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Abstract: This paper discusses the potential of L-band Advanced Land Observing Satellite-2 (ALOS-
2) and C-band Sentinel-1 radar data for retrieving soil parameters over cereal fields. For this purpose,
multi-incidence, multi-polarization and dual-frequency satellite data were acquired simultaneously
with in situ measurements collected over a semiarid area, the Merguellil Plain (central Tunisia). The
L- and C-band signal sensitivity to soil roughness, moisture and vegetation was investigated. High
correlation coefficients were observed between the radar signals and soil roughness values for all
processed multi-configurations of ALOS-2 and Sentinel-1 data. The sensitivity of SAR (Synthetic
Aperture Radar) data to soil moisture was investigated for three classes of the normalized difference
vegetation index (NDVI) (low vegetation cover, medium cover and dense cover), illustrating a
decreasing sensitivity with increasing NDVI values. The highest sensitivity to soil moisture under
the dense cover class is observed in L-band data. For various vegetation properties (leaf area index
(LAI), height of vegetation cover (H) and vegetation water content (VWC)), a strong correlation is
observed with the ALOS-2 radar signals (in HH(Horizontal-Horizontal) and HV(Horizontal-Vertical)
polarizations). Different empirical models that link radar signals (in the L- and C-bands) to soil
moisture and roughness parameters, as well as the semi-empirical Dubois modified model (Dubois-B)
and the modified integral equation model (IEM-B), over bare soils are proposed for all polarizations.
The results reveal that IEM-B performed a better accuracy comparing to Dubois-B. This analysis
is also proposed for covered surfaces using different options provided by the water cloud model
(WCM) (with and without the soil–vegetation interaction scattering term) coupled with the best
accuracy bare soil backscattering models: IEM-B for co-polarization and empirical models for the
entire dataset. Based on the validated backscattering models, different options of coupled models are
tested for soil moisture inversion. The integration of a soil–vegetation interaction component in the
WCM illustrates a considerable contribution to soil moisture precision in the HV polarization mode
in the L-band frequency and a neglected effect on C-band data inversion.

Keywords: radar; ALOS-2; L-band; Sentinel-1; C-band; soil moisture; soil roughness; vegetation;
water cloud model

1. Introduction

Soil moisture is a key parameter for various processes in the continental water cycle.
It plays an essential role in the separation of precipitation between runoff, infiltration
and evaporation from surfaces. It is also a key parameter in water resource management,
especially in the estimation of irrigation needs and monitoring of flood events [1–6]. Consid-
erable effort has been devoted to estimate soil moisture in a context of limited contribution
of punctual ground measurements.
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Over the last thirty years, remote sensing has shown a high potential to retrieve soil
moisture. Operational algorithms have also been principally proposed using low-spatial
resolution microwave radiometer or scatterometer instruments. In the L-band, satellites
such as Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP)
have demonstrated a strong potential for soil moisture retrieval, with a spatial resolution
ranging between 25 and 36 km by a revisit time of up to one day [7,8]. Scatterometers, such
as ASCAT [9], have provided different products principally based on change detection
algorithms. These low-resolution products are particularly adapted to global and regional
applications [10].

SAR (Synthetic Aperture Radar) high-resolution data have been particularly adapted
to estimate soil moisture at the agricultural field scale. In the last three decades, many
experimental and theoretical research studies have proposed methodologies to retrieve
soil moisture [11–25]. These studies are based on a succession of radar missions, mainly in
the C- and X-bands (ERS, ASAR/ENVISAT, RADARSAT-1, RADARSAT-2, TERRASAR-X,
SKYMED, Sentinel-1, etc.).

For bare soils, different models have been proposed to understand and characterize
the relationship between radar signals and soil properties, i.e., soil moisture and surface
roughness are generally estimated by statistical parameters such as root mean square
height (Hrms) and correlation length (Lc). Among these models, there are empirical [26,27]
and semi-empirical approaches, such as Dubois and Oh models [28,29], and physical
approaches that consider different types of physical approximations, such as the small
perturbation model, Kirchhoff [30] or the integral equation model [31], which are the most
frequently used by the scientific community. These models have been tested and validated
by numerous scientific studies [32–35]. These studies have demonstrated the limitations
of these different models, especially for characterizing scattering over surfaces with a
high roughness. Different approaches have been proposed to improve these simulations.
Baghdadi et al. [36,37] replaced in the IEM-B version the correlation length by a fitting
parameter function of Hrms, incidence angle, polarization and radar wavelength.

For surfaces with vegetation cover, backscattering analysis should consider the effect
of vegetation cover in addition to that of soil. In this framework, different models have been
developed to simulate the radar signal scattered by the surface. These are physical models
such as the Karam model [38], Michigan microwave canopy scattering (MIMCS) [39] or
semi-empirical or empirical models. The most known among the latter is the water cloud
model (WCM) proposed by Attema and Ulaby in 1978 [40].

The WCM considers the total backscattering signal as the sum of a first component,
soil scattering attenuated with the vegetation effect, a second component, vegetation
volume scattering, and, finally, a third term describing the interactions between soil and
vegetation. This last component is generally neglected in scientific studies that use the
WCM [30]. For this model, vegetation effect quantification requires the use of vegetation
biophysical properties such as leaf area index (LAI), vegetation water content (VWC) or
vegetation height (H) [41–44]. In this context, for an operational objective, spectral indices
calculated from optical images such as the normalized difference vegetation index (NDVI)
are often considered for this description [27,42]. Several studies have highlighted the strong
contribution of the synergy of radar and optical data to properly characterize the scattering
of surfaces with vegetation cover [45,46]. However, this approach has some limitations
due to the saturation of optical indices and is unable to reproduce all the dynamics of
vegetation cover with high density levels [45].

The inversion of the radar signal to estimate the soil water content at the agricultural
plot scale is essentially based on three types of approaches: (1) a direct inversion approach
of the backscattering models described above [47,48], (2) an approach based on machine
learning approaches, notably through the use of neural networks [49–51] and (3) approaches
that use change detection techniques [52–54].

With the arrival of the Sentinel 1 and 2 Copernicus constellations, these approaches
have been tested by several scientific studies. The authors of [55] proposed approaches for
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the direct inversion of S1 data using backscatter models. They illustrated accuracies on
the order of 5 vol.%. However, this methodology remains relatively fragile in applications
outside the calibration sites of the model’s parameters. The authors of [51] proposed an
algorithm based on neural networks and learning using the coupling of the IEM-B and
WCM models. This approach provides soil moisture estimates with an accuracy on the
order of 5 vol.% for surfaces with NDVI < 0.7. The authors of [52] proposed an adapted high-
resolution approach to change detection, illustrating a precision on the order of 6 vol.%. At
a scale of 1 km, [53] also proposed an operational approach based on this change detection
technique, and operational products have already been available across Europe.

Most of those approaches considered for backscatter model validation or radar data
inversion to retrieve land surface parameters are mainly based on data acquired in the
C- and X-bands. Concerning the L-band, data availability remains relatively limited to a
few space missions, notably the ALOS and ALOS-2 Japanese missions. In the near future,
different L-band missions, such as NISAR and ROSE-L, should be launched. One of the
objectives of these missions is to contribute to improving the estimation of land surface
parameters, notably soil moisture. Many studies have been proposed to analyze the L-band
data potential over agricultural surfaces [56–62]. The authors of [56] used fully polarized
L-band airborne observations to evaluate the IEM, Dubois and Oh backscatter models.
The authors of [59] investigated and confirmed the potential of ALOS-2 L-band data in
retrieving soil moisture even for dense vegetation (NDVI > 0.7). The authors of [61], in a
tropical context, tested the WCM on covered fields using the LAI parameter for vegetation
effect simulation. An accuracy of 6.7 vol.% for HH(Horizontal-Horizontal) polarization
and 7.9 vol.% for HV(Horizontal-Vertical) polarization was reported over marigold crop
fields. For turmeric crop fields, RMSE values ranged between 8.7 and 11 vol.% for HH
and HV polarization, respectively. They particularly illustrated its high sensitivity to soil
moisture even for vegetation with LAI > 2.5. The authors of [58] developed an approach
based on polarimetric decomposition over many cultures, leading to RMSE values between
6 and 8 vol.%.

