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Abstract: In recent years, many agriculture-related problems have been evaluated with the integration
of artificial intelligence techniques and remote sensing systems. The rapid and accurate identification
of apple targets in an illuminated and unstructured natural orchard is still a key challenge for the
picking robot’s vision system. In this paper, by combining local image features and color information,
we propose a pixel patch segmentation method based on gray-centered red–green–blue (RGB) color
space to address this issue. Different from the existing methods, this method presents a novel
color feature selection method that accounts for the influence of illumination and shadow in apple
images. By exploring both color features and local variation in apple images, the proposed method
could effectively distinguish the apple fruit pixels from other pixels. Compared with the classical
segmentation methods and conventional clustering algorithms as well as the popular deep-learning
segmentation algorithms, the proposed method can segment apple images more accurately and
effectively. The proposed method was tested on 180 apple images. It offered an average accuracy
rate of 99.26%, recall rate of 98.69%, false positive rate of 0.06%, and false negative rate of 1.44%.
Experimental results demonstrate the outstanding performance of the proposed method.

Keywords: fruit detection; fruit segmentation; color space; segmentation algorithm

1. Introduction

Apple picking is a labor-intensive and time-intensive task. To save labor and to pro-
mote the automation of agricultural production, apple-picking robots are being employed
to replace manual fruit picking. In the past few years, several researchers have extensively
studied fruit- and vegetable-picking robots [1–5]. In a natural unstructured environment,
due to sunlight and obstruction by branches and leaves, light and dark spots appear on the
apple’s surface [6]. These spots are a special kind of noise that distort the information of
the target area in the image, affect the processing of the image, increase the difficulty of
recognition and segmentation, and affect the precise positioning of the fruit target and the
execution of the picking task [7].

In the existing fruit harvesting robot’s vision system, the influence of sunlight is
reduced by changing the imaging conditions before collection or by optimizing the image
after collection. Before the acquisition, optical filters on camera lenses or large shades with
artificial auxiliary light sources are applied to improve the imaging conditions [1]. This
manual intervention and the auxiliary light source method can simplify the follow-up
process to obtain light-independent images. However, the practical utility of this method is
limited. The frequent replacement of the filter’s color absorber and the power consumption
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of the auxiliary light source increase the system’s cost, which is not conducive for its
promotion and application [8]. Besides, most of the fruit and vegetable images need to be
captured in natural light. Under extremely bad lighting conditions, segmentation results
in the absence of an auxiliary light source are not ideal for the image robustness and
processing speed [9–11].

Another solution is to optimize the image capturing algorithm to reduce or eliminate
the influence of light (with shadow) on the target area of the image. Ji et al. [12] first selected
a batch of pixels that may be apples, and then used the Euclidean distance between the
pixels in the RGB space as a measure of similarity, combining the color and texture features
to be used by the region growth method and support vector machine (SVM) algorithm to
complete the apple segmentation. Lü et al. [13] used red-green (R-G) color difference and
combined it with the Otsu dynamic threshold method to realize fast segmentation of an
apple. Liu et al. [14] proposed a nighttime apple image segmentation method based on
pixel color and location. Based on the RGB value and the HSI value of each pixel, a back-
propagation neural network was used for classification. The apple was then segmented
again according to the relative position and color difference of the pixels around the
segmented fruit. Lv et al. [15] proposed a red-blue (R-B) color difference map segmentation
method, which extracts the main colors in the image, then reconstructs the image, and
segments the original image according to the threshold to obtain the apple target. Although
these algorithms are good at segmentation, they cannot adapt to conditions with varying
illumination [16]. In the natural environment of the orchard, a segmentation method that
works with varying illumination is yet to be demonstrated. The segmentation effect under
the influence of alternating lighting and shadows remains to be verified.

