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Abstract: Large-scale ecosystem restoration projects (ERPs) have been implemented since the be-
ginning of the new millennium to restore vegetation and improve the ecosystem in Southwest
China. However, quantifying the effects of specific restoration activities, such as afforestation and
grass planting, on vegetation recovery is difficult due to their incommensurable spatiotemporal
distribution. Long-term and successive ERP-driven land use/cover changes (LUCCs) were used
to recognise the spatiotemporal patterns of major restoration activities, and a contribution index
was defined to assess the effects of these activities on gross primary production (GPP) dynamics
in Southwest China during the period of 2001–2015. The results were as follows. (1) Afforestation
and grass planting were major restoration activities that accounted for more than 54% of all LUCCs
in Southwest China. Approximately 96% of restoration activities involved afforestation, and these
activities were mostly distributed around Yunnan Province. (2) The Breathing Earth System Simulator
(BESS) GPP performed better than the Moderate Resolution Imaging Spectroradiometer (MODIS)
GPP validated by field observation data. Nevertheless, their annual GPP trends were similar and
increased by 12,581 g C m−2 d−1 and 13,406 g C m−2 d−1 for MODIS and BESS GPPs, respectively.
(3) Although the afforestation and grass planting areas accounted for less than 1% of the total area
of Southwest China, they contributed to more than 1% of the annual GPP increase in the entire
study area. Afforestation directly contributed 14.94% (BESS GPP) or 24.64% (MODIS GPP) to the
annual GPP increase. Meanwhile, grass planting directly contributed only 0.41% (BESS GPP) or
0.03% (MODIS GPP) to the annual GPP increase.

Keywords: ecological restoration; afforestation; LUCC; gross primary production; Southwest China

1. Introduction

Ecosystem restoration projects (ERPs) have been widely utilised across China to
improve ecosystem conditions effectively [1–6]. Several ERPs, such as the Grain for Green
Programme (GGP), Three-North Shelter Forest Programme, Karst Rocky Desertification
Restoration Project (KRDRP), Natural Forest Protection Project and Returning Grazing
Land to Grassland Project, have been implemented to counter land degradation, dust
storms and soil erosion by re-establishing forest, shrub and/or grassland areas [4,7,8].
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However, new plants in ERPs may be degraded and even die due to human disturbance and
extreme climate events [9,10]. Overplanting trees may also aggravate water shortage due to
excessive water consumption and reduce vegetation cover in arid and semiarid areas [11,12].
Monitoring spatiotemporal variations in restoration activities, such as afforestation and
grass planting, and vegetation growth characteristics in areas with these activities can
effectively help evaluate the effectiveness of ERPs and their ecosystems [13]. Although
field studies can obtain accurate spatiotemporal distributions of these restoration activities,
applying this method to large areas can be difficult due to extensive human resource
and economic costs. Therefore, an effective method for determining the spatiotemporal
distributions of afforestation and grass planting is necessary to assess the effectiveness
of ERPs.

Remote sensing-based land use/cover change (LUCC) that directly reflects human-
caused land use activities [14,15] is an effective method for exploring ERP-induced vege-
tation dynamics on a large scale [13,16,17]. Restoration activities, including afforestation
and grass planting, which are largely linked to LUCC patterns converted from other land
uses/covers into forests and grasslands, have been used to explore vegetation recovery [18].
For example, Zhao et al. [19] examined dominant systematic changes in land cover to
recognise fundamental processes of land transition characteristics before and after the
implementation of ecological programmes in the Loess Plateau in China. Qi et al. [13] de-
veloped an LUCC-based vegetation succession mapping method for evaluating the effects
of restoration on karst vegetation in Southwest China. LUCC has also demonstrated that
ecological restorations represent a major factor in increasing vegetation cover and green-
ness [8,17]. However, the increased occurrence of extreme climate events (e.g., drought
and wildfire) due to climate change and the rapid expansion of human activities, such as
agricultural reclamation, have exerted a considerable negative impact on vegetation recov-
ery [9,10,20,21]. Therefore, the uncertain effects of ecological restorations on vegetation
recovery should be investigated further.