The use of L-band signals still needs to be explored, especially in terms of the potential
of the L-band to retrieve surface parameters, compared to that of the C-band. This work
aims to contribute to a better understanding of the potential of L-band compared to C-
band radar data in terms of sensitivities to soil and vegetation properties, as well as their
inversion for retrieving soil moisture. It discusses the scattering behavior, particularly the
term of interaction between soil and vegetation often neglected in experimental studies.
It focuses on cereal fields. Section 2 of this paper describes the study site and collected
satellite and in situ database. Section 3 details the methodology proposed in this study.
Section 4 presents the results and discussions in three parts: sensitivity analysis of radar
data to surface parameters, simulation of radar signals using backscattering models and
inversion applications to retrieve soil moisture over cereal fields. The conclusions are
gathered in Section 5.

2. Study Zone Description and Database
2.1. Study Zone Description

The study was performed on the Merguellil Plain (9◦23′–10◦17′E, 35◦1′–35◦55′N),
which is a flat landscape covering 3000 km2 (Figure 1). It is classified as a semiarid zone
with a rainy season ranging from September to April and a summer season with almost
no rainfall. The mean annual precipitation is 300 mm per year. The average temperature
in the coldest months (December, January and February) is 11 ◦C and can reach 30 ◦C
in summer. The reference evapotranspiration is estimated to be 1600 mm according to
the Penman method. The main land use is cereal, olive tree and market garden crops.
The plain is a basin that was fed by surface water infiltration before the construction of
the El Haouareb and Sidi Saad dams at the level of the Merguellil and Zeroud rivers,
respectively. Moreover, it is the confluence zone of several underground water tables
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(Bouhaffna, Haffouz–Cherichira and Ain El Bidha) that drain into the Sabkhet El Kalbia
outlet [63].
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Figure 1. (a) Location of study site in the Merguellil area (dashed rectangle colored in red) in
central Tunisia. (b) Reference fields on the study site (in the front RGB colored map derived from a
Sentinel-2 image).

2.2. Dataset Description
2.2.1. Radar Images

(a) ALOS-2 Radar Data

Multi-incidence images were acquired by the Advanced Land Observing Satellite-2
(ALOS-2) using the L-band SAR antenna Phased Array Synthetic Aperture Radar (PAL-
SAR), which was launched by the Japan Aerospace Exploration Agency (JAXA), with
a revisit cycle frequency of 1/14 days−1. The ALOS-2 images used, in the strip map
operation mode, offer a spatial resolution of 6 x 6 m in dual polarizations HH (horizontal–
horizontal) and HV (horizontal–vertical) and various incidence angles (28◦, 32.5◦ and 36◦).
Table 1 summarizes the main characteristics of the L-band SAR images recorded at the
Kairouan site.

Images were radiometrically corrected to convert the digital values into backscatter
coefficients on a linear scale. This correction was followed by georeferencing according to
the UTM projection system, using the control point method, referenced on an NDVI image
calculated from the Sentinel 2 optical images. The root mean square (RMSE) control point
error is close to 0.5 pixels.

(b) Sentinel-1 Constellation Radar Data

Owing to the launch of the Sentinel-1 A (S-1 A) on 3 April 2014 and Sentinel-1 B (S-1
B) on 25 April 2016, C-band SAR images are available with a revisit cycle frequency of 6
days in dual-polarization VV (vertical–vertical) and VH (vertical–horizontal) modes, with
an incidence angle of approximately 39◦. In the present study, we used seven images in the
interferometric wide swath mode (IW) with a spatial resolution of 10 × 10 m, as described
in Table 1.

Acquired level 1 ground range detected (GRD) images were processed to derive
backscattering coefficients in each pixel through the following steps: thermal noise removal,
radiometric calibration followed by terrain correction and speckle filtering (Lee filter).



Remote Sens. 2021, 13, 1393 5 of 25

Table 1. Radar parameters of satellite images acquired in 2014–2016, 2019 and 2020 (incidence angle, polarization, path,
spatial resolution, acquisition mode and ascending or descending).

Date

Sensor Parameters

Sensor Angle Polarizations Pixel Spacing Mode Ascending/
Descending

20/11/2014 ALOS-2 36◦ HH + HV 6 × 6 m Strip Map -
19/11/2015 ALOS-2 36◦ HH + HV 6 × 6 m Strip Map -
05/03/2016 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map -
26/11/2016 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map -
26/10/2019 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending

27/10/2019 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Ascending

09/11/2019 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending

09/11/2019 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Descending

23/11/2019 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending
07/12/2019 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending

20/12/2019 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Ascending

04/01/2020 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending

13/01/2020 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Ascending

01/02/2020 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending

01/02/2020 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Descending

15/02/2020 ALOS-2 28◦ HH + HV 6 × 6 m Strip Map Ascending

01/02/2020 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Descending

24/02/2020 Sentinel-1 39◦ VV + VH 10 × 10 m Interferometric
wide swath Ascending

25/05/2020 ALOS-2 32.5◦ HH + HV 6 × 6 m Strip Map Descending

2.2.2. Sentinel-2 Optic Data

Optical images were acquired by Sentinel-2A, launched on 23/06/2015, and Sentinel-
2B, launched on 07/03/2017. They offer images with a 10 m resolution and a passage
frequency of 1/5 days−1. S2 surface reflectance images, cloud free selected, were down-
loaded from the THEIA-LAND site and orthorectified and corrected for atmospheric
effects using the MAJA processor for cloud detection and atmospheric correction (https:
//www.theia-land.fr, accessed on 31 March 2021).

The NDVI vegetation index, expressed as NDVI = (RNIR − RRED)/(RNIR + RRED),
where RNIR is the near-infrared (NIR) reflectance and RRED is the red reflectance, was
calculated from the optical images. The NDVI pixel values were then averaged for each
reference field and each acquisition date [27,45,55].

2.2.3. In Situ Measurements

In situ campaigns were carried out at the same time as the ALOS-2 acquisitions (two
dates in 2014/2015, two dates in 2016 and eight dates in 2019/2020) and Sentinel-1 satellite
acquisitions (7 dates in 2019/2020). Seventeen reference fields were considered with 8 bare
soil fields with different types of roughness, ranging from smooth to ploughed surfaces, and
9 irrigated cereal fields. The surface areas of these study fields ranged between 0.5 and 7 ha.

The in situ measurements made in the test fields involved the characterization of
the following parameters: moisture and roughness measurements were carried out for
the soil characterization, and LAI, VWC and H vegetation property measurements were
recorded for the fields with vegetation cover. Table 2 provides details of the dates of the
field campaigns and the corresponding types of measurement.

https://www.theia-land.fr
https://www.theia-land.fr
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(a) Roughness

Roughness is a measure of microtopographic height variations at the soil surface. This
was characterized by means of a 1-m-long pin profiler with a resolution equal to 2 cm.
Six roughness profiles, 3 parallel and 3 perpendicular to the tillage row direction, were
established in all reference fields during three different ground campaigns. The test fields
are totally flat and homogenous with soil tillage with very limited directional structures.
The proposed number of profiles is a priori sufficient to allow an accurate estimation of the
roughness, as shown by [27] over the same site.

Two main surface roughness parameters, Hrms and Lc, were determined from the
mean height correlation function, which was computed from the digitized soil profiles [64].
Significant variations in the values of Hrms were observed between successive ground
campaigns, ranging from 0.46 (very smooth soils) to 6.46 cm (ploughed soils), resulting
mainly from the influence of rain and cultural practices (tillage, sowing, etc.).

