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Abstract: Deep-learning methods, especially convolutional neural networks (CNN), have become the
first choice for hyperspectral image (HSI) classification to date. It is a common procedure that small
cubes are cropped from hyperspectral images and then fed into CNNs. However, standard CNNs
find it difficult to extract discriminative spectral–spatial features. How to obtain finer spectral–spatial
features to improve the classification performance is now a hot topic of research. In this regard, the
attention mechanism, which has achieved excellent performance in other computer vision, holds
the exciting prospect. In this paper, we propose a double-branch network consisting of a novel
convolution named pyramidal convolution (PyConv) and an iterative attention mechanism. Each
branch concentrates on exploiting spectral or spatial features with different PyConvs, supplemented
by the attention module for refining the feature map. Experimental results demonstrate that our
model can yield competitive performance compared to other state-of-the-art models.

Keywords: hyperspectral; deep learning; convolutional neural network; attention mechanism

1. Introduction

Hyperspectral remote sensing, containing a rich triad of spatial, radiometric and
spectral information, is a frontier area of remote-sensing technology. The hyperspectral
remote sensor with remarkable features of high spectral resolution (5~10 nm) and wide
spectral range (0.4 µm~2.5 µm) can use dozens or even hundreds of narrow spectral
bands to collect information. All the bands can be arranged together to form a continuous
and complete spectral curve, which covers the full range of electromagnetic radiation
from the visible to the near-infrared wavelength. Hyperspectral image (HSI) implements
the effective integration of spatial and spectral information of remote-sensing data and
thus addresses important remote-sensing applications, e.g., agriculture [1], environmental
monitoring [2], and physics [3].

Traditional spectral-based methods such as k-nearest neighbors [4], multinomial
logistic regression (MLR) [5], and support vector machines (SVM) [6], tend to treat the raw
pixels directly as input. However, given the large number of spectral bands in HSI, the
classifier must deal with these features in a high-dimensional space. Due to the numerous
spectral bands in HSI, the classifier is confronted with high-dimensional features and the
limited samples makes it difficult to train a classifier with high accuracy. This problem is
known as the curse of dimensionality or the Hughes phenomenon. To tackle this problem,
dimensionality reduction such as feature selection [7] or feature extraction [8] is a common
tactic. Moreover, considering that neighboring pixels probably belong to the same class,
another line of research aims at focusing on spatial information. Gu et al. [9] and Fang
et al. [10] used SVM as a classifier with a multiple kernel learning strategy to process the
HSI data and obtained the desired results. In [11], the original HSI data was fused with
multi-scale superpixel segmentation maps and then fed into SVM for processing. Methods
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of this sort essentially implement feature engineering with the help of spectral–spatial
information on the HSI and then create a classification map.

However, the aforementioned approaches can be considered to be traditional feature
engineering, which means that the performance depends on the handcrafted features. Fur-
thermore, as these methods belong to shallow models, the generated features should also
be regarded as shallow features, which are unable to capture the essential characteristics of
the observed object and therefore tend to underperform in sophisticated scenarios [12].

Due to the impressive ability to automatically extract non-linear hierarchical features,
deep learning (DL) has gradually supplanted numerous traditional algorithms in recent
years, gaining an overwhelming advantage in many computer vision tasks including
objection detection [13], semantic segmentation [14], and image generation [15]. Naturally,
HSI classification, as a typical classification task, is constantly benefiting from the state-
of-the-art deep-learning techniques. Several deep-learning-based methods have been
proposed for HSI classification. In [16], Chen et al. introduced a stacked autoencoder
(SAE) to extract abundant features for HSI classification. Zhao et al. [17] also leveraged a
stacked sparse autoencoder to derive hierarchical more abstract and deeper features from
spectral vectors, spatial vectors and spectral–spatial vectors. Li et al. [18] investigated deep
belief networks (DBNs) for spectral–spatial features extraction, improving the accuracy
of HSI classification. Zhong et al. [19] improved prior diversity during pre-training and
fine-tuning of the DBN model, resulting in improved HSI classification performance.

Among the DL-based methods, the convolutional neural network (CNN) [20] is the
predominant formulation for extracting spectral–spatial features by virtue of its local per-
ception and parameter sharing characteristics. Mei et al. [21] proposed a CNN model
incorporating spectral features with spatial context by computing the mean of the pixel
neighborhood and the mean and standard deviation of each spectral band in that neigh-
borhood. Similarly, Lee et al. [22] presented a contextual deepCNN (CDCNN) for feature
extraction. Moreover, Zhao and Du [23] combined a spatial feature extraction process
with a spectral feature extraction process based on the CNN model. Concretely, the local
discriminative embedding is performed first, followed by stacked features and classifi-
cation. Although these methods employ different techniques to extract spectral–spatial
information separately apart from CNN, they do not fully leverage the joint spectral–spatial
information. In view of the fact that hyperspectral data can be represented in a 3D cube
format, 3D convolution in spectral and spatial dimensions can naturally be a ‘silver bullet’
in simultaneously extracting the spectral–spatial features of HSI [24,25]. Furthermore,
inspired by the deeper network such as residual network (ResNet) [26] and the dense con-
volutional network (DenseNet) [27], Zhang et al. [28] proposed a spectral–spatial residual
network (SSRN), which stacks the spectral and spatial residual blocks consecutively. Wang
et al. [29] employed DenseNet in their fast dense spectral–spatial convolution (FDSSC)
algorithm.