Gross primary production (GPP), which is the total amount of organic carbon fixed
by vegetation in terrestrial ecosystems, can reflect the growth characteristics and health
status of these ecosystems [22–24]. Monitoring long-term and large-scale terrestrial GPP
has progressed considerably due to remote sensing-based technology. Satellite-based GPPs,
such as the Vegetation Photosynthesis Model [25], Moderate Resolution Imaging Spectrora-
diometer (MODIS) [26,27] and Breathing Earth System Simulator (BESS) GPPs [28,29], are
major data sources for exploring terrestrial carbon cycles worldwide. Many studies have
also successfully used GPP to assess the effectiveness of ecosystem restoration on vegeta-
tion recovery [4,5,30–32]. However, the application of these satellite-based GPP products
to different regions may demonstrate some biases in performance due to the structures of
models and uncertainties in various input parameters [33]. An intercomparison of results
from multiple GPP products, such as BESS and MODIS GPPs, can help explore regional
GPP dynamics without field data validation. However, regional-scale intercomparison
studies are lacking.

A large continuous karst area in Southwest China [30,34] has undergone severe vege-
tation degradation and rocky desertification due to intense human exploitation since the
middle of the last century [30,35]. The rocky desertification rate of this area is approx-
imately 25,000 km2 yr−1, which is equal to the sandy desertification rate in Northwest
China [35]. The low water-holding capacity of karst is due to its thin soil layer and numer-
ous connected fissures from the bedrock layer to below the rooting zone or groundwa-
ter [36]. Severe water shortage persists in karst areas even during high precipitation [37]. In
addition, the increase in karst rocky desertification aggravates the water shortage in karst re-
gions [30,38–40]. ERPs, such as GGP and KRDRP, have been implemented since 2000/2001
to counter land degradation and relieve poverty [39]. Existing studies have demonstrated
that these projects have considerably enhanced vegetation cover and greenness in this
region [13,18,40]. However, research on the effects of specific restoration activities, such as
afforestation and grass planting, on vegetation recovery remains limited.
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In this study, long-term and successive climate change initiative land cover (CCI-LC)
data were used to extract the spatiotemporal patterns of restoration activities and evaluate
their effectiveness on vegetation recovery, as indicated by BESS and MODIS GPPs. This
study primarily aims to (1) explore the spatiotemporal patterns of ecological restorations,
(2) determine the intercomparison performance of the application of BESS and MODIS
GPPs and their spatiotemporal patterns and (3) quantify the effects of major restoration
activities on GPP changes from 2001 to 2015 in Southwest China.

2. Materials and Methods
2.1. Study Area

The study area (21◦07′N–34◦24′N and 97◦26′E–110◦01′E) (Figure 1) located in South-
west China includes the provinces of Sichuan, Guizhou, Yunnan and Guangxi and the city
of Chongqing. Southwest China is the country’s primary continuous distributor of karst.
The karst in Guizhou, Yunnan and Guangxi Provinces is approximately 3.12 × 105 km2

in size and accounts for nearly a quarter of the total karst area in China [35]. Abundant
precipitation occurs in the study area, which is a typical subtropical region, with an an-
nual average precipitation exceeding 1000 mm. The annual mean temperature ranges
from 14 ◦C to 24 ◦C [41]. Major vegetation types are agricultural land, mixed forest and
grassland (Figure 1B). The study area has undergone severe deforestation and rocky deser-
tification since 1958 due to anthropogenic disturbances, and the rocky desertification area
has reached 1.295 km2 in 2005 [37]. ERPs, such as KRDRP, have been implemented since
2000/2001 to prevent severe vegetation degradation [39].
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Figure 1. (A) Study area and (B) land CCI-LC in 2015.

2.2. Data Acquisition and Processing

Land cover data were downloaded from the website of the CCI-LC database (http:
//maps.elie.ucl.ac.be/CCI/viewer/download.php) (accessed on 29 January 2021), which
is hosted by the European Space Agency. The data period is 2001–2015, and the spatial
resolution of the data is 300 m. The land cover classification system (LCCS) has 22 classes
for Level 1 and 31 classes for Level 2. The CCI-LC classification system was transferred
to the commonly used Intergovernmental Panel on Climate Change land classification to
extract data regarding restoration activities, and the results were compared with those
from other land use data. CCI-LC was classified into 10 categories (Figure 1B). The overall