(b) Soil Moisture (Mv)

Soil moisture measurements were collected from each reference field at 20 randomly
distributed points using a hand-held Theta probe for each considered date. These moisture
measurements were calibrated by gravimetric measurements recorded during previous
campaigns simultaneously over the same reference fields [45]. During the missions, mois-
ture measurements were taken at the same image acquisition time with a time lag of
approximately 2 h in order to limit any temporal variation in soil water content. In the case
of the presence of precipitations or irrigations exactly during the satellite acquisitions, the
data are generally not considered because the temporal variations could be very strong on
a very limited duration. The recorded volumetric values varied between 3.0 vol.% issued in
dry conditions and 42.9 vol.% in wet conditions due to precipitation or irrigation (Table 2).

(c) Vegetation Parameters

• Vegetation Heights (H):
In each cereal plot, 20 height measurements were taken, which were well distributed

spatially. The height values reached 1 m towards the end of February during the stem
extension growth stage.

• Leaf Area Index (LAI):
LAI is defined as the total one-sided area of leaf tissue per unit ground surface area.

According to this definition, LAI is dimensionless. For each reference field, we considered
approximately twenty hemispherical digital images, which were processed to retrieve this
vegetation parameter based on the vegetation gap fraction [27]. LAI measurements were
performed during the 2019–2020 agricultural season. During all measurement campaigns,
the computed value of LAI ranged between 0 and 4.5 (Table 2). The highest values of LAI
were observed mainly in the irrigated reference fields.

• Vegetation Water Content (VWC):
Measurement of the water content of the vegetation was based on fresh surface

vegetation sampling. The spatial limits of this sampling were defined by a wooden frame.
We took 3 samples per plot and weighed the fresh material collected. The samples were
dried in an oven at 80 ◦C for 72 h and reweighed again as dry matter. The water content
was calculated according to the following equation in terms of kilograms of water per m2

of surface area:
VWC =

W f −Ws
s

(1)

where W f is the weight of the fresh material, Ws is the weight of the dry vegetation and s
is the surface area of the wooden frame. The obtained values ranged between 0.07 kg of
water/m2 at the start of the cycle to 1.09 kg of water/m2 in February.
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Table 2. In situ measurements (min-max) during campaigns from 2014 to 2020 with the roughness parameters (root mean
square height (Hrms), correlation length (Lc)), soil moisture (Mv) and cereal parameters (vegetation height (H), leaf area
index (LAI) and vegetation water content (VWC)).

Date
Measurements

Hrms (cm) Lc (cm) Mv (vol.%) H (cm) LAI (m2/m2) VWC (kg/m2)

20/11/2014 [1.10–3.52] [2.83–6.86] [3.0–9.3] - - -
19/11/2015 [0.56–4.34] [2.48–8.89] [5.2–9.6] - - -
05/03/2016 [0.56–3.24] [2.48–7.69] [4.5–8.7] - - -
26/11/2016 [0.49–4.55] [2.87–9.58] [10.2–42.9] - - -
26/10/2019 [0.46–6.46] [3.45–10.11] [6.6–25.5] - - -
27/10/2019 [0.46–6.46] [3.45–10.11] [5.8–30.5] - - -
09/11/2019 - - [13.6–30.1] - - -
23/11/2019 - - [6.0–23.9] - - -
07/12/2019 [0.46–6.46] [2.8–10.11] [9.1–30.4] - - -
20/12/2019 [0.46–4.55] [2.8–10.11] [7.6–28.5] [16.8–41.3] [1.20–2.83] [0.1–0.9]
04/01/2020 - - [4.5–25.9] [20–49.6] [0.9–3.1] [0.1–0.9]
13/01/2020 - - [6.5–32.8] [10.7–53.5] [0.7–3.62] -
01/02/2020 - - [4.6–28.2] [15.2–83.2] [0.31–4.06] [0.07–0.9]
15/02/2020 - - [3.7–32.1] [25.6–100] [0.8–4.50] -
24/02/2020 [0.46–4.55] [0.8–10.11] [5.9–33.1] [28.1–105] [1.1–4.03] [0.13–1.09]
25/05/2020 [0.46–3.95] [2.8–10.11] [3.4–21.2] - - -

3. Methodology

In this section, we present different backscattering models that are validated by our
ground truth collected data in the Results section. In the case of bare soils, different
empirical, semi-empirical and physical backscattering models are considered. In the case
of surfaces with vegetation coverage, the water cloud model (WCM) with various options
is discussed.

3.1. Bare Soil Backscattering Models
3.1.1. Empirical Relationships

Empirical models used to characterize the relationship between the backscattering
coefficients σ and soil surface parameters are presented as follows:

σ0
bare soil.pq = g(Mv, Hrms) = αpq ∗Mv + βpq ∗ Log(Hrms) + γpq (2)

σ0
bare soil.pq = h(Mv, Zs) = α′pq ∗Mv + β′pq ∗ Log(Zs) + γ′pq (3)

where Mv is the soil moisture (vol.%), Hrms is the root mean square of heights (cm), pq is
the radar polarization and αpq, βpq and γpq and α’pq, β’pq and γ’pq are constants requiring
calibration and validation.

The roughness effect is introduced by a logarithmic regression between the Hrms or
Zs parameter, defined as Hrms2/Lc [26], and the radar signal. This empirical relation is
generally considered to be logarithmic because of the strong saturation of the radar signal
for high roughness levels [30].

3.1.2. Dubois Calibrated Model (Dubois-B)

The Dubois model is a semi-empirical model applied for copolarized radar signals
over bare soils. Its input variables include radar parameters (polarization, incidence angle
and wavelength), soil moisture and roughness Hrms measurements [28]. The Dubois
model validity range includes soil moisture values <35 vol.%, k.Hrms value <2.5 and
incidence angles Θ > 30◦.

A modified version of the Dubois model (Dubois-B) was proposed by [65] in the three
polarizations of HH, VV and HV to minimize the discrepancy between simulated and real
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backscattering coefficients. For HH, VV and HV polarizations, expressions are written
as follows:

σ0
HH = 10−1.287 ∗ (cos θ)1.227 ∗ 100.009∗cotan(θ)∗Mv ∗ (k.Hrms)0.86∗sinθ (4)

σ0
VV = 10−1.138 ∗ (cos θ)1.528 ∗ 100.008∗cotan(θ)∗Mv ∗ (k.Hrms)0.71∗sinθ (5)

σ0
HV = 10−2.325 ∗ (cos θ)−0.01 ∗ 100.011∗cotan(θ)∗Mv ∗ (k.Hrms)0.44∗sinθ (6)

where k is the wavenumber, which is equal to 2π/λ, λ is the wavelength, θ is the incidence
angle in radian, Mv is in vol.% and Hrms is in cm.

3.1.3. IEM-B Model

The IEM, proposed by [31], is a physical model. It calculates the backscattering
coefficient over bare soils. Its inputs include the dielectric constant retrieved from soil
moisture and the height correlation function (exponential or Gaussian), as well as the radar
parameters (polarization, wavelength and incidence angle). The IEM validity range is
limited by k.Hrms > 3.

The IEM is expressed as [31]

σ0
pp =

k2

2
e−2k2

Zs2
+∞

∑
n=1

s2n
∣∣∣In

pp

∣∣∣2 W(n)(−2kx, 0)
n!

(7)

where σ0
pp is the backscattering coefficient at pp polarization, θ is the radar incidence angle,

k is the wavenumber, kz = k× cos(θ), kx = k× sin s(θ), and s is the root mean surface
height. In

pp is a function of the radar incidence angle, the relative dielectric constant of the
soil εr, and the Fresnel reflection coefficient. W(n)(−2kx, 0) is the Fourier transform of the
nth power of the surface correlation function.