On the other hand, it is worth noting that different spectral bands and different spatial
patches in the HSI cube may make different contributions to feature extraction. Accord-
ingly, there has been a surge of interest in the attention mechanism [30–32]. By focusing
on important features and suppressing unnecessary features, attention mechanisms can
augment model sensitivity to informative spectral bands and spatial positions. Thus,
Ma et al. [33] designed a double-branch multi-attention mechanism network (DBMA),
obtaining desirable results. Furthermore, based on DBMA and dual-attention network
(DANet) [34], Li et al. [35] proposed the double-branch dual-attention mechanism network
(DBDA) for HSI classification.

In this paper, inspired by these advanced techniques, we propose an attention-aided
spectral–spatial CNN model for hyperspectral image classification. Instead of following
the traditional approach of using standard 3D convolution to extract features from HSI, we
apply the pyramidal convolution which can extract hierarchical features. Furthermore, a
latest attention mechanism is adopted to refine the features for better classification. Our
new deep model is composed of two branches, which extract spectral and spatial features,
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respectively. In each branch, pyramidal convolution is introduced to exploit abundant
features at different scales. Then, a novel iterative attention mechanism is applied to refine
the feature maps. By concatenating or using weighted addition, we fuse the double-branch
features. Finally, the fused spectral–spatial features are fed into the fully connected layer
to obtain classification results with the SoftMax function. The main contributions of this
article are as follows:

(1) A new double-branch model based on pyramidal 3D convolution is proposed for
HSI classification. Two branches can separately extract spatial features and spectral
features efficiently.

(2) A new iterative attention mechanism, expectation-maximization attention (EMA), is
introduced to HSI classification. It can refine the feature map by highlighting relevant
bands or pixels and suppressing the interference of irrelevant bands or pixels.

(3) Some effective techniques, such as the new activation function Mish, dynamically
varying learning rates and early stopping, are applied in the proposed model and
satisfactory results are obtained.

The rest of this paper is organized as follows: In Section 2, we briefly describe the re-
lated work. Our proposed architecture is described in detail in Section 3. In Sections 4 and 5,
we conduct several experiments and analyze the experimental results. Finally, conclusions
and future work are presented in Section 6.

2. Related Work

In this section, we briefly review several highly correlated techniques before introduc-
ing the proposed HSI classification framework, which is pyramidal convolution (PyConv),
ResNet and DenseNet, and attention mechanism.

2.1. A Multi-Scale 3D Convolution—PyConv

As mentioned in the preceding section, the 3D-CNN-based approach has carved out
a niche for itself in HSI classification. Considering that the spectral dimension of HSI
is abundant with detailed information of land covers, 3D convolution is an appealing
operation in exploiting the spatial and spectral information in HSI for classification.

Based on the standard 3D convolution [36], several offshoots have evolved [37–39].
Among them, the multi-scale 3D convolution is of interest in this paper. In [40], a multi-
scale 3D convolution named pyramidal convolution (PyConv) was proposed, illustrated in
Figure 1. Using a pyramid with different types of kernels, PyConv can process the input
feature maps FMi at different scales, resulting in a series of output feature maps FMo with
complementary information. Generally, PyConv is a hierarchical structure that stacks 3D
convolution kernels with different sizes. At each level of PyConv, the spatial size of the
kernels varies, increasing from the bottom of the pyramid to the top. As the spatial size
increases, the depth of the kernel simultaneously decreases. Consequently, as shown in
Figure 1, this leads to two pyramids, facing opposite directions. One pyramid is wide at
the bottom and narrow at the top in terms of the depth of the kernel, and the other inverted
pyramid is narrow at the bottom and wide at the top in terms of the spatial size of the
kernel. This pyramidal structure provides a pool of combinations in which there can be
different types and sizes of kernels. Thanks to this, the network can possess the ability
to acquire complementary information since kernels with smaller receptive fields focus
on small objects and details while kernels with larger receptive fields can concentrate on
larger objects and contextual information.
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Figure 1. Pyramidal convolution (PyConv).

2.2. ResNet and DenseNet

Deep networks can lead to better performance, but optimizing deep networks is very
difficult. To combat this dilemma, ResNet and DenseNet are powerful tools.

Inspired by residual representations in image recognition, ResNet introduces shortcut
connections to the network. As shown in Figure 2a H, denotes hidden layers, including
convolution layers, activation function layers, and batch normalization (BN) layers. In the
original text of ResNet, shortcut connections simply perform identity mapping, enabling
information or gradient to pass directly without travelling through intermediate layers. To
mathematically formalize residual learning, identity mapping by shortcuts is integrated
into a basic block in ResNet, which can be defined as:

xl = Hl(xl−1) + xl−1 (1)Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 24 
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Based on ResNet, DenseNet connect all layers directly with each other to ensure
maximum information flow through the network all the time. To maintain the feed-
forward nature, each layer concatenates the outputs of all previous layers as inputs in the
channel dimension and transmits its own feature maps to all subsequent layers. Figure 2b
illustrates this layout. Accordingly, the input xl of lth layer can be formulated as:

xl = Hl([x0, x1, · · · , xl−1]) (2)

where Hl refers to a module consists of convolution layers, activation layers, and BN
layers, and [x0, x1, · · · , xl−1] denotes the concatenation of the feature maps generated by
all preceding layers.

2.3. Attention Mechanism

Given that the recognition ability of the different bands varies, the same object tends
to show different spectral responses to different bands. Plus, different areas of the data
cube contain different semantic information. Such prior information can facilitate the
competence of the model once when it is fully exploited. The attention mechanism is
exactly the powerful technique that meets the demands. The essence of the attention
mechanism is to obtain a new representation with linear weighting based on the correlations
between objects, which can be interpreted as a method of feature transformation. To date,
the attention mechanism has been successfully applied to various tasks, such as video
classification [41], machine translation [42] and scene segmentation [43].