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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accuracy of LCCS Level 1 for CCI-LC is 75.38%, as validated by the GlobCover 2009
validation set. The accuracy of forest, agricultural land and grassland is 83%, 87% and
44%, respectively. Land use data were downloaded from the Data Centre of Resources and
Environmental Sciences (RESDC, Chinese Academy of Sciences) (http://www.resdc.cn/)
(accessed on 29 January 2021) [42,43] to validate their consistency from 2001 to 2015 and test
the application of CCI-LC to the study area. RESDC land use data covered four periods (i.e.,
2000, 2005, 2010 and 2015) with a spatial resolution of 1000 m and were interpreted from
Landsat Thematic Mapper digital images and China–Brazil Earth Resource Satellite 1 data.
The average interpretation accuracy for land use is approximately 92.9% in accordance
with field surveys and random sample assessments [43]. Despite its high accuracy, the
RESDC land use database cannot be used to extract annual land use changes because it
covers only four periods. Changes from 2000 to 2015 for three primary land types, namely,
agriculture, forest and grassland, were compared. Major land types in the two-source land
data exhibited similar trends, i.e., a continuous decrease in agricultural lands, an increase
in forests and a reduction in grasslands (Figure 2). The root-mean-square error (RMSE)
of agricultural land reaches the maximum value probably due to the difference in land
classification between RESDC and CCI-LC data [44]. The RMSE of forest and grassland is
lower than that of agricultural land. Therefore, CCI-LC data were selected to investigate
the trend of land use changes in the study area.
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Figure 2. Consistency analysis of agricultural land, forest and grassland changes derived from the European Space Agency’s
CCI-LC and the RESDC of the Chinese Academy of Sciences in 2000–2015.

BESS and MODIS GPPs were used as the GPP source data to avoid the uncertainty
of single-GPP source data. MODIS GPP, which is a version of the Numerical Terrady-
namic Simulation Group MOD17A3 (version 55) with a spatial resolution of 1 km, was
downloaded from http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MOD17A3/
(accessed on 29 January 2021). Compared with its previous versions, MOD17A3 GPP (ver-
sion 55) has been updated mostly due to the consideration of cloud effect and consistent
meteorological forcing. It has been widely used in global carbon cycle analysis, ecosystem
status assessment and environmental change monitoring. Additional information regard-

http://www.resdc.cn/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MOD17A3/
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ing MODIS GPP data can be found in Zhao et al. [26,27]. BESS, a process-based model that
generates GPP with high continuous spatiotemporal resolution, is comparable with in situ
data and satellite-derived products (e.g., Max Planck Institute for Biogeochemistry) [28,29].
The new version of BESS products released in 2016 was downloaded from the website of
the Environmental Ecology Lab (http://environment.snu.ac.kr/bess_flux/) (accessed on
29 January 2021). The spatial resolution of BESS GPP is also 1 km. Additional information
regarding BESS GPP data can be found in Jiang and Ryu [28] and Ryu et al. [29]. In addition,
the flux GPP data from the Xishuangbanna (2003–2010) site were collected to validate the
performance of BESS and MODIS GPPs in the study area.

Annual precipitation and temperature data with a spatial resolution of 1 km in 2001–
2015 were also downloaded from RESDC and produced by interpolating observations from
2472 meteorological stations in China.

2.3. Methods

Trajectory analysis that provides the spatiotemporal pattern of LUCC caused by natu-
ral and anthropogenic factors [45–47] can be utilised to recognise vegetation succession
related to ERPs effectively [13]. Afforestation and grass planting have been adopted as ma-
jor restoration activities to counter rocky desertification in Southwest China. Afforestation
is generally defined as the replanting of trees in an area that was previously forested [48].
However, trees were also planted in previously unforested lands in the study area to
improve ecological resistance in the karst region. To recognise the effects of natural and
anthropogenic factors on vegetation cover in restoration areas, we used LUCC trajectory
(LUCCT) to distinguish LUCCs driven by afforestation and grass planting (Table 1). Each
cell in the interannual LUCCT to the overlaid annual land use and land cover data is
analysed to recognise the spatiotemporal distribution of a restoration activity (Figure 3).

Table 1. Definition of LUCCT for afforestation and grass planting in Southwest China.