Besides the above segmentation methods based on chromatic aberration and threshold,
segmentation algorithms that can account for the effect of illumination and shadows have
also been proposed. Tu et al. [17] applied the principle of illumination invariance for the
recognition of apple targets. First, the median filter algorithm was used to eliminate the
noise in the image. Then the illumination invariant graph was extracted from the processed
color image to eliminate the influence of variation in light. Finally, the Otsu threshold
segmentation method was used to extract the target fruit. However, the work does not
discuss the algorithm’s processing effect on the apple targets that are affected by shadow.
Huang and He [18] segmented apple targets and the background based on the fuzzy-2
partition entropy algorithm in Lab color space, and used the exhaustive search algorithm
to find the optimal threshold for image segmentation. However, this method can only
work under a specific light condition. Song et al. [19] used the illumination invariant
image principle to obtain the illumination invariant image of the shadowed apple image.
They then extracted the red component information of the original image, added it to
the illumination invariant image, and performed adaptive threshold segmentation on the
added image to remove shadows. However, the shadow in the image background had
a greater impact on the segmentation results, resulting in a high false segmentation rate.
Song et al. [20] proposed a method for removing shadows on the surface using a fuzzy set
theory. In this algorithm, the image is viewed as a fuzzy matrix. The membership function
is used for de-blurring the image to enhance its quality and to minimize the influence of
shadow on apple segmentation. The applicability of this method needs further research
and discussion. Sun et al. [6] proposed an improved visual attention mechanism named
the Grab Cut (GrabCut) model, combined it with the normalized cut (Ncut) algorithm
to identify green apples in the orchard with varying illumination, and achieved good
segmentation accuracy. The algorithm improves the image target segmentation’s accuracy
by removing the influence of shadows and lighting. However, the images were processed
in a pixel-wise fashion, and the inherent spatial information between pixels was ignored.
This is not ideal for processing the images in a natural orchard environment [21].

Superpixel segmentation algorithm is a segmentation algorithm that fully considers
the special relationship between the adjacent pixels. This avoids the segmentation errors
caused by a single-pixel mutation effectively. Liu et al. [16] divided the entire image into
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several superpixel units, then extracted the color and texture features of the superpixels
and used SVM to classify the superpixels and to segment the apples. However, the
running speed was slow. Xu et al. [22] combined group pixels and edge probability
maps to generate an apple image with superpixel blocks. They removed the effect of
shadows by re-illuminating. This method can effectively remove the shadows from the
apple’s surface in the image. However, the divided superpixels will eventually affect
the segmentation accuracy. Xie et al. [23] proposed sparse representation and dictionary
learning methods for the classification of hyperspectral images, using the pixel blocks to
improve the classification accuracy of the images. However, dictionary learning is used to
represent images with complex structures, and the learning process is time consuming and
labor intensive.

Recently, deep convolutional neural networks (DCNNs) have dominated many fields
of computer vision, such as image recognition [24] and object detection [25]. The DCNNs
have also dominated the field of image semantic segmentation, such as fully convolutional
network (FCN) [26], and an improved deep neural network, DaSNet-v2, which can perform
detection and instance segmentation on fruits [27]. However, these methods require large,
labelled training data sets and a lot of computing power before a reliable result can be
calculated. Therefore, new segmentation methods in the color space are needed, based on
the apple’s characteristics, so that the apples can be identified in real-time in the natural
scene of the orchard.

The segmentation process becomes easier when the difference between the fruit and
the background is large. However, the interference of natural light and other factors in
the orchard environment reduces this difference, and increases the difficulty in identifi-
cation [28]. In this study, we propose a method to segment the apple image based on
gray-centered RGB color space. In gray-centered RGB color space, this paper presents
a novel color feature selection method which accounts for the influence of halation and
shadow in apple images. By exploring both color features and local variation contents
in apple images, we propose an efficient patch-based segmentation algorithm that is a
generalization of the K-means clustering algorithm. Extensive experiments prove the
effectiveness and superiority of the proposed method.

2. Materials and Methods
2.1. Apple Image Acquisition

The variety of apple tested in this study was Fuji, which is the most popular variety in
China. Experiments were carried out in the Baishui Apple experimental demonstration
station of Northwest A & F University, located in Baishui County, Shaanxi Province (109◦E,
35.12◦N). It is in the transitional zone between the Guanzhong Plain and the Northern
Shaanxi Plateau.