Among the diverse attention models, the self-attention [42] is popular, which computes
a weighted summation of location contexts. Non-local [40] first introduced the self-attention
mechanism to computer vision tasks. DANet [34] treated the Non-local operation as the
spatial attention, and further proposed the channel attention, integrating two branches as
an overall framework. A2 net [44] used a dual-attention block to gather crucial features
from entire spatio-temporal spaces into a compact set and then adaptively distribute them
to each position.

However, these methods tend to drive each pixel to capture global information,
resulting in attention maps with high time and space complexity. Motivated by the success
of attention in the above works, EMANet [45] rethought the attention mechanism from
the perspective of the expectation-maximization (EM) algorithm and computed attention
maps in an iterative manner, significantly alleviating the burden of computation. As shown
in Figure 3, a set of bases representing the input feature is initialized first, then with the
EM algorithm, the update of the attention maps is executed in E step and the update of
bases is executed in M step. Two steps are conducted alternately until convergence. Such
mechanism can be integrated into a unit called Expectation-Maximization Attention Unit
(EMAU), which can be conveniently inserted to CNNs.

Suppose an input feature map is X ∈ RN×C and the bases are initialized as B ∈ RK×C.
In E step, we use bases to generate the attention maps Y ∈ RN×K according to the following
formulations:

ynk =
K(xn, βk)

∑K
i=1 K(xn, βi)

(3)

Z = softmax
(

XBT
)

(4)

where ynk represents the weight of the contribution of the k-th base βk to the n-th pixel
xn. Equation (4) is the matrix calculation version of Equation (3), which is the actually
application in the experiment.

In M step, the attention maps are used to update the bases:

βk =
∑N

n=1 ynkxn

∑N
n=1 ynk

(5)
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where the bases B is the weighted sum of X to keep both in the same representation space,
aiming to guarantee the robustness of iterations.
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After two steps are executed alternately for T times, B and Y could converge ap-
proximately, which is guaranteed by the property of the EM algorithm. Experimental
results also demonstrate that the number of iterations T is a small constant, i.e., expectation-
maximization attention can converge quickly. Then, the final B and Y are used to recon-
struct X. The new X, notated as X̃, can be formulated as:

X̃ = YB (6)

here X̃ can be deemed as a low-rank version of X.

3. Methodology

This section is structured as follows. First, we introduce the framework of the proposed
method. Second, two branches respectively focusing on spectral information and spatial
information are described in detail. Third, fusion operations of spectral and spatial branches
are discussed. Finally, several techniques aimed at boosting the network performance are
covered.

3.1. Framework of the Proposed Model

The flowchart in Figure 4 depicts the proposed model for HSI classification. Gener-
ally, it consists of two branches: the spectral branch and the spatial branch. Moreover,
Expectation-Maximization attention modules are incorporated into both branches to apply
attention-based feature refinement. Concatenation or weighted sum are implemented
subsequently to fuse bipartite features. Finally, classification is performed with the SoftMax
function.

Concretely, let the HSI data set be H ∈ Rh×w×d, where h, w and d denote the height
and width of the spatial dimensions and the spectral bands. Assume thatH is composed of
N labeled pixels X = {x1, x2, · · · , xN} ∈ R1×1×d and the corresponding category label set
is Y = {y1, y2, · · · , xN} ∈ R1×1×C, where C represents the numbers of land cover classes.
To effectively exploit the inherent information in HSI, a common practice is to form a
3D patch cube with several pixels surrounding the given pixel. In this manner, X can be
decomposed into a new data set Z = {z1, z2, · · · , zN} ∈ Rw×w×d, where w is the width
of cubes. If the target pixel is on the edge of the image, the values of adjacent missing
pixels are set to zero. Then, Z is randomly divided into training, validation and testing
sets denoted by Ztrain, Zval and Ztest. Accordingly, their corresponding label sets are Ytrain,
Yval and Ytest. For each configuration of the model, the training set is used to optimize the
parameters while the validation set is used to supervise the training process and select the
best-trained model. Finally, the test set is used to verify the performance of the best-trained
model.
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3.2. Pyramidal Spectral Branch and Pyramidal Spatial Branch

As shown in Figure 4, the spectral branch and the spatial branch consist of PyConv
and EMA. First, the pyramidal blocks used in two branches will be described in detail.

Generally, a 3D convolutional layer is first applied to perform a feature transformation
on the HSI cube in the spectral dimension, reducing the computational overhead. Then, a
pyramidal spectral block is attached. As shown in Figure 5, each layer in the pyramidal
convolution consists of three 3D convolution operations with decreasing levels in the
spectral dimension, discriminated by blue, yellow and red, respectively. The kernel sizes
of the 3D convolution operations in each layer are set to 1× 1× 7, 1× 1× 5, 1× 1× 3,
respectively. Furthermore, to make the network powerful and converge rapidly, each
convolution is subsequently followed by a batch normalization (BN) layer to regularize
and an activation function Mish [46] to learn a non-linear representation. The number of
output channels in each layer is consistent and can be set to k′, then the number of the final
output of the block can be formulated as:

k = n + 3× k′ (7)

where n is the number of the output channel of the preceding 3D convolution layer and
k actually is the number of 3D convolution kernels. However, since only the spectral
dimension of these convolution kernels varies and is never equal to 1, it can be assumed
that mainly the spectral information is explored.