Restoration Activity LUCCT

Afforestation

Sparse vegetation→ forest
Agricultural land→ forest

Grassland→ forest
Shrubland→ forest
Bare area→ forest

Grass planting

Sparse vegetation→ grassland
Agricultural land→ forest

Settlement→ forest
Bare area→ forest

The actual GPP change in this study is divided into ERP-driven (e.g., afforestation and
grass planting) and non-ERP-driven (e.g., self-growth and climate factors) GPP changes.
An ERP-driven GPP change is defined as the difference between the GPPs of the previous
year and the year of ERP implementation. A contribution index (CI) (Equation (1)), defined
as the ratio of ERP-driven and actual GPP trends, was established to assess the contribution
of ERP to GPP dynamics. The ERP-driven GPP trend represents the multiyear mean
GPP change caused by afforestation or grass planting (Equation (2)). The actual GPP
trend calculated using a linear regression model represents interannual GPP variations in
afforestation and grass planting areas or the entire study area (Equation (3)). CI, ERP-driven
GPP trend and actual GPP trend can be expressed as follows:

CI =
|slope_GPPERP-driven|

|slope_GPPactual − slope_GPPERP-driven|+ |slope_GPPERP-driven|
× 100% (1)

slope_GPPERP-driven =
1
n ∑n

i=1 interGPPi (2)

http://environment.snu.ac.kr/bess_flux/
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slope_GPPactual =
∑n

i=1 GPPiti −
1
n ∑n

i=1 GPPi ∑n
i=1 ti

∑n
i=1 t2

i −
1
n
(∑n

i=1 ti)
2

(3)

where CI represents the percentage of GPP variations caused by afforestation and grass
planting, slope_GPPERP-driven represents the multiyear mean GPP variations caused by
afforestation and grass planting, interGPPi represents the interannual GPP variations
between years i−1 and i, slope_GPPactual represents the actual annual GPP trend from year
i to year n in afforestation and grass planting areas, GPPi represents GPP in year i and ti
represents year i.
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Partial correlation based on Pearson’s correlation was used to explore the effects of
temperature or precipitation on GPP changes in each cell and avoid the interaction effects
of the two variables. All analyses were conducted using MATLAB (The MathWorks Inc.,
Natick, MA, USA).

3. Results
3.1. Spatiotemporal Patterns of Ecological Restorations

The study area contained 10 LUCCTs that represent 98% of all LUCCs in 2001–2015
(Figure 4). The LUCCT based on its area percentage relative to all patterns demonstrated
the following order: agricultural land → forest, shrubland → forest, agricultural land
→ settlement, forest → agricultural land, grassland → agricultural land, grassland →
forest, forest→ grassland, agricultural land→ grassland, shrubland→ agricultural land,
grassland→ settlement. Major restoration activities were afforestation (agricultural land
→ forest, shrubland→ forest, grassland→ forest), grass planting (agricultural land→
grassland) and major land conversions that surpassed 54% of all LUCCs. To date, 51.66%
and 2.34% of LUCC account for afforestation and grass planting, respectively. Therefore,
afforestation, which accounted for 96% of major restorations, was the dominant restoration
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type in the study area. Meanwhile, LUCCTs related to extreme climate events, such as
drought, wildfire and human disturbance, including agricultural reclamation, were rare.
This finding indicated that extreme climate events and human disturbance exerted minimal
negative impact on vegetation recovery in restoration areas.

Figure 5 shows that the majority of afforestation is distributed around Yunnan Province.
However, over 34% of the total afforestation area occurred in 2004 and was mostly dis-
tributed outside of Yunnan Province. The afforestation area exhibited a decreasing trend
after 2004 but increased significantly in 2014. By comparison, grass planting mostly oc-
curred around the northeastern area of Sichuan Province in the periods of 2007–2009 and
2000–2003. The area of grass planting presented an N-shaped variation, and peaks occurred
in 2008 and 2012.
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Figure 4. Area percentage of each LUCCT amongst all LUCCTs in descending order in 2001–2015.
The red point represents the boundary of major and minor LUCCTs, and the LUCCT ID is defined by
the percentage of area in descending order.
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3.2. Performance of the Application of MODIS and BESS GPPs in Southwest China

Compared with MODIS GPP, BESS GPP demonstrates higher consistency with flux
observation GPP data (Figure 6A). The coefficient of determination (R2) of seasonal BESS
and flux GPPs from 2003 to 2010 reached 0.59 with an RMSE of 1.30 g C m−2 d−1. The R2

of MODIS and flux GPPs was only 0.01 with a high RMSE of 2.73 g C m−2 d−1. The low
R2 value of MODIS and flux GPPs was largely due to the difference in their trends from
March to September in one year (Figure 6B).
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Figure 6. (A) Consistency analysis of MODIS GPP, BESS GPP and flux observations from Xishuang-
banna and (B) comparison of their seasonal trends in 2003–2010.