The image data used in this paper were collected from the apple orchards during
cloudy and sunny weather conditions. All the apples in the orchard had reached maturity.
The apples were collected between 8 a.m. and 5 p.m., to acquire apple images in a weak
atmospheric environment as well as a strong light environment. A database was built with
300 apple images taken under natural light conditions in the orchard. One hundred and
eighty images were randomly selected to test the performance of the algorithm. Out of
these 180 images, 60 images had shadows on the apples to varying degrees. 60 images
had halation to varying degrees (existing with the edge of the apple or the inside of the
apple), and 60 images had both shadows and halation to varying degrees. The image was
acquired using a Canon PowerShot G16 camera and Intel Realsense Depth camera D435,
with a resolution of 4000 × 3000 pixels. The shots were taken from a distance of 30–60 cm
and were saved in JPEG format as 24-bit RGB color images. The proposed algorithms
were evaluated using MATLAB (R2018b, © 1994–2020 The MathWorks, Inc., Natickc, MA,
USA). The computations were performed using an Intel Core i9-9880H CPU with 8 GB
memory hardware.
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2.2. Gray-Centered RGB Color Space

In this paper, we work in gray-centered RGB color space (i.e., the origin of the RGB
color space is placed at the center of the color cube). For 24-bit color images, the translation
is achieved by simply subtracting (127.5, 127.5, 127.5) from each pixel value in RGB space.
By so doing, all pixels along the same direction from mid-gray have the same hue [29].
This translation operation effectively moves all the pixels on the apple image by half the
distance from their own pixels in the RGB color space, forming a new coordinate system
with medium gray as the origin. The conversion of this space coordinate system is shown
in Figure 1.
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2.3. Color Features Extraction
2.3.1. Quaternion

Quaternion algebra, the first discovered hypercomplex algebra, is a mathematical
tool to realize the reconstruction of a three-dimensional color image signal [30–32]. The
quaternion-based method imitates human perception of the visual environment and pro-
cesses RGB channel information in parallel [33].

A quaternion has four parts, and can be written as q = a + ib + jc + kd, where
a, b, c, d ∈ R, and where i, j, k satisfy the condition i2 = j2 = k2 = −1. For the apple image,
the RGB color triple is represented as a purely imaginary quaternion, and can be written as
U = R · i + G · j + B · k [34–36].

We assume that two pure quaternions P and Q are multiplied together as shown in
Equation (1).

PQ = (P1i + P2 j + P3k)(Q1i + Q2 j + Q3k)
= −P1Q1 − P2Q2 − P3Q3 + (P2Q3 − P3Q2)i
+(−P1Q3 + P3Q1)j + (P1Q2 − P2Q1)k
= −P ·Q + P×Q

(1)

If Q = v is a unit pure quaternion, P can be decomposed into parallel and perpendicu-
lar components about v as shown in Equation (2).

|Pv| = P · v = |P| cos θ

|Pv⊥ | = |P× v| = |P| sin θ
(2)

where |Pv|, |Pv⊥ |, respectively, represent the component parallel to v and the component
perpendicular to v.
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Let C denote the chosen color of interest (COI), while C = C/|C| is a unit pure quater-
nion. Given a pure quaternion U and a unit pure quaternion C, U may be decomposed into
components that are parallel and perpendicular to C shown in Equation (3):

Uc =
1
2
[U − CUC]

Uc⊥ =
1
2
[U + CUC]

(3)

2.3.2. Color Features Decomposition of the Apple Image

Using the quaternion algebra and the COI characteristic, vector decompositions of an
image that are parallel and perpendicular to the “grayscale” direction (1, 1, 1) are obtained.
The work is carried out in the gray-centered RGB color space in which the origin of the
RGB color space is shifted to the center of the color cube. The image is first switched from
the original RGB color space to gray-centered RGB color space. Thus, all the pixels along
the same direction from the mid-gray have a similar hue. Subsequently, the algebraic
operations of the quaternion are used to complete the vector decomposition of the image.
Finally, all pixels are shifted back to the origin of RGB color space. The decomposition
diagram is shown in Figure 2.
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(1, 1, 1). (b) Perpendicular components to (1, 1, 1).

For apple images, all pixels resolved in the direction parallel to “grayscale” direction
(1, 1, 1) show the hue of the images, while those resolved in the direction perpendicular
to the “grayscale” direction (1, 1, 1) show the information about color. Figure 3 shows
the decomposition results of four images from the apple dataset based on the quaternion
algebra. These four images represent four kinds of apple images, (a) those without any
intense light irradiation and without any shadow, (b) those having shadows but without
any intense light irradiation, (c) those having intense light irradiation but without any
shadows, and (d) those having both shadows and intense light irradiation.