Similar to the pyramidal spectral block, the pyramidal spatial block is built by lever-
aging the interspatial relationships of feature maps. As illustrated in Figure 6, in contrast
to the pyramidal spectral block, the kernel size of the pyramidal spatial block changes
in the spatial dimension while keeping fixed in the spectral dimension. Moreover, a 3D
convolution layer is also applied before to compact the spectral dimension of the HSI
cube, which is exhibited in Figure 4. Again, each layer in the block not only includes a
3d convolutional layer, but also is combined with a batch normalization layer and a Mish
activation function layer. The relationship between the input and output of the pyramidal
spatial block is aligned with Equation (7).
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3.3. Expectation-Maximization Attention Block

After attaching the pyramidal spectral or spatial block, a 3D convolutional layer is
needed to ‘resize’ intermediate feature maps for subsequent input to the EMA block. Then,
the EMA block follows to refine feature maps. In view of the fact that for the same object,
the spectral response may vary dramatically on different bands. In addition, different
positions of the extracted feature maps can provide different semantic information for
HSI classification. The performance for HSI classification can be improved if such prior
information can be properly taken into account. Therefore, the EMA block is introduced.
Two EMA blocks located in the spectral and spatial branches are designed with a similar
structure. The EMA block located in the spectral branch iterates the attention map along
the spectral dimension (denoted as spectral attention), while the EMA block located in the
spatial branch iterates the attention map along the spatial dimension (denoted as spatial
attention).

As shown in Figure 7, given an intermediate feature map X as input, a compact base
set is initialized with Kaiming’s initialization [47]. Then, attention maps can be generated
in E step and the base set can be updated in M step, as described in Section 2.3. After a few
iterations, with the converged bases and attention maps, a new refined feature map X̂ can
be obtained. Instead of outputting X̂ directly, a small factor α is adopted to equilibrate X
with X̂. Multiplying X̂ by α and then adding it to X, the final output X is generated. This
operation facilitates the stability of the training and empirical performance validates the
potency.
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Back to the initialization of bases, this is actually a key point. The procedure described
above only portrays the steps to implement EMA on a single image. However, thousands
of images must be processed in the HSI classification task. The spectral feature distribution
and spatial feature distribution are distinct for each image, so the bases β computed upon
an image should not be the paradigm for all images. In this paper, we choose to run EMA
on each image and consistently update the initial values of the bases β0 during the training
process with the following strategy:

β0 = γβ0 + (1− γ)βT (8)

where β0 represents the initial values of bases, βT is generated after iterating over an image
and γ ∈ [0, 1].

3.4. Fusion of Spectral and Spatial Branches

With the aid of the spectral branch and spatial branch, multiple feature maps are
generated. Then, how to fuse them to obtain a desirable classification result is a problem.
Generally, there are two options, add or concatenation. Here, spatial features and spectral
features are added with a certain weight, which is constantly adjusted by back-propagation
during the training process. Both fusion operations are experimented and the results are
detailed in Section 5.5. Once the fusion is finished, the feature maps subsequently flow
through the fully connected layer and the SoftMax activation function and finally the
classification result is obtained.

3.5. Network Training
3.5.1. A New Activation Function

The activation function is an important element in a deep neural network and the
rectified linear unit (ReLU) is often favored. Recently, Mish [46], a self-regularized non-
monotone activation function, has received increasing attention. The formula for Mish is
as follows:

mish(x) = x ∗ tan h(ln(1 + ex)) (9)

where x is the input of the activation function.
The graph of Mish and ReLU can be seen in Figure 8. Unlike ReLU, Mish allows

small negative inputs inflow to improve the model performance and keep the network
sparsity instead of pruning all the negative inputs. Moreover, Mish is a smooth function
and continuously differentiable, which is beneficial to optimization and generalization.
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3.5.2. Other Training Tricks

To mitigate the overfitting problem, dropout [48] is a typical strategy. Given a percent-
age p, which is selected as 0.5 in the proposed model, the network would drop out hidden
or visible units temporarily. In the case of stochastic gradient descent, a new network is
trained in each mini-batch due to the property of random dropping. Moreover, dropout can
make only a few units in the network possess high activation ability, which is conducive to
the sparsity of the network. In our framework, a dropout layer is applied after the EMA
block.

In addition, the early stopping strategy, and the dynamic learning rate adjustment
method are also adopted to accelerate the network training. Specifically, early stopping
means stopping the training if the loss function no longer decreases in a couple of training
epochs (which is 20 in our method). Dynamic learning rate means that we adjust the
learning rate during the training process to avoid the model trapped in a local optimum.
Herein, we use the cosine annealing [49] strategy, which is formulated as follows:

ηt = ηi
min +

1
2

(
ηi

max − ηi
min

)(
1 + cos

(
Tcur

Ti
π

))
(10)

where ηt is the learning rate for the i-th run while ηi
min and ηi

max are ranges for the learning
rate. Tcur denotes how many epochs have been executed since the last restart and Ti
represents the number of epochs in one restart cycle.

4. Experiment
4.1. Datasets Description

In the experiments, four publicly available datasets, the Pavia University (UP)dataset,
the Indian Pines (IP) dataset, the Salinas Valley (SV) dataset, and the Botswana dataset (BS),
are applied to conduct a series of experiments.

Pavia University (UP): captured by the reflective optics imaging spectrometer (ROSIS-3)
sensor at the University of Pavia, northern Italy, the Pavia University dataset is comprised
of 103 bands with spatial resolution of 1.3 mpp in the wavelength ranging from 0.43 µm to
0.86 µm. The spatial size is 610× 340 pixels and 9 land cover classes are involved.