Despite the important contribution of this model to simulations with high-precision
backscattering over bare soils, different studies have shown some limitations in adequately
describing soil geometry [33–35], particularly for high roughness levels. Over the years,
many studies have updated versions of the IEM to minimize discrepancies with SAR
backscattered coefficients over natural areas. The authors of [66] proposed a modified
advanced integrated equation model (AIEM) by considering a transitional model to cal-
culate the Fresnel reflection coefficient. Other improvements were focused on the IEM
inputs. Correlation length (Lc) measurements are, in general, uncertain. The authors of [36]
replaced Lc with an optimized parameter, Lopt, that was directly linked to the Hrms
roughness parameter in the IEM-B version in the C-band (Equations (8) and (9)):

Lopt(Hrms.θ.VV) = 1.281 + 0.134 ∗ (sin(0.19 ∗ θ))−0.159∗Hrms (8)

Lopt(Hrms.θ.HV) = 0.9157 + 2.6590 ∗ (sin(0.1543 ∗ θ))−0.3139∗Hrms (9)

In the L-band, the authors of [37] used a fitting parameter, Lopt, for HH polarization
and a Gaussian correlation function, as shown in equation (10):

Lopt(Hrms.θ.HH) = 2.6590 ∗ θ−1.4493 + 3.0484 Hrms∗θ−0.8044 (10)

3.2. Water Cloud Model (WCM) Backscattering Model over Vegetation Cover

The WCM was used to model the radar signal backscattered for vegetation-covered
surfaces. Vegetation is described as a set of identical, spherical water droplets characterized
by their density and canopy height [40]. The total backscattering coefficient σ0 is expressed
as follows:

σ0
pq = σ0

vegetation,pq + σ
0
soil−vegetation,pq + τ2σ0

soil,pq (11)
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where σ0
vegetation is the vegetation contribution component and τ2 is the two-way vegetation

attenuation of the bare soil backscattering coefficient σ0
soil. Multi-backscattering effects are

considered in the term σ0
soil−vegetation.

τ2 = exp(−2 ∗ B ∗V1 ∗ sec θ) (12)

σ0
vegetation,pq = A ∗V2 ∗ cos θ ∗

(
1− τ2

)
(13)

where A and B are parameters that depend on the characteristics of the vegetation canopy
and V1 and V2 are vegetation descriptors. The impact of the choice of descriptors was
discussed in [67]. In the present case, we consider the NDVI, which is strongly related to
the vegetation parameters, as shown in Section 2.

The multi-scattering term is generally neglected in experimental studies, and total
backscattering is then written as follows:

σ0
pq = σ0

vegetation,pq + τ2σ0
soil,pq (14)

However, a number of studies have illustrated the importance of the multi-scattering
term, notably in HV polarization. The authors of [15] considered the following term,
describing the coherent interaction between the canopy and ground:

σ0
soil−vegetation,pq = 2 ∗ ks ∗

(
d ∗ Rpq ∗ τ2

)
(15)

where ks is the volume scattering coefficient, d is the canopy depth and Rpq is the Fresnel
reflectivity in the pq polarization mode.

In this study, we propose an approximation of this term by considering a third term to
calibrate:

σ0
soil−vegetation,pq = Cpq ∗V2 ∗ τ2 ∗

(
1− τ2

)
∗ cos θ ∗ 10(

α∗Mv
10 ) (16)

in which the Cpq parameter is dependent on the characteristics of the vegetation cover, and
the α parameter is estimated directly from the linear relationship between the radar signal
and soil moisture in dB/vol.%.

In this approximation, the formulation of the volume scattering coefficient is deduced
from Expression (12), V2 is the vegetation descriptor, directly related to the canopy depth,
and, finally, the expression of the Fresnel coefficient is expressed from the relationship
between the soil moisture and radar signal.

3.3. Statistical Parameters for Accuracy Assessment

Datasets were subdivided into two parts: 70% of the database for model calibration,
and 30% for validation. The training data were used to calculate the different parameters
to be estimated in the empirical and semi-empirical models.

The root mean square error (RMSE) and bias were considered to estimate the precision
of the models.

RMSE =

√
1
N ∑N

i=0

(
Pestimated

i − Pmeasured
i

)2 (17)

Bias =
1
N ∑N

i=0

(
Pestimated

i − Pmeasured
i

)
(18)

where N is the number of data samples, Pestimated
i is the estimated value of sample i and

Pmeasured
i is the measured value of sample i.

4. Results and Discussion
4.1. Relationship between NDVI and Vegetation Parameters

Analysis of the optical data potential was conducted by plotting the NDVI index
as a function of the vegetation parameters measured in the test field (Figure 2). The
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NDVI values covered an interval starting from 0.2 for cereals after sowing to values of
approximately 0.8 at the stem extension phase.

The NDVI values show moderate correlations with R values of 0.74 and 0.59 for H
and VWC, respectively. Figure 2 illustrates this strong relationship between NDVI and
LAI, generally considered for modeling of the vegetation backscattering contribution, with
a high correlation equal to 0.79. We consider NDVI as a key parameter for describing
vegetation cover, basing on the results observed in many other studies [42,51], in the
remainder of this study, concerning backscattering and inversion models.
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Figure 2. Relationship between LAI in situ measurements and normalized difference vegetation
index (NDVI) derived from Sentinel 2 images.

4.2. Sensitivity of Radar Signal to Surface Properties
4.2.1. Sensitivity to Soil Roughness

Signal behavior is strongly influenced by soil roughness and moisture. Figure 3 shows
the sensitivity of L-band SAR data as a function of roughness parameters (Hrms and Zs).
To avoid the impact of soil moisture on this backscattering behavior, we analyzed the
relationship between the roughness and radar signal only with moisture values less than
10 vol.%. Table 3 details the statistical correlation coefficients for all relationships between
roughness parameters (Hrms and Zs) and the dual-frequency radar signals with ALOS-2
in dual polarizations HH and HV according to three incidence angles (28◦, 32.5◦ and 36◦)
and Sentinel-1 data in VV and VH polarizations at a 39◦ incidence angle.

Table 3. Statistics of relationships between radar signal and roughness parameters (Hrms and Zs),
for L-HH and L-HV (ALOS-2), at three incidence angles, 28◦, 32.5◦ and 36◦, and for C-VV and C-VH
(Sentinel-1), at a 39◦ incidence angle where soil moisture values are under 10 vol.%.

Sensor ALOS-2 Sentinel-1

Polarization L-HH L-HV C-VV C-VH
Incidence Angle 28◦ 32.5◦ 36◦ 28◦ 32.5◦ 36◦ 39◦ 39◦

R (σ0 = f (Hrms)) 0.86 0.93 0.83 0.77 0.83 0.82 0.85 0.56
R (σ0 = f (Zs)) 0.87 0.92 0.7 0.73 0.82 0.75 0.88 0.55

Using the Hrms parameter, high correlation coefficients ranging between 0.83 and
0.93 in L-HH multi-incidence data and between 0.77 and 0.83 in L-HV multi-incidence
data can be observed. Using the Zs parameter, correlation coefficients between 0.7 and
0.92 are observed for the multi-incidence L-HH data and between 0.73 and 0.82 for the
L-HV data. We observe approximately the same level of correlation for the two roughness
parameters. We also observe a range of radar signals related to the variation in roughness
approximately equal to 10 dB and 8 dB for L-HH and L-HV, respectively.
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For Sentinel-1 C-VV data, we observe high correlation coefficients equal to 0.88 and
0.85 for the Zs and Hrms parameters, respectively. A lower level of correlation is ob-
served for the C-VH data, where the R values reach a maximum of 0.56 for the same
roughness range.

Different reasons can degrade the correlation observed between the radar signals and
the roughness parameters: the absence of information on the shape of the height correlation
function, the complexity of the scattering for strong roughness levels and, finally, the
possible uncertainties in the roughness ground measurements.