In this paper, apple image features are obtained from the gray-center color space.
In the gray-center color space, vector decompositions parallel/perpendicular to the gray
direction of the apple image are still color images. The perpendicular components to the
“grayscale” direction (1, 1, 1) mainly show the images’ color. The difference between the
apple and the background is more prominent in these images, which weakens the influence
of shadow and halation on the apple surface to a certain extent. Therefore, in this paper,
we search for features on these perpendicular components.
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2.3.3. Choice of COI and Features

In the gray-center RGB space, a vector red color (127.5, −127.5, −127.5) is selected
as COI in this study, since red color is the prominent color information of an apple. As
mentioned above, in gray-center RGB color space, all the pixels along this component
have the same hue. Although red color (127.5, −127.5, −127.5) is the prominent color
information, apples at the matured stage have other components along with the red
component. Other color components may also belong to the apple. Thus, the COI does
not represent all the color pixels of the apple. So, in the perpendicular switched space, the
angle between the COI and the vector from the gray center to every pixel can be used to
indicate the difference between the pixel and the apple. In this paper, the cosine of the
angle between COI and the vector from the gray center to every pixel is used as the feature
for the whole apple image. In this study, we define that pixels in all vectors within 30◦ of
the selected COI angle belong to the apple. Therefore, all pixels within the range constitute
the apple features constructed in this paper.

2.4. A Patch-Based Feature Segmentation Algorithm

In the 1960s, MacQueen proposed the classic K-means clustering algorithm [37]. It is a
kind of unsupervised method whose main idea is to divide objects into K clusters based on
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their distance from the cluster centers. If xk are data samples and ci are cluster centers, then
the mean deviation of clustering is expressed as shown in Equation (4):

E =
k

∑
i=1

∑
k
‖xk − ci‖

2 (4)

With each iteration, the energy (1) is minimized.
In image processing, data samples are pixels, which can be divided into K clusters

to minimize (1). However, this calculation ignores the spatial relationship between pixels
in the image, leading to poor segmentation results in complex images. In particular, the
local variations of apple images obviously cannot be effectively described by pixel-based
methods. In this study, based on the pixel patches, the proposed clustering segmentation
model is as shown in Equation (5):

min
Ii ,Cij

{
N
∑

i=1
∑

x∈Ω
∑
j
‖Rmj f j(x)− Cij‖2 Ii(x)

}

s.t. I.
N
∑

i=1
Ii(x) = 1, II. Ii(x)= 0 or 1, i = 1, 2, · · · , N

(5)

where fj(x) is the jth color feature of the original apple image f (x), Rmj f j(x) is the√mj ×
√mj

patch vector, Cij is clustering center, and Ii(x) is the label function, whose value can be 0 or 1.
As can be seen from Equation (5), both color features and local contents in apple

images are all considered in our model, which makes it robust to halation, shadows, and
local variations in apple images.

The superscript (k) is used to represent the kth iteration. The solving process of
iteration can be divided into two steps:

In the first step, in Equation (5), Ii is fixed and Cij is updated, and the optimization
problem that is needed to be solved is given by Equation (6).

min
Ii ,Cij

{
N

∑
i=1

∑
x∈Ω

∑
j
‖Rmj f j(x)− Cij‖2 I(k)i (x)

}
(6)

By differentiating, we get:

C(k+1)
ij = ∑

x∈Ω
Rmj f j I

(k)
i / ∑

x∈Ω
I(k)i , i = 1 : N, j = 1 : 3 (7)

Next, in the second step, in Equation (5), Cij is fixed and Ii is updated, resulting in the
following optimization problem given by Equation (8).

min
Ii ,Cij

{
N
∑

i=1
∑

x∈Ω
∑
j
‖Rmj f j(x)− Cij

(k+1)‖2
Ii(x)

}
s.t. I.

N
∑

i=1
Ii(x) = 1, II .Ii(x)= 0 or 1, i = 1, 2, · · · , N

(8)

This results in Equation (9).

I(k+1)
i (x) =

{
1, i = imin(x),
0, i 6= imin(x),

imin(x) = argmin
i

(
r(k+1)

i

)
,

r(k+1)
i = ∑

j
‖Rmj f j(x)− C(k+1)

ij ‖
2
, i = 1 : N, j = 1 : 3.

(9)

The overall procedure of the segmentation model is as follows (Algorithm 1).