Indian Pines (IP): captured by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor in the north-western Indiana, the Indian Pines dataset is comprised of
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200 bands with spatial resolution of 20 mpp in the wavelength ranging from 0.4 µm to
2.5 µm. The spatial size is 145× 145 pixels and 16 land cover classes are involved.

Salinas Valley (SV): captured by the AVIRIS sensor the AVIRIS sensor over the agricul-
tural area described as SV in California, CA, USA, the Salinas Valley dataset is comprised
of 204 bands with spatial resolution of 3.7 mpp in the wavelength ranging from 0.4 µm to
2.5 µm. The spatial size is 512× 217 pixels and 16 land cover classes are involved.

Botswana (BS): captured by the NASA EO-1 satellite over the Okavango Delta,
Botswana, the Botswana dataset is comprised of 145 bands with spatial resolution of 20 mpp
in the wavelength ranging from 0.4 µm to 2.5 µm. The spatial size is 1476× 256 pixels and
14 land cover classes are involved.

The performance of deep-learning-based models strongly depends on the data. Gen-
erally, the more labeled data used for training, the better the model performs. Currently,
many HSI classification methods can achieve almost 100% accuracy with sufficient training
samples. Model performance given the lack of training samples is noteworthy. Therefore,
the size of the training samples and validation samples in the experiments are set relatively
small to challenge the proposed model. In addition, to conveniently compare with the
previous methods, we follow the settings in [35], i.e., the proportion of samples for training
and validation is both set to 3% for IP, 0.5% for UP and SV and 1.2% for BS.

4.2. Experimental Configuration

All experiments were executed on the same platform configured with Intel Core i7-
8700K processor at 3.70 GHz, 32 GB of memory and an NVIDIA GeForce GTX 1080Ti GPU.
The software environment is the system of window 10 (64 bit) home and deep-learning
frameworks of PyTorch.

Optimization is performed by Adam optimizer with the batch size of 16 and learning
rate of 0.0005. To assess the results quantitatively, three metrics are adopted: overall
accuracy (OA), average accuracy (AA), and Kappa coefficient.

To assess the effectiveness of our approach, several methods are adopted for compari-
son. The SVM with a radial basis function (RBF) kernel [6] is selected as a representative
of the traditional methods. CDCNN [22], SSRN [28] and FDSSC [29] are chosen on behalf
of the deep-learning-based approaches. DBMA [33] and DBDA [35], similar to our model
with a two-branch structure, are selected as the state-of-the-art double-branch models. The
parameters of each model are set according to the original paper. Given that the codes are
available, the results of the classification with these methods on the four datasets are in
accordance with our own replication. For a fair comparison, all algorithms are executed
ten times and the best results are retained.

4.3. Classification Results
4.3.1. Classification Results for the IP Dataset

The accuracy for the IP dataset obtained by different methods is shown in Table 1,
where the best accuracy is in bold for each category and for the three metrics. The corre-
sponding classification maps are also illustrated in Figure 9.

The proposed model yields the best results, i.e., 95.90% in OA, 96.19% in AA and
0.9532 in Kappa, as shown in Table 1. CDCNN obtains the lowest accuracy since the
training samples are too limited for the 2DCNN-based model. Compared with CDCNN,
SVM performs a little better; however, the pepper noise is quite severe, which is shown in
Figure 9b. Owing to the integration of spatial and spectral information by 3DCNN, both
SSRN and FDSSC are far superior to SVM and CDCNN, exceeding them by almost 20% in
OA. Furthermore, FDSSC draws on the dense connection, resulting in better performance.
DBMA and DBDA follow basically the same idea i.e., two branches are used to extract
spectral and spatial features and the attention mechanism are introduced. However, they
are prone to overfitting when the training samples are limited. Moreover, the attention
mechanisms they use are simple and cannot distinguish different classes well. In contrast,
our proposed model not only uses two branches to extract features, but also introduces an
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attention mechanism based on the EM algorithm, which can iteratively update the attention
map and reduce the intra-class feature variance, thus making it easier to distinguish
different class targets. As can be seen in Table 1, our model performs well balanced and
excellent on each category, without extremely low scores. This demonstrates the superior
discriminative capability of our model for each category.

Table 1. The classification accuracy for the IP dataset based on 3% training samples.

Class SVM CDCNN SSRN FDSSC DBMA DBDA Proposed

1 24.19 30.00 66.67 90.91 65.15 85.42 100
2 56.71 53.90 91.71 97.82 93.09 83.64 92.88
3 65.09 60.88 86.09 95.64 95.27 99.53 96.01
4 39.64 28.06 63.56 97.14 99.53 100 87.34
5 87.33 81.04 95.60 99.76 97.80 99.05 98.17
6 83.88 88.93 99.56 94.38 95.87 99.27 96.17
7 57.50 63.16 100 86.21 75.00 87.50 95.45
8 89.29 90.72 95.51 97.60 100 99.55 100
9 22.58 53.57 100 69.57 45.16 84.21 100

10 66.70 33.95 82.04 90.53 77.67 86.99 94.78
11 62.50 68.32 84.13 95.42 93.44 96.80 96.82
12 51.87 44.22 87.88 96.69 83.30 91.56 91.65
13 94.79 67.55 97.95 100 99.44 100 98.41
14 90.43 93.36 92.72 95.52 93.39 92.07 98.99
15 62.82 77.11 90.15 92.86 83.19 91.91 95.70
16 98.46 80.77 97.65 98.82 95.45 95.45 96.71

OA 69.35 61.89 88.43 95.51 91.27 93.14 95.90
AA 65.86 63.47 89.45 93.67 87.05 93.31 96.19

Kappa 64.66 57.64 86.75 94.88 90.05 92.18 95.32
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4.3.2. Classification Results for the UP Dataset

The accuracy for the UP dataset obtained by different methods is shown in Table 2,
where the best accuracy is in bold for each category and for the three metrics. The corre-
sponding classification maps are also illustrated in Figure 10.