Under low-soil moisture conditions, according to Table 3, we observe a signal dy-
namic due to soil roughness approximately equal to 8 dB and 6 dB for C-VV and C-VH,
respectively, which is close to the observed range in [27]. This could give more weight to
the use of L-band data in mapping soil practices and, at the same time, be considered a
probable, more important noise factor in estimating soil moisture from L-band radar data.
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Figure 3. ALOS-2 radar data (28◦ incidence angle) as a function of roughness parameters Zs and Hrms. (a) Zs and HH
polarization, (b) Hrms and HH polarization, (c) Zs and HV polarization, (d) Hrms and HV polarization.

4.2.2. Sensitivity to Soil Moisture

In this section, we analyze the sensitivity of L- and C-band radar data to soil moisture.
In this context, to avoid the vegetation cover effect, we consider three classes of vegetation: a
first class of bare soil or very dispersed vegetation (NDVI < 0.3), a second class with medium
density (0.3 < NDVI < 0.6) and, finally, a third class with dense vegetation (NDVI > 0.6).
Only surfaces after tillage for cereal sowing, with approximately the same roughness, are
considered in this analysis to avoid other effects due to roughness for bare soils.

Figure 4 illustrates the relationships found for the L-HH and L-HV data for the three
considered classes. We first observe a decrease in the sensitivity of the radar signal to
soil moisture with an increase in vegetation cover for both polarizations. This sensitivity
decreases by 0.31 and 0.18 dB/vol.% (NDVI < 0.3) to 0.27 and 0.15 dB/vol.% for NDVI
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values between 0.3 and 0.6 and finally to 0.19 and 0.16 dB/vol.% (NDVI > 0.6) in HH and
HV, respectively. All statistics are also illustrated in Table 4.

The moisture sensitivity is generally lower for HV polarization, which could be
explained by the volume scattering effect in the cross-polarization case, especially in the
presence of the canopy. This last result is generally observed by experimental scientific
studies [27,44]. For the densest canopies (NDVI > 0.6), the sensitivity of L-HH data to soil
moisture remains significant. However, the correlation is weak (R = 0.35), which makes the
conclusion about the sensitivity of the radar signal to moisture rather fragile.

In the C-band, Table 4 shows that the sensitivity of the radar signal to soil moisture
decreased by 0.26 and 0.24 dB/vol.% to 0.17 and 0.08 dB/vol.% for the vegetation medium
density class and finally to 0.07 and 0.09 dB/vol.% for the denser canopy classes in VV and
VH, respectively.
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Figure 4. ALOS-2 radar data as a function of soil moisture: NDVI < 0.3 (HH (a); HV (b)), 0.3 < NDVI < 0.6 (HH (c); HV (d))
and NDVI > 0.6 (HH (e); HV (f)).

The inter-comparison of the results obtained for the L- and C-bands shows a higher
sensitivity of the L-band in HH polarization to soil moisture for the high density covered
soils (0.19 dB/vol.% for L-HH configuration and 0.07 dB/vol.% for C-VV configuration).
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In the case of HV polarization, a lower sensitivity to soil moisture is generally observed for
all tested configurations. This is particularly due to the effect of stronger volume scattering
in cross-polarization.

In all studied cases, the correlations observed for all configurations remain relatively
moderate even in the case of bare soil. This could be explained, in particular, by the effect
of the surface roughness, illustrated earlier in this section. These results are in agreement
with other studies [59–62].

In the case of tropical crops (marigold and turmeric), [61] confirmed the strong sensi-
tivity of the L-band radar signal to soil moisture for LAI values greater than 2.5. The authors
of [60] also observed a high potential of L-band data in HH polarization to penetrate wheat
and grassland covers, even where NDVI > 0.7.

These results confirm the contribution of L-band data compared to C-band data in
estimating soil moisture, especially in the densest canopies.

Table 4. Radar data linear relationship as a function of soil moisture for ALOS-2 data in dual polarizations HH and HV at a
28◦ incidence angle and for Sentinel-1 data in VV and VH polarizations at an approximately 39◦ incidence angle.

Sensor ALOS-2 Sentinel-1

Configuration L-HH L-HV C-VV C-VH

Parameters Slope (dB/vol.) R Slope (dB/vol.) R Slope (dB/vol.) R Slope (dB/vol.) R
NDVI ≤ 0.3 0.31 0.73 0.18 0.59 0.26 0.56 0.24 0.47

0.3 < NDVI < 0.6 0.27 0.51 0.15 0.28 0.17 0.59 0.08 0.33
NDVI ≥ 0.6 0.19 0.35 0.16 0.35 0.07 0.20 0.09 0.37

4.2.3. Sensitivity of Radar Signal to Vegetation Parameters

In this section, we evaluate the sensitivity of ALOS-2 and S-1 radar data as a function
of vegetation parameters (VWC, LAI and H). To limit the effect due to soil moisture,
we considered data at only high moisture levels (greater than 20 vol.%). In this context,
the radar signal is close to saturation with respect to the effect of soil moisture. Figure 5
represents radar signals and L-HH, L-HV, C-VV and C-VH data as a function of vegetation
parameters under the considered wet soil moisture conditions.

Despite a relatively limited number of samples (between 9 and 13 samples), a sensitiv-
ity of the radar signal to canopy properties is observed with ALOS-2 SAR data for both
L-HH and L-HV configurations. This sensitivity is relatively the same for both polariza-
tions. The correlation is weaker for the L-HV configuration than for the L-HH configuration.
This could be explained particularly by the complex volume scattering behavior observed
in the HV polarization mode.

The L-band trends show the strongest correlation with VWC, with R values equal to
0.87 and 0.78 in the HH and HV polarizations, respectively, followed by height and then
LAI (Figure 5).

The L-band data have a higher penetration of radar waves into the canopy compared
to C data. Therefore, the correlation with LAI, which displays information more related to
leaf superior cover without information about the cover structure, is weakest.

An increase in the L-HH radar signal is observed with increasing cereal canopy
parameters. This trend has already been observed, in particular, in [59] over wheat fields,
where the L-HH signal increases as a function of LAI and vegetation height. In contrast to
the VV polarization data, which illustrate a decrease in the radar signal for the first period
of growth due to a strong attenuation of the signal over cereals with vertical geometry, the
HH polarization data show weak attenuation and then a more dominant contribution due
to volumetric scattering. This behavior with a decrease in the radar signal with the growth
of the vegetation cover is clearly observed in the S1 data (Figure 5) and in other studies
using X-band data [68]. However, we also observe in different studies a reversal of the
trend with the development of cereals, probably related to a stronger dominance of volume
scattering [69].
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In contrast to the L-band data, a moderate correlation is observed between the radar
signals in the C-VV configuration and LAI parameter (R equal to 0.63). This result is
consistent with other past studies performed with S1 data. This correlation remains
relatively strong for the other vegetation parameters (H and VWC). However, the C-VH
data illustrate a weak correlation with the different vegetation parameters analyzed, with
an R value less than 0.46.

Comparing the cross-polarization results for the L- and C-bands, we note that different
behaviors are mainly attributed to penetration depths with different contributions of
volume scattering and sensor configurations, such as incident angles, since we worked on
the same cereal fields.
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Figure 5. Radar data as a function of vegetation parameters using linear regression with continuous line for C-band data
and dashed line for L-band data: (a) L-HH (ALOS-2) and C-VV (Sentinel-1) as a function of VWC, (b) L-HV and C-VH as a
function of VWC, (c) L-HH and C-VV as a function of vegetation height (H), (d) L-HV and C-VH as a function of H, (e)
L-HH and C-VV as a function of LAI, (f) L-HV and C-VH.
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4.3. Simulations of Radar Backscattering Coefficients

In this section, after a relatively simple analysis of radar signals’ sensitivities to the dif-
ferent surface parameters, separately, the objective is to use different backscattering models
for a global analysis of relationships between surface parameters and multi-configuration
radar signals. Simulations concern two different types of land use: bare soil and soil
covered by cereals.