MODIS and BESS GPPs presented an increasing trend in 2001–2015 (Figure 7A,B).
Pixel counts with an increasing trend surpassed 72% and 76% of the total area in accordance
with MODIS and BESS data, respectively. The trends of these pixels with a GPP increase
were within the range of 0–0.15 g C m−2 d−1, with most of the pixels distributed around
the southeastern area of Yunnan, adjacent places of the three provinces and Chongqing City
and the northwestern region of the study area. Overall, the sum of the entire GPP trend
was 12,581 g C m−2 d−1 and 13,406 g C m−2 d−1 for MODIS and BESS GPPs, respectively.
In addition, nearly 90% of the pixels with significant changes (p < 0.05) also exhibited
an increasing trend (Figure 7C,D). The spatial distribution of pixels with significantly
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increasing trend was similar for MODIS and BESS GPPs and largely distributed around the
southeastern area of Yunnan and adjacent places of the three provinces and Chongqing City.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

 

 
Figure 7. Complete and significant (p < 0.05) trends for (A,C) MODIS and (B,D) BESS GPPs. 

3.3. Contribution of Major Restorations to the Increase in GPP 
The actual annual GPP in afforestation and grass planting areas presented a signifi-

cantly increasing trend (169.66 g C m−2 d−1 and 135.17 g C m−2 d−1 for BESS and MODIS 
GPPs, respectively). Nearly 14.97% (indicated by BESS GPP) or 25.04% (indicated by 
MODIS GPP) of the actual annual GPP increase was directly contributed by afforestation 
and grass planting. The majority of the contribution originating from afforestation ac-
counted for nearly 14.94% (indicated by BESS GPP) or 24.64% (indicated by MODIS GPP) 
of the actual annual GPP increase (Figure 8). Grass planting caused a slight GPP increase 
(0.05 g C m−2 d−1 and 0.55 g C m−2 d−1 for BESS and MODIS GPPs, respectively) and con-
tributed only 0.41% (indicated by BESS GPP) or 0.03% (indicated by MODIS GPP) of the 
actual annual GPP increase (Figure 8). However, grass planting contributed a considera-
ble actual GPP increase (38% and 27% for BESS and MODIS GPPs, respectively) to the 
grass planting area (Table 2). Similar to the afforestation area, the maximum GPP increase 
caused by afforestation also occurred in 2004 and then demonstrated a decreasing trend 
after this year (Figure 9). However, the interannual GPP change caused by grass planting 
was different from that of the annual grass planting area (Figure S1). Afforestation and 
grass planting areas contributed a total of over 1.1% (MODIS GPP) or 1.2% (BESS GPP) to 
the annual GPP increase in Southwest China for the entire study area. 

Figure 7. Complete and significant (p < 0.05) trends for (A,C) MODIS and (B,D) BESS GPPs.

3.3. Contribution of Major Restorations to the Increase in GPP

The actual annual GPP in afforestation and grass planting areas presented a signifi-
cantly increasing trend (169.66 g C m−2 d−1 and 135.17 g C m−2 d−1 for BESS and MODIS
GPPs, respectively). Nearly 14.97% (indicated by BESS GPP) or 25.04% (indicated by
MODIS GPP) of the actual annual GPP increase was directly contributed by afforestation
and grass planting. The majority of the contribution originating from afforestation ac-
counted for nearly 14.94% (indicated by BESS GPP) or 24.64% (indicated by MODIS GPP)
of the actual annual GPP increase (Figure 8). Grass planting caused a slight GPP increase
(0.05 g C m−2 d−1 and 0.55 g C m−2 d−1 for BESS and MODIS GPPs, respectively) and
contributed only 0.41% (indicated by BESS GPP) or 0.03% (indicated by MODIS GPP) of the
actual annual GPP increase (Figure 8). However, grass planting contributed a considerable
actual GPP increase (38% and 27% for BESS and MODIS GPPs, respectively) to the grass
planting area (Table 2). Similar to the afforestation area, the maximum GPP increase caused
by afforestation also occurred in 2004 and then demonstrated a decreasing trend after
this year (Figure 9). However, the interannual GPP change caused by grass planting was
different from that of the annual grass planting area (Figure S1). Afforestation and grass
planting areas contributed a total of over 1.1% (MODIS GPP) or 1.2% (BESS GPP) to the
annual GPP increase in Southwest China for the entire study area.
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Figure 8. Contributions of afforestation and grass planting to the actual GPP increase in afforestation
and grass planting areas during the period of 2001–2015.