Remote Sens. 2021, 13, 1211 8 of 17

Algorithm review:

Algorithm 1 K-means clustering algorithm based on pixel block-based

Input: Original apple images f
Segmentation region N
Initialization: Randomly initialize Ii(x), i = 1 : N, k = 0

Iteration: According to Equation (6), calculate C(k+1)
ij

According to Equation (7), calculate I(k+1)
i (x)

k = k + 1

Until I(k+1)
i (x) = I(k)i (x)

Output: Ii(i = 1, 2, · · · , N)

2.5. Criteria Methods

The criteria for evaluating the image segmentation algorithm are the performances
of the algorithm, which can be evaluated by comparing ground truth and the segmented
image by their pixel points [38]. Using LabelMe, the apple target area in the test image is
marked as ground truth [39].

For the binary classification, the actual results and the predicted results are compared.
Figure 4 shows the confusion matrix composed of four cases, each corresponding to a
different result: (1) truth positives (TP): the number of pixels that are correctly segmented
as belonging to the apple; (2) false positives (FN): the number of pixels belonging to the
apple that are incorrectly segmented as the background; (3) false negatives (FP): the number
of pixels belonging to the background that are incorrectly classified as those belonging to
the apple; (4) truth negatives (TN): the number of pixels that are correctly segmented as
belonging to the background.
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Recall rate, precision rate, false positive rate (FPR), and false negative rate (FNR)
can be obtained from the confusion matrix. These indexes can be used to evaluate the
proposed algorithm’s segmentation performance [40]. In Equations (10) and (11), recall
rate and precision can be used to measure the ability of the algorithm to identify the apple
correctly. In Equation (10), FPR defines gives the percentage of the pixels that belong to the
background but are classified as the target. In Equation (13), FNR gives the percentage of
the pixels belonging to the target that are incorrectly classified as the background.

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)
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FPR =
FP

FP + TN
(12)

FNR =
FN

TP + FN
(13)

3. Experimental Results and Analysis

The apple test images used in this paper were collected during the ripening season. In
order to test the performance of the proposed algorithm in a comprehensive range, a test set of
180 images was selected that includes images with varying degrees of halation and shadows.

3.1. Visualization of Segmentation Results

The test data shown in Figure 5a have light and heavy shadows on the surface of
the apple. The test data shown in Figure 5b have small and large areas that are strongly
illuminated. The test data shown in Figure 5c have both shadows and light to varying degrees.
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The original image and the outcome of segmentation are shown in Figure 5. The
segmentation is based on the 3 × 3 pixel block clustering segmentation in the gray center
color space proposed in this paper. The number of clusters is taken as 2, that is, one for the
apples and another for the background (branches and leaves, sky, ground). The blue line
marks the edge of the apple. The result of segmentation has two colors, black and white.
From the results, it can be seen that most of the background area has been removed.

3.2. Comparison and Quantitative Analysis of the Results of Segmentation

In this subsection, we show a quantitative analysis of the proposed method and
compare it with the existing segmentation methods. The images in the data set used
in this article have 12 million pixels (4000 × 3000) each. To reduce the processing time,
the original image is scaled using the bilinear difference method without affecting the
clustering result. Reducing the number of pixels to 750,000 (1000 × 750) can save image
processing time and improve the practicality of the algorithm. We compare our method
with the fuzzy 2-partition entropy [18] method, in which, based on color feature selection
like ours, the color histogram threshold in Lab space is used to segment images. We also
compare our method with the superpixel-based fast fuzzy C-means clustering method
(SFFCM) for image segmentation [41]. This method defines a multiscale morphological
gradient reconstruction operation to obtain a superpixel image with accurate contour, and
uses the color histogram as a fuzzy cluster class objective function to achieve color image
binarization segmentation. This method provides good results for images with normal
lighting and shadows. In addition, we compare our method with the mask regions with
convolutional neural network (Mask R-CNN) algorithm by the popular deep learning-
based method, which is verified as a state-of-the art method [42].

Four apple images with varying degrees of halation and shadows are shown in the
first row of Figure 6. The second row shows the segmentation results based on the fuzzy
2-partition entropy method. As can be seen, when there is strong light on the surface of the
apple and the background (branches, leaves) is bright, or the apple surface has shadows
and the background (branches, leaves) is dark, it is easy to classify similar parts into one
category. From the third row of the Figure 6, we can see that the superpixel-based fast fuzzy
C-means clustering method provides good results for images with normal lighting and
shadows. However, it is unable to provide complete segmentation for images with strong
lighting and strong shadow areas. From the fourth row of the Figure 6, the mask R-CNN
algorithm also shows outstanding segmentation results, but it requires a large amount of
training data. Our approach does not require any training data. If the branches and leaves
do not appear in the background, it may be segmented into apple regions when there are.
The fifth row in Figure 6 shows the segmentation results of the proposed algorithm. As the
proposed method is designed based on the apple characteristics in the gray-scale center
color space, it is more robust to different degrees of shadow and halation. Thus, a complete
apple target can be obtained.