4.3.1. Case of Bare Soils

In this section, we first validate the Dubois-B and IEM-B models using our multi-
incidence, multi-polarization and dual-frequency database acquired on bare soil.

Figure 6 illustrates the results retrieved for L-band data for the two tested models. For
the L-HH configuration, we observe a better consistency between the data and the IEM-B
model compared to the results obtained using the semi-empirical Dubois-B model. For the
three incidence angles (28◦, 32.5◦ and 36◦), the simulations in the L-HH configuration show
an RMSE lower than 2.1 dB with IEM-B, while with Dubois-B, the RMSE is between 2.4 and
2.7 dB. Table 5 gives statistical parameters regarding the comparison between the measured
ALOS-2 data and simulated L-band signal with the IEM-B and Dubois-B models in dual
polarization. In the L-HV configuration, the IEM-B model presents very low performances
compared to the L-HH results for the three incidence angles with RMSE values between
3.2 and 4.5 dB.

As illustrated in Figure 7 and Table 5, IEM-B and Dubois-B exhibit the best perfor-
mances with the C-VV data configuration, with RMSE values between 1.3 and 1.5 dB,
respectively. For the C-VH configuration, we note a high discrepancy between simulations
and real data, with RMSE values equal to 1.7 and 2.3 dB for the IEM-B and Dubois-B
models, respectively, and bias exceeding −3.5 dB.

Based on these results, only the IEM-B model in the polarizations (HH and VV) is
considered further in the simulation of the scattered signal from the bare soil coupled
with the WCM model. The other simulations of IEM-B and Dubois-B are considered too
degraded to contribute to the overall simulation of the total radar signal over a surface
with vegetation cover.
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Table 5. Statistical precision coefficients with IEM-B and Dubois-B models for ALOS-2 data (L-HH and L-HV) and Sentinel-1
data (C-VV and C-VH).

Model IEM-B Dubois-B

Configuration L-HH L-HV L-HH L-HV

Statistic parameter (dB) Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ALOS-2
28◦ 1.3 2.0 0.3 3.2 −0.4 2.5 −2.5 2.9

32.5◦ 0.5 1.9 −0.6 3.3 −1.7 2.7 −2.7 2.3
36◦ 2.0 2.1 5.6 4.5 −0.5 2.4 −2.6 2.7

Configuration C-VV C-VH C-VV C-VH

Statistic parameter (dB) Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Sentinel-1 39◦ −1.8 1.3 −3.5 1.7 −1.6 1.5 −3.4 2.3

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26 
 

 

(a) (b) 

Figure 7. Comparison between modeled (with Dubois-B and IEM-B) and measured radar backscattering coefficients: (a) 
C-VV, (b) C-VH. 

The empirical expressions proposed in Section 3.1.1. are tested on the 39° incidence 
angle Sentinel-1 data and 28° incidence angle L-band data acquired during 2019–2020. The 
use of empirical equations first requires parameter calibration. In this context, the actual 
dataset is divided randomly into two parts: the first part for model calibration (70% of the 
data) and 30% for empirical model validation. 

Table 6 illustrates the calibration parameters and statistical precision (RMSE and R) 
between the calibrated empirical expressions (Equations (2) and (3)) and L-band data con-
sidered for calibration. The calibrated relationship h(Mv, Zs) between the radar signal and 
the Mv and Zs parameters shows RMSE values equal to 1.2 dB in L-HH and 1.0 dB in L-
HV. On the other hand, for the g(Mv, Hrms) calibrated relationship, RMSEs of 1.4 dB in 
L-HH and 1.0 dB in HV are retrieved. 

Empirical models are also tested for Sentinel-1 data, showing high accuracy in simu-
lating signals over bare soils. In the C-VV configuration, RMSE values are equal to 1.2 dB 
and 1.3 dB using g(Mv, Hrms) and h(Mv, Zs) relationships, respectively. In the C-VH po-
larization, RMSE values are equal to 1.3 dB for the h(Mv, Zs) case and 1.4 dB for the g(Mv, 
Hrms) case, where R is approximately 0.89 and 0.9, respectively. The results show very 
similar accuracies with the two empirical expressions h and g. 

Table 6. Calibration parameters and statistical precision coefficients with the proposed empirical expressions h and g for 
ALOS-2 (L-HH and L-HV) and for Sentinel-1 (C-VV and C-VH) data. 

Model h(Mv,Zs) g(Mv,Hrms) 
Sensor ALOS-2 Sentinel-1 ALOS-2 Sentinel-1 

Configuration L-HH L-HV C-VV C-VH L-HH L-HV C-VV C-VH 
α 0.182 0.109 0.237 0.241 0.174 0.102 0.232 0.238 
β 1.452 1.18 2.347 3.597 2.69 2.37 1.219 1.826 
γ −16.01 −26.48 −16.43 −28.27 −18.14 −28.27 −14.42 −25.03 

RMSE (dB) 1.2 1.0 1.3 1.4 1.4 1.0 1.2 1.3 
R 0.88 0.84 0.85 0.89 0.82 0.85 0.87 0.9 

Figure 8 illustrates comparisons between the calibrated empirical models and radar 
datasets considered just for validation (30% of database, 9 samples for each polarization). 
We observe a good agreement between the calibrated models and radar data, with RMSE 
ranging from 1.4 dB to 2.0 dB for the L-HH and L-HV configurations using h(Mv, Zs) and 
1.3 dB and 1.8 dB with g(Mv, Hrms), respectively. For the S-1 data, h(Mv, Zs) relationship 
validation using real data gives RMSE values equal to 1.0 and 1.9 dB for the C-VV and C-
VH configurations, respectively. Similar statistical precision ranges characterize g(Mv, 
Hrms) validation, where RMSE values are equal to 1.1 and 1.9 dB for the C-VV and C-VH 

-25

-15

-5

-25 -15 -5

M
od

el
ed

 C
-V

V
 (d

B)

Measured C-VV (dB)

x = y
IEM-B, R=0.90
Dubois-B, R=0.88 -35

-25

-15

-35 -25 -15

M
od

el
ed

  C
-V

H
 (d

B)

Measured C-VH (dB)

x = y
IEM-B, R=0.88
Dubois-B, ,R=0.87

Figure 7. Comparison between modeled (with Dubois-B and IEM-B) and measured radar backscattering coefficients: (a)
C-VV, (b) C-VH.

The empirical expressions proposed in Section 3.1.1. are tested on the 39◦ incidence
angle Sentinel-1 data and 28◦ incidence angle L-band data acquired during 2019–2020. The
use of empirical equations first requires parameter calibration. In this context, the actual
dataset is divided randomly into two parts: the first part for model calibration (70% of the
data) and 30% for empirical model validation.

Table 6 illustrates the calibration parameters and statistical precision (RMSE and R)
between the calibrated empirical expressions (Equations (2) and (3)) and L-band data
considered for calibration. The calibrated relationship h(Mv, Zs) between the radar signal
and the Mv and Zs parameters shows RMSE values equal to 1.2 dB in L-HH and 1.0 dB in
L-HV. On the other hand, for the g(Mv, Hrms) calibrated relationship, RMSEs of 1.4 dB in
L-HH and 1.0 dB in HV are retrieved.

Empirical models are also tested for Sentinel-1 data, showing high accuracy in simu-
lating signals over bare soils. In the C-VV configuration, RMSE values are equal to 1.2 dB
and 1.3 dB using g(Mv, Hrms) and h(Mv, Zs) relationships, respectively. In the C-VH
polarization, RMSE values are equal to 1.3 dB for the h(Mv, Zs) case and 1.4 dB for the
g(Mv, Hrms) case, where R is approximately 0.89 and 0.9, respectively. The results show
very similar accuracies with the two empirical expressions h and g.
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Table 6. Calibration parameters and statistical precision coefficients with the proposed empirical expressions h and g for
ALOS-2 (L-HH and L-HV) and for Sentinel-1 (C-VV and C-VH) data.