Table 2. ERP-driven (afforestation and grass planting) and actual GPP trends from 2001 to 2015.

Area
BESS GPP Trend (g C m−2 d−1) MODIS GPP Trend (g C m−2 d−1)

ERP-Driven Actual CI (%) ERP-Driven Actual CI (%)

Afforestation 25.35 169.69 14.94 33.30 136.11 24.47
Grass planting 0.05 −0.03 38.46 0.55 −0.94 26.96
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Figure 9. Annual GPP changes caused by (A) afforestation and (B) grass planting during the period of 2001–2015.

4. Discussion
4.1. Major Restoration Activities in 2001–2015

Similar to the findings of a previous study in Southwest China during the period of
2001–2015, our results showed that afforestation was the dominant land cover change [30].
The large area of afforestation was attributed to GGP and KRDRP. These ERPs were
launched to re-establish forests, shrublands and grasslands and counter severe rocky deser-
tification in Southwest China since 2000/2001 [18,39]. Forests have high economic value
and easily survive in the study area with abundant precipitation and warm temperature.
Therefore, planting trees was the preferred method for improving vegetation cover [18,49]
and the forest area substantially increased during this period [18]. Our results also showed
that more than 48% of the entire afforestation area was converted from agricultural land
(Figure 10). Consistent with the results of previous studies, this finding indicated that
ERPs were successfully implemented in the study area [50]. Existing studies also found
that afforestation considerably relieved land degradation due to the large conversion of
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desertification areas into forests [30,51]. Therefore, afforestation has become the dominant
restoration activity that remarkably enhances vegetation cover in Southwest China.
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Figure 10. Original land cover types converted into forest and their area percentage in relation to the
total afforestation area from 2001 to 2015.

4.2. Constrasting Performance of MODIS and BESS GPPs in Southwest China

Our results showed that seasonal BESS GPP demonstrated consistent seasonal trajec-
tory with flux observation data and a low RMSE of approximately 1.30 g C m−2 d−1. The
single hump-shaped trend (Figure 6B) of seasonal BESS GPP is consistent with the growing
trajectory of normal vegetation and similar to the results of previous studies [28,33]. By
comparison, MODIS GPP exhibited an unusually lower value in growing seasons and
higher value in other seasons (Figure 6B); this result was also reported in a previous
study [33]. The possible reason for this finding was that the algorithms of the MODIS
models disregarded the differences in C3/C4 plants [29]. Consequently, MODIS overesti-
mated GPP during the periods from January to March and from October to December and
underestimated GPP from March to September. In addition, BESS GPP also exhibited con-
sistent interannual variability with flux data from 2000 to 2010 (Figure 11A). This finding
is likely due to the improvement in the process-based model of BESS with an adequately
modelled spring phenology and soil thawing that largely contributed to the consistent
trajectory [28]. Both BESS and MODIS GPPs can spatially capture total interannual varia-
tions and presented increasing trends (Figure 7). However, the two GPP products failed
to capture the large GPP decrease (Figure 11B) caused by an extreme drought during the
period of 2009–2010 [52,53]. Overall, BESS GPP performed better than MODIS GPP and
field observation data.
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Figure 11. (A) Evaluation of BESS GPP and MODIS GPP products against flux observations from Xishuangbanna and
(B) the annual variability of flux GPP, BESS GPP, and MODIS GPP during the period of 2003–2010.