In order to quantitatively analyze the performance difference between the algorithm
proposed in this paper and those existing in literature, the fruit area in the test images of
the data set is manually marked by LabelMe software, and the marked result is recorded as
ground truth. The real data of the segmented image, the background and the labeled image,
are compared pixel by pixel. Each pixel is divided into true positive (real apple), false
positive (real background), false negative (false apple), and true negative (false background).
Using the confusion matrix, the recall, precision, FNR, and FPR are calculated for each of
these algorithms, and the results are given in Table 1.

By comparing the average computation time of four kinds of segmentation methods,
the statistical results are shown in Figure 7. From the figure, our proposed algorithm is just
slightly lower than that of fuzzy C-means, but it has a higher efficiency. The average time
required for image processing was 1.37 s, which indicates that the proposed algorithm can
be implemented in real-time.
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Table 1. Average Result Based on Database.

Method Method Source Recall Precision FPR FNR

Fuzzy 2-partition Entropy Fuzzy 2-partition entropy 87.75% 84.87% 9.36% 12.44%

Fuzzy C-means Superpixel-based fast fuzzy
C-means clustering 94.34% 96.87% 1.37% 2.97%

Deep-learning Mask R-CNN 97.02% 98.16% 0.47% 2.54%
Proposed algorithm 98.69% 99.26% 0.06% 1.44%

The average recall, precision, FPR, and FNR of the proposed algorithm are 98.69%,
99.26%, 0.06%, and 1.44%, respectively. The average recall, precision, FPR, and FNR of the
threshold segmentation algorithm based on fuzzy 2-partition entropy are 87.75%, 84.87%,
9.36%, and 12.44%, respectively. These parameters for the superpixel-based fast fuzzy
C-means clustering are 94.34%, 96.87%, 1.37%, and 2.97%, respectively. Finally, these
parameters for the mask R-CNN instance segmentation algorithm are 97.02%, 98.16%,
0.47%, and 2.54%, respectively. Therefore, the average value of recall and precision of the
proposed algorithm have improved by 10.94% and 14.39%, respectively, and the average
value of FPR and FNR have decreased by 9.30% and 11.00%, respectively, when compared
to the parameters obtained using the threshold segmentation algorithm based on fuzzy
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2-partition entropy. The average value of recall and precision of the proposed algorithm
have improved by 4.35% and 2.39%, respectively, and the average value of FPR and FNR
have decreased by 1.31% and 1.53%, respectively, as compared to the algorithm based on
superpixel-based fast fuzzy C-means clustering. The average value of recall and precision
of the proposed algorithm have improved by 1.67% and 1.10%, respectively, and the average
value of FPR and FNR have decreased by 0.41% and 1.10%, respectively, as compared to
the mask R-CNN instance segmentation algorithm.
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3.3. Double and Multi-Fruit Split Results

To develop an eye-in-hand vision servo-picking robot, a distance of 30–40 cm was
used for capturing the images having only one apple target. However, apple growth is com-
plicated in unstructured orchards, and shots from a distance of 40–60 cm are unavoidable,
resulting in the images having multiple fruit targets. Figure 8 shows the recognition results
of the proposed algorithm for multiple targets, and Figure 8a–c show the segmentation
results for images with multiple fruits.
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4. Discussion
4.1. Segmentation Result and Analysis with Different COI

Based on the selection of COI, different targets can be segmented as shown in Figure 9.
The feature of apples can be extracted if COI is pointed towards red from gray center
(170.03, −84.99, −84.99). The feature of soil in the image can be extracted if COI is pointed
towards yellow from gray center (85.01, 85.01, −170.01). The feature of leaves in the image
can be extracted if COI is pointed towards green from gray center (−170.01, 85.01, 85.01),
and the feature of sky in the image can be extracted if COI is pointed towards blue from
gray center (−84.99, −84.99, 170.03).
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dicular to the gray center in the gray-center color space.

However, apples on the tree differ in their position and their growth. Thus, the ripened
apples show different degrees of red during the coloring process. Using only the COI that
points to the red from the gray center does not result in high recognition accuracy. As
mentioned in Section 2.3.3, a large number of experiments were performed with the apple
images, having different degrees of red. It was found that the pixels in all vectors within
30◦ of the selected COI angle belong to apple (Figure 9). The geometry of the OBC region
in Figure 9 covers apples with different degrees of red color.