Table 2. The classification accuracy for the UP dataset based on 0.5% training samples.

Class SVM CDCNN SSRN FDSSC DBMA DBDA Proposed

1 80.27 87.17 99.35 95.79 90.10 94.43 93.78
2 86.95 93.59 96.14 97.46 98.52 98.52 99.21
3 71.74 43.80 95.99 99.67 74.93 98.86 99.72
4 96.45 86.71 99.56 99.81 95.10 98.46 97.81
5 90.85 98.67 100 99.63 99.70 99.55 99.92
6 77.03 83.76 96.08 97.57 97.93 97.90 99.15
7 69.71 90.17 73.41 100 98.35 97.61 100
8 67.31 67.51 79.25 79.27 84.75 83.57 91.52
9 99.89 97.18 100 99.25 98.82 99.45 99.57

OA 83.08 87.00 94.23 95.65 94.52 96.31 97.60
AA 82.24 83.17 93.31 96.49 93.13 96.48 97.85

Kappa 77.07 82.71 92.31 94.19 92.72 95.08 96.82
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As shown in Table 2, our method achieves the best results on the three metrics. In
particular, the average improvement over the second-best model, DBDA, is +1.29%, +1.37%,
1.74% for OA, AA, and Kappa metrics, respectively. Specifically, for each class, the best
results are obtained by our method in 5 out of 9 classes. In addition, it is worth noting that
in class 8, which is the most difficult to classify, only our model exceeds 90% in classification
accuracy. Class 8 is represented by the dark gray line in Figure 10a, which is too slender
for models to capture. Please note that only DBMA, DBDA and our method achieve the
accuracy over 80 % on category 8. This illustrates the advantage of the attention mechanism
in capturing fine features. Moreover, the accuracy of our method exceeds 90%, indicating
that the attention mechanism adopted by our model stands out.

4.3.3. Classification Results for the SV Dataset

The accuracy for the SV dataset obtained by different methods is shown in Table 3,
where the best accuracy is in bold for each category and for the three metrics. The corre-
sponding classification maps are also illustrated in Figure 11.

Table 3. The classification accuracy for the SV dataset based on 0.5% training samples.

Class SVM CDCNN SSRN FDSSC DBMA DBDA Proposed

1 99.85 0 100 100 100 100 100
2 98.95 64.86 94.53 99.70 100 100 100
3 89.88 97.52 95.92 96.21 97.93 98.88 99.29
4 97.30 92.61 96.44 96.30 90.40 93.58 100
5 93.56 98.51 98.53 99.59 97.91 99.60 98.19
6 99.79 97.01 99.97 99.59 98.15 100 100
7 91.33 94.43 98.94 100 92.42 98.22 100
8 74.73 93.88 92.93 90.06 91.85 99.65 97.16
9 97.69 99.13 98.60 98.55 99.56 97.24 99.79

10 90.01 82.96 98.26 98.69 98.27 97.85 98.05
11 75.92 85.48 93.72 93.72 93.14 90.75 96.00
12 95.19 75.87 99.84 100 99.12 100 99.90
13 94.87 98.49 99.56 100 98.70 100 99.78
14 89.26 96.17 96.69 93.62 97.93 96.18 99.81
15 75.86 41.55 73.09 96.94 88.61 81.42 94.61
16 99.03 99.55 100 100 99.93 100 100

OA 88.09 73.72 93.00 96.57 95.27 95.81 98.33
AA 91.45 82.38 96.06 97.69 96.49 97.08 98.91

Kappa 86.71 71.18 92.23 96.18 94.73 95.35 98.14

Again, the proposed model obtains the best results with 98.33% OA, 98.91% AA, and
0.9814 Kappa. On the class 15, none of the methods achieves over 90% accuracy except
ours. This can be observed in Figure 11. If we concentrate on the yellow area and the gray
area in the upper left corner of classification maps, it can be found that these two areas
interfere with each other terribly in all the models except ours.
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4.3.4. Classification Results for the BS Dataset

The accuracy for the BS dataset obtained by different methods is shown in Table 4, where
the best accuracy is in bold for each category and for the three metrics. The corresponding
classification maps are also illustrated in Figure 12.

Since the BS dataset is small and only with 3248 labeled samples, training samples
may be scarce for the model. Nevertheless, the proposed method yields the best results,
which demonstrates the competency of our method in exploiting spectral information and
spatial information.
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Table 4. The classification accuracy for the BS dataset based on 1.2% training samples.

Class SVM CDCNN SSRN FDSSC DBMA DBDA Proposed

1 100 91.96 99.62 97.41 98.13 97.72 99.62
2 70.71 80.20 100 74.24 89.91 98.99 100
3 84.11 90.50 98.68 100 100 100 100
4 69.96 96.97 95.87 86.83 91.63 92.95 91.67
5 82.63 72.40 83.92 85.92 94.59 96.97 87.46
6 65.71 65.51 69.25 92.78 77.92 85.62 100
7 78.78 71.65 100 100 86.64 87.54 100
8 65.88 90.00 97.51 92.45 100 100 100
9 75.19 77.74 92.11 84.05 95.24 100 99.34

10 69.82 90.95 83.99 86.83 83.56 86.52 98.78
11 95.50 83.90 97.34 100 99.32 100 100
12 93.10 88.24 100 86.70 99.44 100 100
13 76.25 71.51 100 100 100 100 100
14 90.41 68.86 100 100 100 100 100

OA 78.63 79.84 92.86 92.00 93.11 95.35 98.10
AA 79.57 81.46 94.16 91.94 94.03 96.17 98.35

Kappa 76.88 78.13 92.26 91.34 92.53 94.97 97.94
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5. Discussion

In this part, more experiments are carried out to comprehensively discuss the impacts
and capabilities of the relevant components in the proposed model.