4.3. Contribution of Major Restoration Activities to GPP Increase

Afforestation significantly contributed to GPP increase (14.9% and 24.6% for BESS and
MODIS GPPs, respectively) in afforestation and grass planting areas due to its large area
coverage. Over 54% of LUCC areas and 98% of major restoration areas were attributed
to afforestation. In addition, planting trees can considerably improve vegetation cover
and production due to the high biomass of trees. Although grass planting contributed to
a small proportion of the total actual GPP (0.03% and 0.41% for BESS and MODIS GPPs,
respectively) in the entire restoration area, it contributed over a quarter of the actual GPP
increase in the grass planting area. In addition, grass planting was mostly distributed
around the west of Sichuan and cannot be replaced by afforestation due to the environment
of the fragile ecosystem, such as the occurrence of water deficit. Therefore, grass planting
also plays an important role in vegetation recovery in the study area. Overall, the annual
GPP increase in afforestation and grass planting areas exerted a positive effect on GPP
increase in the entire study area. Afforestation and grass planting areas contributed more
than 1% of the annual GPP increase because they accounted for less than 1% of the total
study area. In addition, ERP also includes closed hillside afforestation to conserve forests
and nature reserve areas [4], which are difficult to recognise in remote sensing images and
disregarded in the current study. Therefore, the contribution of ERPs to GPP increase may
be larger than that reported in this work.

Generally, precipitation and temperature have a large impact on the dynamics of
vegetation growth such as the normalised difference vegetation index [54–56], leaf area
index and GPP [57]. In this study, annual precipitation and temperature exerted a small
influence on GPP dynamics in restoration areas. Only a minor part (i.e., 8% for BESS GPP
and 17% for MODIS GPP) of GPP exhibited significant correlations (p < 0.05) with the
annual precipitation and temperature in the entire restoration area (Figure 12). Furthermore,
this influence due to precipitation and temperature might lead to a decrease in the GPP
(Table 3). The GPP decrease was largely related to the reductions in annual precipitation
and temperature, which were also found in a previous study conducted during the same
period [58].

In terms of climate change, vegetation recovery through ERPs should be the focus of
future investigations to alleviate the GPP decrease caused by precipitation and temperature.
Even if an extreme drought occurred during the period of 2009–2010 [52,53], annual GPP
in the afforestation area exhibited minimal decrease and even increased as shown by
MODIS GPP (Figure 9). As an effective method for improving vegetation recovery, ERPs
can help enhance an ecosystem by improving vegetation structure and weakening the
negative effects of climate factors (e.g., precipitation and temperature) on GPP dynamics.
In addition, trees and grasses resulting from afforestation and grass planting will grow as
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time progresses and continuously contribute to the improvement of the regional ecosystem
environment. Therefore, ERPs, including afforestation and grass planting, will increase
GPP and reduce an ecosystem’s sensitivity to climate perturbations.
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Figure 12. Area percentage of GPP significantly correlated (p < 0.05) to precipitation and temperature
in restoration areas.

Table 3. Area percentages of increasing and decreasing GPPs significantly correlated (p < 0.05) to
precipitation and temperature in restoration areas.

GPP Trend
Precipitation Temperature

MODIS BESS MODIS BESS

Increase 20.42 37.70 20.42 37.80
Decrease 79.58 62.30 79.58 62.20

5. Conclusions

Long-term and successive ERP-driven LUCCs were explored to determine the spa-
tiotemporal distributions of major restoration activities and their effects on GPP dynamics
in Southwest China during the period of 2001–2015. The following conclusions can be
drawn from this study. (1) Afforestation and grass planting were the major restoration
activities that accounted for more than 54% of all LUCCs in Southwest China. Afforestation
accounted for approximately 96% of all restoration activities, and the remainder was related
to grass planting. (2) BESS GPP performed better than MODIS GPP validated by field
observation data. Nevertheless, their annual GPP trends were similar and increased by
12,581 g C m−2 d−1 and 13,406 g C m−2 d−1 for MODIS and BESS GPPs, respectively.
(3) Afforestation and grass planting areas were less than 1% of the total area of Southwest
China but contributed to more than 1% of the annual GPP increase in the entire study
area. Moreover, 14.94% (BESS GPP) or 24.64% (MODIS GPP) of the annual GPP increase
in afforestation and grass planting areas was directly contributed by afforestation and
only 0.41% (BESS GPP) or 0.03% (MODIS GPP) of the annual GPP increase was directly
contributed by grass planting. However, grass planting contributed a considerable actual
GPP increase (38% and 27% for BESS and MODIS GPPs, respectively) in the grass planting
area. Restoration activities, such as closed hillside afforestation, for the conservation of
forests and nature reserve areas were disregarded in this study. Therefore, the actual
contribution of ERPs to GPP increase may be larger than that reported in this work.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4292
/13/6/1209/s1, Figure S1. Comparison of annual grass planting area and inter-annual GPP change
caused by grass planting 2001–2015.
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