Model h(Mv, Zs) g(Mv, Hrms)

Sensor ALOS-2 Sentinel-1 ALOS-2 Sentinel-1

Configuration L-HH L-HV C-VV C-VH L-HH L-HV C-VV C-VH

α 0.182 0.109 0.237 0.241 0.174 0.102 0.232 0.238
β 1.452 1.18 2.347 3.597 2.69 2.37 1.219 1.826
γ −16.01 −26.48 −16.43 −28.27 −18.14 −28.27 −14.42 −25.03

RMSE (dB) 1.2 1.0 1.3 1.4 1.4 1.0 1.2 1.3
R 0.88 0.84 0.85 0.89 0.82 0.85 0.87 0.9

Figure 8 illustrates comparisons between the calibrated empirical models and radar
datasets considered just for validation (30% of database, 9 samples for each polarization).
We observe a good agreement between the calibrated models and radar data, with RMSE
ranging from 1.4 dB to 2.0 dB for the L-HH and L-HV configurations using h(Mv, Zs) and
1.3 dB and 1.8 dB with g(Mv, Hrms), respectively. For the S-1 data, h(Mv, Zs) relationship
validation using real data gives RMSE values equal to 1.0 and 1.9 dB for the C-VV and
C-VH configurations, respectively. Similar statistical precision ranges characterize g(Mv,
Hrms) validation, where RMSE values are equal to 1.1 and 1.9 dB for the C-VV and C-VH
configurations, respectively. Having two empirical models g and h with very similar
accuracies, only the model g is kept afterwards for coupling with the WCM model.
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Figure 8. Validation of the empirical backscattering models with multi-configuration real data: (a) L-HH and L-HV data
with g(Mv, Hrms), (b) L-HH and L-HV data with h(Mv, Zs), (c) C-VV and C-VH data with g(Mv, Hrms), (d) C-VV and
C-VH data with h(Mv, Zs).
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4.3.2. Case of Vegetation-Covered Soil

In this section, we analyze simulations of L- and C-band radar signals over fields with
vegetation cover. To represent the soil contribution to the total backscattering coefficients,
we use the aforementioned results retrieved in Section 4.3.1. Referring to bare soil model
outcomes, in Section 4.3.1., IEM-B (for L-HH and C-VV configurations) and the empirical
model g(Mv, Hrms) (for all configurations, L-HH, L-HV, C-VV, C-VH), for which the
results illustrate good consistency over bare soils, are considered for bare soil component
modeling.

By considering these various models for soil backscattering, using WCM option 1
(without an interaction component) illustrated in equation 14 and NDVI as a vegetation
descriptor, the calibration of the A and B coefficients is proposed by using 70% of the
dataset and the least square method. Table 7 summarizes the retrieved A and B parameters
for different options and the corresponding statistical parameters (RMSE and R) of the
comparison between the calibrated models and the dataset used for calibration.

The term B, related to the attenuation of the soil backscattered signal by the vegetation
cover, is approximately at the same level for L-band configurations in the tested models.
For L-HH and L-HV cases, with all proposed soil models, the B values ranged between 0.34
and 0.76 and 0.53 and 1.54 for the Sentinel-1 data in the C-VV and C-VH configurations,
respectively.

Concerning the backscattering associated with the vegetation cover, the A parameter
is certainly lower in the L-HV polarization than in L-HH, in agreement with the levels of
the total L-HV signal compared to the L-HH signal. The same conclusions are observed for
the C-VV and C-VH configurations. The A and B parameters retrieved with the S-1 data
are close to those retrieved by Bousbih et al. (2017) over the same site with measurements
realized in 2015–2016.

The use of the empirical model g(Mv, Hrms) for soil backscattering allows good
agreement between the calibrated WCM model and the real data, with an RMSE lower
than 1.7 dB for both the L-HH and L-HV configurations and reaching an RMSE maximum
value of 1.4 dB for the C-VV and C-VH configurations. The IEM-B model applied to the
co-polarizations also shows a reasonable performance with RMSE and R values equal to
2.0 dB and 0.72, respectively, for L-HH and 1.3 dB and 0.86 for the C-VV data.

Table 7. WCM option 1 parameters A and B calibration, with statistical precision coefficients for the
case of two soil backscattering models, for ALOS-2 and Sentinel-1 data multi-polarizations.

Model g(Mv, Hrms) IEM-B

Sensor ALOS-2 Sentinel-1 ALOS-2 Sentinel-1

Configuration L-HH L-HV C-VV C-VH L-HH C-VV
A 0.038 0.003 0.081 0.027 0.034 0.117
B 0.4 0.343 0.555 0.529 0.756 1.541
R 0.77 0.64 0.83 0.93 0.72 0.86

RMSE (dB) 1.6 1.7 1.4 1.3 2.0 1.3

In the second part of this section, we propose WCM calibration when the second
option with soil–vegetation interaction is added, as described by equation (16). In this
case, the total backscattering over cereal test fields is the sum of backscattering over bare
soils attenuated by vegetation cover, the contribution of vegetation covers and, finally, the
multiscattering component. With the added soil–vegetation interaction term in the WCM
expression, three parameters (A, B and a newly added parameter, C, which also depends
on vegetation properties) require calibration.

Table 8 illustrates the three calibrated parameters of A, B and C and the statistical
coefficients (R and RMSE) when considering the two soil backscattering models (g(Mv,
Hrms) and IEM-B). According to Table 8, RMSE values range from 1.6 to 2.4 dB in the
L-HH configuration and equal 1.6 dB in L-HV for g(Mv, Hrms).
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For the L-HH case, the attenuated B parameter values range between 1.4 and 2.8. For
the L-HV configuration, the B value is equal to 2.28 for the g soil model. The A parameter
values (ranging between 0.023 and 0.052) in the L-HH configuration are higher than those
retrieved with the L-HV case (equal to 0.004). The C parameter records values between
0.054 and 0.128 in the L-HH case and equal to 0.009 in the L-HV case.

In the C-band case, the A parameter values vary between 0.09 and 0.13 in the VV
polarization and equal 0.025 for the VH polarization. The B parameter values are close to
those found in the L-band, indicating large signal attenuation by vegetation [57].

For the C-VV and C-VH configurations, the C values are weak, resigning the negli-
gence of the soil–vegetation interaction contribution to the total backscattering coefficients.
In the following section, we evaluate the soil moisture inversion capabilities using the two
WCM options with calibrated parameters in multiple configurations.

Table 8. Calibration parameters and statistical precision coefficients with the second WCM option 2
in L-HH, L-HV, C-VV and C-VH.

Model g(Mv, Hrms) IEM-B

Sensor ALOS-2 Sentinel-1 ALOS-2 Sentinel-1

Configuration L-HH L-HV C-VV C-VH L-HH C-VV

A 0.023 0.004 0.130 0.025 0.052 0.09
B 1.4 2.28 2.66 3.85 2.78 3.08
C 0.054 0.009 0.007 −0.01 0.128 0.097

R 0.78 0.66 0.87 0.89 0.88 0.87
RMSE (dB) 1.6 1.6 1.2 1.8 2.4 1.2

4.4. Soil Moisture Estimation

In this section, we aim to use different validated backscattering models for soil mois-
ture estimation. For this section, two methods of inversion were carried out on over 30% of
the dataset. Knowing the backscattered radar signal (in the L-HH, C-VV, L-HV or C-VH
configurations), the NDVI characterizing the vegetation cover and the soil roughness, we
estimate the soil moisture through a direct inversion of the calibrated expressions in the
case of semi-empirical models or through look-up tables for IEM-B. Both options of the
WCM are tested (with and without the addition of the soil–vegetation interaction term).
Table 9 focuses on statistical parameters by representing bias and RMSE values for different
inversion configurations and dual-frequency data.