5.1. Investigation of the Proportion of Training Samples

It is well known that the amount of training samples significantly affects the perfor-
mance of deep-learning models. In this section, we randomly select 0.5%, 1%, 3%, 5% and
10% of samples as training sets to investigate the performance of different models with
different proportion of training data. The experimental results are illustrated as Figure 13.

It is expected that as the percentage of training data increases, the OA of all methods
improves. Moreover, all three approaches using 3DCNN consistently outperform CDCNN
with only 2DCNN and the traditional model SVM. In addition, all three methods using
3DCNN consistently outperform the CDCNN with only 2DCNN and the traditional model
SVM. Also, the discrepancy between these methods is narrowing as the amount of training
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samples increases. Please note that our proposed method obtains the best results regardless
of the proportion, especially when the samples are not sufficient.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 24 
 

 

  

(a) Ground Truth (b) SVM 

  
(c) CDCNN (d) SSRN 

  
(e) FDSSC (f) DBMA 

  
(g) DBDA (h) Proposed 

Figure 12. Classification maps achieved by seven different methods for the BS dataset. (a) Ground-truth. (b–h) The classification 

maps of the corresponding methods. 

5. Discussion 

In this part, more experiments are carried out to comprehensively discuss the impacts 

and capabilities of the relevant components in the proposed model. 

5.1. Investigation of the Proportion of Training Samples 

It is well known that the amount of training samples significantly affects the 

performance of deep-learning models. In this section, we randomly select 0.5%, 1%, 3%, 

5% and 10% of samples as training sets to investigate the performance of different models 

with different proportion of training data. The experimental results are illustrated as 

Figure 13. 

It is expected that as the percentage of training data increases, the OA of all methods 

improves. Moreover, all three approaches using 3DCNN consistently outperform 

CDCNN with only 2DCNN and the traditional model SVM. In addition, all three methods 

using 3DCNN consistently outperform the CDCNN with only 2DCNN and the traditional 

model SVM. Also, the discrepancy between these methods is narrowing as the amount of 

training samples increases. Please note that our proposed method obtains the best results 

regardless of the proportion, especially when the samples are not sufficient. 

 
 

(a) IP (b) UP 

40

50

60

70

80

90

100

0.50% 1% 3% 5% 10%

O
A

(%
)

Percentage of training samples(%)

DBDA SVM CDCNN FDSSC Ours

80

82

84

86

88

90

92

94

96

98

100

0.50% 1% 3% 5% 10%

O
A

(%
)

Percentage of training samples(%)

DBDA SVM CDCNN FDSSC Ours
Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 24 
 

 

 
 

(c) SV (d) BS 

Figure 13. The OA of SVM, CDCNN, FDSSC, DBDA and our method with different proportions of training samples on the (a) IP, 

(b) UP, (c) SV and (d) BS. 

5.2. Investigation of the Attention Mechanism 

Our model integrates spectral attention and spatial attention. In this section, we will 

test the effectiveness of these attention modules. Specifically, we consider a PyConv-only 

network without any attention module as a baseline (denoted as Plain). It is a simple 

double-branch model that extracts spatial and spectral features separately. Moreover, we 

denote the three derivatives: the subnetwork integrated with spectral attention, the 

subnetwork integrated with spatial attention and the subnetwork integrated with both as 

Plain+SpeAtt, Plain+SpaAtt and Plain+SSAtt, respectively.  

Figure 14 shows the comparison of the classification results of different networks in 

terms of OA, AA and Kappa. Different colors indicate different subnetworks. From the 

figure, we can see that either spectral attention or spatial attention, once integrated into 

the network, can contribute to the performance of the original network. This confirms the 

effectiveness of the proposed attention module. In addition, we can observe that the 

Plain+SSAt outperforms all the other subnetworks. This implies that spectral attention 

and spatial attention can complement each other to contribute more to the final 

classification decision. 

  

(a) IP (b) UP 

75

80

85

90

95

100

0.50% 1% 3% 5% 10%

O
A

(%
)

Pecentage of training samples(%)

DBDA SVM CDCNN FDSSC Ours

70

75

80

85

90

95

100

0.50% 1% 3% 5% 10%

O
A

(%
)

Percentage of training samples(%)

DBDA SVM CDCNN FDSSC OURS

0.86 0.88 0.9 0.92 0.94 0.96 0.98

OA

AA

Kappa

Plain Plain + SpaAtt

Plain + SpeAtt Plain + SSAtt

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

OA

AA

Kappa

Plain Plain + SpaAtt

Plain + SpeAtt Plain + SSAtt

Figure 13. The OA of SVM, CDCNN, FDSSC, DBDA and our method with different proportions of training samples on the
(a) IP, (b) UP, (c) SV and (d) BS.

5.2. Investigation of the Attention Mechanism

Our model integrates spectral attention and spatial attention. In this section, we will
test the effectiveness of these attention modules. Specifically, we consider a PyConv-only
network without any attention module as a baseline (denoted as Plain). It is a simple
double-branch model that extracts spatial and spectral features separately. Moreover,
we denote the three derivatives: the subnetwork integrated with spectral attention, the
subnetwork integrated with spatial attention and the subnetwork integrated with both as
Plain + SpeAtt, Plain + SpaAtt and Plain + SSAtt, respectively.