The feature maps of leaves, sky, and soil are shown in Figure 10, respectively, which
can be segmented using different algorithms.
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4.2. Further Research Perspectives

In recent years, deep learning is being widely adopted for many computer vision
tasks, such as image classification [43], segmentation [44], and object detection [45].

Deep learning can adapt to the variances within the working scene, making it a
promising approach in many vision tasks [46–48]. Deep learning models can be easily
deployed and applied after training on a highly configured computer with a large amount
of data, for achieving high accuracy [49–51]. However, the relationship between the
datasets, the network architectures, and the network generalization capabilities are still
being explored by a large number of researchers to find out the essence [52–54]. For
different data objects, such as the apple images, the amount of data, the nature of the data,
and which network architecture to use that will have acceptable generalization capabilities
are still unclear, and their interpretability needs further research. Deep learning techniques
are fixed to the labelled input data and may not work under different crop and apple types,
and this was not considered in the training dataset [55].

Another mainstream approach is the model-based image segmentation method used
in this paper. A model-based segmentation algorithm is proposed for segmenting images
of ripe apples by studying the color characteristics and the local variations of apple im-
ages, and constructing features from the segmented targets. This approach makes the
segmentation of apples easy to interpret and comprehend. In addition, the model-based
approach is not computationally expensive; it is possible to iterate faster and to try different
techniques in less time. However, the traditional image algorithms can only solve certain
scenario-specific, manually definable, designable, and understandable image tasks [56].
Without being trained under the color assumption, they cannot capture different target
classes (green apple varieties) with similar background colors, which is the drawback of
the color assumption in the model-based method.

In this paper, a new class of a priori information is given using the model-based
approach, thereby improving the results. Compared to the deep learning methods, the
model-based approach used in this work can be easily interpreted and is flexible with
existing datasets. However, deep learning and model-based approaches have their own
advantages and disadvantages. It would be interesting to explore a combination of both to
make a more reasonable interpretation and to further generalize the deep learning methods.
Using the a priori conditions given in this paper, combining model-based and deep learning
could be a potential topic for future research.

5. Conclusions

In this study, a patch-based segmentation algorithm in gray-center color space was
proposed, realizing stable apple segmentation in a natural apple orchard environment
(shadow, light, and background). Specifically, quaternion was used to obtain the paral-
lel/vertical decomposition for the apple image. Then, a vector (COI) that points from the
gray center to red in the resulting vertical image was selected based on the cosine of the
angle between the vector pointing out from the gray center and the COI, which represents
the color information of the image. This was used as the decision condition for extracting
the features of an apple. Finally, both color features and local contents in apple images
were adopted to realize the segmentation of the target area.

The proposed algorithm has several characteristics as compared to the traditional
clustering algorithms and deep learning instance segmentation algorithms: (i) the color
degree of pixels in the image is perpendicular to the gray center of gray direction of RGB
color space, and the color degree of pixels whose initial point direction are gray center are
equal; (ii) the color information of the original image was better reflected by the vertical
decomposition; and (iii) the geometrical shape of the segmented target was well maintained,
and the segmentation error was significantly reduced, using the proposed patch-based
segmentation algorithm.

The experimental results showed that the recall and precision of the proposed seg-
mentation method were 10.94% and 14.39%, respectively, higher than that of the modi-
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fied threshold segmentation method, while FPR and FNR were 9.30% and 11.00% lower.
Compared with the recall and precision of the modified clustering algorithm, their value
increased by 4.35% and 2.39%, respectively, and FPR and FNR decreased by 1.31% and
1.53%, respectively. Finally, compared with the deep learning segmentation algorithm, the
recall and precision of the proposed segmentation method were 1.67% and 1.10% higher,
and FPR and FNR were 0.41% and 1.10% lower.

As shown in previous experiments, our method can deal with the problems of illumi-
nation and shadow. In more complex environments, for specific targets, the focus of future
research will be on the application of the proposed method. Our method may be utilized
to segment other fruit targets such as bananas, grapes, pears, and so on. Future work
includes the segmentation of unmanned aerial vehicle (UAV)-based remote sensing images
using the methods of this research. However, color feature selection and characteristics of
different images need to be studied more delicately.
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