Considering option 1 of the WCM model, we observe satisfactory results with es-
timated moisture accuracies between moderate and high for the L-HH configuration,
with RMSEs between 4.9 and 6.4 vol.%, by considering IEM-B and g(Mv, Hrms) models,
respectively.

The best estimates are made by the IEM-B model, with RMSE values ranging between
3.4 and 4.9 vol.% for C-VV and L-HH polarizations, respectively. With the semi-empirical
approach for soil scattering, there is a degradation that could be explained by less precision
in the simulation of roughness behavior, particularly for low-frequency data. In fact, the
precision of the C-VV configuration is equal to 4.7 vol.% with the g soil model. On the
other hand, a lower accuracy is retrieved for the L-HH configuration, with RMSEs equal to
6.4 vol.% for the g model.

The application of this WCM option in cross-polarization concerns only the g soil
semi-empirical model. In this case, the results are strongly degraded compared to the
results in C-VV and L-HH, with accuracies (RMSE) on the order of 13 vol.% for the ALOS-2
data and 7.1 vol.% for the Sentinel-1 data. These results are consistent with previous
studies showing the poorer accuracy of moisture inversion using cross-polarization. They
are also consistent with many studies showing the importance of taking into account the
soil–vegetation interaction component in the simulation of canopy scattering for the case
of a cross-polarization configuration.
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The application of WCM option 2 illustrates performances relatively close to those
retrieved for the WCM option 1 in the case of the L-HH configuration, with RMSEs
relatively stable between 4.8 and 6.1 vol.% and also the same precision quality as the C-VV
configuration. However, for the case of the L-HV configuration, the effect of taking into
account the ground–vegetation interaction is very important. Indeed, this integration
makes it possible to go from very degraded to moderate accuracies between 6 and 7 vol.%.

In contrast, the integration of the soil–vegetation component into the WCM model
induces a limited improvement when retrieving soil moisture in the C-VH polarization
and insists on the adequacy of simplified WCM use in the C-band frequency. This could
be explained by the limited contribution of soil–vegetation interactions in the context of a
limited wave penetration ability.

Figure 9 shows the inter-comparison between the in situ soil moisture and estimated
values for the application of WCM option 2 with different types of soil scattering models at
the L- and C-band frequencies. Each point corresponds to one tested field.
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This result highlights the importance of considering the soil–vegetation interaction
component in the modeling of the radar signal, especially in the L-HV configuration.
The best performance is illustrated with IEM-B coupled to WCM option 1 in the C-VV
configuration, with an RMSE value of approximately 3.3 vol.%, and coupled to WCM
option 2 in the L-HH configuration, with an RMSE of less than 5 vol.%.

The contribution of the L-band seems evident for dense covers; however, noise coming
from vegetation volume scattering and a more important effect due to roughness could
degrade the precision of soil moisture estimation. To analyze the benefits and limitations
of the L-band compared to other frequency bands and particularly the C-band, it will
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be very useful in the future to analyze polarimetric measurements acquired in different
frequency bands.

Table 9. Inversion statistical precision coefficients in L-HH, L-HV, C-VV and C-VH configurations in the case of two options
of the WCM.

Model g(Mv, Hrms) IEM-B

Configuration L-HH L-HV C-VV C-VH L-HH C-VV

Option 1 Bias (vol.%) −0.86 −3.62 −1.84 1.6 −1.24 1.05
RMSE (vol.%) 6.44 13.68 4.74 7.11 4.87 3.35

Option 2 Bias (vol.%) 1.86 2.93 −0.10 −2.88 2.76 0.73
RMSE (vol.%) 6.12 6.81 3.17 6.75 4.85 4.65

5. Conclusions

In the present study, we analyzed the potential of L- and C-band radar data for soil
moisture estimation over cereal agricultural fields in the semiarid plain of Kairouan (central
Tunisia).

Based on multi-incidence, multi-polarization and dual-frequency data, an analysis of
the sensitivities of radar signals to soil parameters (roughness and moisture) and vegetation
properties was proposed. For the L-band, multi-incidence (28◦, 32.5◦ and 36◦) dual-
polarization (HH and HV) data are strongly influenced by soil roughness. According
to the analyzed results under low-soil moisture conditions, statistical values show high
correlations between radar signals and roughness parameters (Hrms and Zs). A range of
approximately 10 dB in radar signals is observed for the roughness effect. For the same
range of roughness parameters, S-1 radar data, acquired in the C-band, show a lower
dynamic range, between 8 and 6 dB, for VV and VH polarizations, respectively. The
sensitivity of the ALOS-2 signal to soil moisture decreases with vegetation development by
0.31 and 0.18 dB/vol.% (NDVI < 0.3) to 0.27 and 0.15 dB/vol.% for NDVI values between
0.3 and 0.6 and finally to 0.19 and 0.16 dB/vol.% (NDVI > 0.6) in HH and HV, respectively.
The sensitivity of the Sentinel-1 signal to soil moisture decreases by 0.26 and 0.24 dB/vol.%
in the bare soil class and low vegetation density to 0.17 and 0.08 dB/vol.% for the medium
density vegetation class and finally to 0.07 and 0.09 dB/vol.% for the denser canopy class
in VV and VH polarizations, respectively.

The observed results underline the L-band signal sensitivity to vegetation parameters
(VWC, LAI and vegetation height). The highest correlations, equal to 0.87 and 0.78, for HH
and HV polarizations, respectively, are observed with the VWC parameter. This could be
particularly explained by the high penetration of L-band radar signals in vegetation covers.

The simulation of L- and C-band radar signals was discussed for bare and covered soils.
For bare soils, two empirical models dependent on roughness (Hrms or Zs parameters)
and soil moisture, the semi-empirical Dubois-B model and, finally, the IEM-B model were
tested. The best simulations are found with the two empirical approaches calibrated in the
available polarizations and the IEM-B model in only like-polarization. Validations with a
set of real data different from those used for calibration illustrate, for example, an RMSE
equal to 1.3 dB, 1.8dB, 1.1dB and 1.9dB for L-HH, L-HV, C-VV and C-VH for empirical
model g(Mv, Hrms), respectively.

Concerning the surfaces with vegetation cover, two options were considered for
the WCM: option 1 with two components in which the soil component is attenuated by
the vegetation cover, and option 2, which includes the addition of the soil–vegetation
interaction to the first two components.

After calibration of the two WCM options, the proposed models were tested to invert
the radar signal and estimate the soil moisture.

Concerning the L-HH configuration, the use of option 1 enables an estimation with a
high to moderate precision between 4.9 and 6.4 vol.% for the different types of considered
soil scattering models. The L-HV configuration, on the other hand, shows very degraded
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results with this WCM first option. Regarding the C-VV configuration, the same WCM
option grants soil moisture retrieval with RMSE values varying between 3.3 and 4.7 vol.%
for different soil backscattering models facing approximately 7 vol.% C-VH polarization.
The use of WCM option 2 maintains a relatively stable accuracy for the case of the L-HH
configuration. It enables a clear improvement in the estimates in the L-HV data case with an
RMSE between 6 and 7 vol.% for different types of soil backscattering models. According
to the present results, consideration of the soil–vegetation interaction component seems
essential for the exploitation of L-HH data in soil moisture estimation.

In the future, a simultaneous inversion approach for the two parameters roughness
and moisture will be proposed, with the use of the artificial neural network (NN) technique
to firstly derive the soil roughness (Hrms) from the L-HH data in order to then consider
the derived Hrms and C-band data for soil moisture estimation. Moreover, this proposed
estimate of soil moisture will be considered for irrigation mapping and detection over the
studied site.
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