast Semisupervised Classification Using Histogram-Based Density

Estimation for Large-Scale Polarimetric SAR Data. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1844–1848. [CrossRef]
46. Liu, H.; Shang, F.; Yang, S.; Gong, M.; Zhu, T.; Jiao, L. Sparse Manifold-Regularized Neural Networks for Polarimetric SAR

Terrain Classification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3007–3016. [CrossRef]
47. Bi, H.; Sun, J.; Xu, Z. A graph-based semisupervised deep learning model for PolSAR image classification. IEEE Geosci. Remote

Sens. Lett. 2018, 57, 2116–2132. [CrossRef]
48. Yao, Q.; Wang, M.; Chen, Y.; Dai, W.; Yi-Qi, H.; Yu-Feng, L.; Wei-Wei, T.; Qiang, Y.; Yang, Y. Taking human out of learning

applications: A survey on automated machine learning. arXiv 2018, arXiv:1810.13306.
49. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1–21.
50. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. In Proceedings of the 7th International Conference on

Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
51. Li, G.; Xiong, C.; Thabet, A.; Ghanem, B. DeeperGCN: All You Need to Train Deeper GCNs. arXiv 2020, arXiv:2006.07739.
52. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM

Trans. Graph. 2019, 38. [CrossRef]
53. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
54. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the International

Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
55. Gao, H.; Ji, S. Graph U-Nets. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA,

9–15 June 2019; pp. 2083–2092.
56. Karypis, G.; Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 1998,

20, 359–392. [CrossRef]
57. Dwivedi, V.P.; Joshi, C.K.; Laurent, T.; Bengio, Y.; Bresson, X. Benchmarking Graph Neural Networks. arXiv 2020, arXiv:2003.00982.
58. Chiang, W.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph

Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019; pp. 257–266. [CrossRef]

59. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in PyTorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017),
Long Beach, CA, USA, 4–9 December 2017.

http://dx.doi.org/10.1109/LGRS.2016.2618840
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.015
http://dx.doi.org/10.1109/TGRS.2019.2926434
http://dx.doi.org/10.3390/rs6064801
http://dx.doi.org/10.1109/JSTARS.2012.2201448
http://dx.doi.org/10.2200/S00590ED1V01Y201408AIM029
http://dx.doi.org/10.1109/JSTARS.2016.2518675
http://dx.doi.org/10.1109/JSTARS.2016.2532922
http://dx.doi.org/10.1109/JSTARS.2016.2618891
http://dx.doi.org/10.1109/LGRS.2017.2724844
http://dx.doi.org/10.1016/j.asoc.2018.03.029
http://dx.doi.org/10.1109/JSTSP.2018.2872393
http://dx.doi.org/10.1109/LGRS.2019.2910413
http://dx.doi.org/10.1109/TNNLS.2019.2935027
http://dx.doi.org/10.1109/TGRS.2018.2871504
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1145/3292500.3330925

Remote Sens. 2021, 13, 1404 17 of 17

60. Fey, M.; Lenssen, J.E. Fast Graph Representation Learning with PyTorch Geometric. In Proceedings of the ICLR Workshop on
Representation Learning on Graphs and Manifolds, New Orleans, LA, USA, 6–9 May 2019.

61. Lee, J.S.; Grunes, M.R.; De Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci.
Remote Sens. 1999, 37, 2363–2373.

62. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
63. Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [CrossRef]

http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2016.09.002

	Introduction
	Background
	The Classification Methods of PolSAR Data
	Neural Architecture Search
	Graph Neural Networks

	Proposed Method
	Graph Construction
	Weight-Based Mini-Batch for Large-Scale Graph
	The Architecture of Our ASGCN
	Comparison on Methods of Graph Partition

	Experiments and Analysis
	Architecture and Parameter Discussion
	Results on the Flevoland Dataset
	Results on the San Francisco Dataset

	Conclusions
	References