Figure 14 shows the comparison of the classification results of different networks in
terms of OA, AA and Kappa. Different colors indicate different subnetworks. From the
figure, we can see that either spectral attention or spatial attention, once integrated into
the network, can contribute to the performance of the original network. This confirms the
effectiveness of the proposed attention module. In addition, we can observe that the Plain
+ SSAt outperforms all the other subnetworks. This implies that spectral attention and
spatial attention can complement each other to contribute more to the final classification
decision.
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5.3. Ablation Study for Iteration Number of the Attention Map

The number of iterations in the EMA block actually affects the performance of the
model. We plot the trend of the three metrics OA, AA and Kappa against iteration number
as Figure 15. We fix the base at 16 and vary the iteration number to investigate its effect
on the model performance. From Figure 15, it can be seen that the model performance
basically converges at first, and then the metrics start to oscillate. Specifically, three metrics
on the IP dataset perform very unstably due to the unique nature of IP, i.e., the spatial
size of IP is relatively small but with 16 categories, which makes the classification more
arduous. Accordingly, the iteration number on the IP is set to 2, and that on the UP, SV and
BS is set to 3.

5.4. Comparison of the Activation Function

In this article, a new activation function Mish is introduced to enhance the performance
of the model. Here, the comparison of performance between Mish and ReLU is illustrated
as Figure 16. It is obvious that if the proposed model adopts Mish as the activation function
instead of ReLU, the OA could be improved to a certain extent.
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Figure 15. OA, AA and Kappa of the proposed model with different iteration number on the (a) IP, (b) UP, (c) SV and (d) BS.
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Figure 16. Comparison of OA with activation functions Mish and ReLU on different datasets.

5.5. Comparison of Different Feature Fusion

As illustrated in Figure 17, concatenation outperforms overall. This is as expected,
as the spectral and spatial features are in the independent feature space. If addition
operation is adopted instead of concatenation, information from different domains tends
to be intermixed or even interfere with each other. However, we can see that the addition
operation outperforms the concatenation operation on the IP dataset. At first it is attributed
to a coincidence, nonetheless, the results remain the same after repeated experiments. Such
experimental results may be caused by the specificity of the IP dataset, which has been
mentioned in Section 5.3. In contrast to the concatenation operation, weighted addition can
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use weights to adjust the influence of spectral and spatial information on the classification
results. This property is probably more useful for the IP dataset, since its spatial size is
smallest while the numbers of spectral bands categories are large.
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5.6. Investigation of Running Time

A decent method should achieve a favorable accuracy-efficiency trade-off. In this
section, we will compare the time costs of the seven algorithms on the IP, UP, SV, and BS
datasets. Tables 5–8 show the training time and test time of seven methods on the four
datasets.

Table 5. The running time of seven methods on the IP dataset.

Dataset Algorithm Training Time (s) Testing Time (s)

IP

SVM 21.50 1.15
CDCNN 11.25 1.69

SSRN 82.98 3.45
FDSSC 122.94 4.51
DBMA 47.36 8.56
DBDA 64.64 7.98

Proposed 61.34 4.51

Table 6. The running time of seven methods on the UP dataset.

Dataset Algorithm Training Time (s) Testing Time (s)

UP

SVM 3.69 2.94
CDCNN 8.39 6.28

SSRN 20.45 10.18
FDSSC 53.84 12.78
DBMA 32.06 22.79
DBDA 16.03 21.09

Proposed 38.72 12.49

From Tables 5–8, it can be observed that SVM spends less training time and test-
ing time than DL-based methods in most cases. Furthermore, since 2D convolution is
more parameter- and computation-conserving than 3D convolution, CDCNN, as a rep-
resentative of 2D-CNN-based methods, is more time-conserving than 3D-CNN-based
methods. Among these five 3D-CNN-based methods, the training time and testing time of
our method are moderate. Considering the accuracy of our method is promising, it can
be concluded that the proposed method strikes a better balance between accuracy and
efficiency.
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Table 7. The running time of seven methods on the SV dataset.

Dataset Algorithm Training Time (s) Testing Time (s)

SV

SVM 10.39 4.77
CDCNN 8.27 9.77

SSRN 48.29 19.63
FDSSC 151.29 24.17
DBMA 110.53 49.92
DBDA 67.08 46.05

Proposed 94.38 25.41

Table 8. The running time of seven methods on the BS dataset.

Dataset Algorithm Training Time (s) Testing Time (s)

BS

SVM 1.09 0.21
CDCNN 5.37 0.50

SSRN 10.32 0.91
FDSSC 12.22 1.17
DBMA 8.49 2.21
DBDA 9.55 2.08

Proposed 11.49 1.23

6. Conclusions

In this paper, we propose a novel HSI classification method that consists of a double
branch with the pyramidal convolution and an iterative attention. First, the input of the
whole framework is not subjected to dimensionality reduction such as PCA. The original
3D data is cropped into 3D cubes as input. Then, two branches are constructed with two
novel techniques, namely pyramidal convolution and an iterative attention mechanism,
EM attention, to extract spectral features and spatial features, respectively. Meanwhile, a
new activation function, Mish, is introduced to accelerate the network convergence and
improve the network performance. Finally, with several experiments, we analyze our
model from multiple perspectives and demonstrate that the proposed model yields the
best or competitive results on four datasets on comparison to other algorithms.

A future direction of our work is to explore better attention mechanisms to obtain
finer feature representations. Furthermore, it seems interesting to further reduce the data
requirements with new techniques such as a few-shot learning or zero-shot learning.
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