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Abstract: A micro-Doppler signature (m-DS) based on the rotation of drone blades is an effective
way to detect and identify small drones. Deep-learning-based recognition algorithms can achieve
higher recognition performance, but they needs a large amount of sample data to train models. In
addition to the hovering state, the signal samples of small unmanned aerial vehicles (UAVs) should
also include flight dynamics, such as vertical, pitch, forward and backward, roll, lateral, and yaw.
However, it is difficult to collect all dynamic UAV signal samples under actual flight conditions, and
these dynamic flight characteristics will lead to the deviation of the original features, thus affecting
the performance of the recognizer. In this paper, we propose a small UAV m-DS recognition algorithm
based on dynamic feature enhancement. We extract the combined principal component analysis
and discrete wavelet transform (PCA-DWT) time–frequency characteristics and texture features
of the UAV’s micro-Doppler signal and use a dynamic attribute-guided augmentation (DAGA)
algorithm to expand the feature domain for model training to achieve an adaptive, accurate, and
efficient multiclass recognition model in complex environments. After the training model is stable,
the average recognition accuracy rate can reach 98% during dynamic flight.

Keywords: micro-Doppler signature; dynamic attribute-guided augmentation; UAV; classification

1. Introduction

In recent years, the number of small UAVs has grown exponentially due to their
significant improvement of flight performance, low cost, and easy manipulation. UAVs
are widely applied in professional photography, shooting, agricultural applications, and
disaster search-and-rescue [1]. They are used for criminal activities such as invasion,
reconnaissance, and transport of explosives [2]. However, due to their small size, slow
flying speed, and low flying altitude, UAVs are easily blocked by buildings or misjudged as
birds, so they are not easy to detect. Regardless of whether small UAVs are used in military
or civil fields, these characteristics will pose a considerable threat to security. As a result,
the market demand for stable and reliable small UAVs monitoring systems is snowballing.

Among the numerous radar signal processing technologies, the analysis of the target’s
m-DS is the most commonly used method, and the micro-Doppler signal generated by
the rotors can also be used to identify UAVs [3]. In [4], the feasibility of detecting and
identifying small UAVs based on the fuselage and the characteristics of rotors’ rotation
was confirmed. The radar cross-section (RCS) and micro-Doppler profile of four-rotor
and eight-rotor UAVs are measured, and the m-DS of UAV rotating blades are analyzed.
Simulation and experimental results of electromagnetic scattering from rotor blades of
small UAVs are given in [5]. The changes in these reflections as functions of variables
such as polarization, frequency, and azimuth angle Doppler components under different
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polarization conditions are analyzed. The method proposed in [6] studies the feasibility of
the m-DS’s extraction of UAV rotors under the non-line-of-sight condition of radar. It can
also detect m-DS of rotors, revolutions per minute, and rotor type.

The focus of small UAV detection and recognition based on micro-Doppler features is
to model and analyze flight status, extract micro-Doppler features, and select a classification
model [7]. The classification performance is also affected by different variables, including
different rotors, the presence or absence of loads, and even the Doppler shift caused by
the vibration of birds’ wings, which will also lead to the decrease of UAV identification
accuracy. In [8], the authors extracted the physical features from the radar time velocity
diagrams, and used a boosting classifier to distinguish UAV and birds, confirming that the
micro-Doppler radar has a broad prospect in UAV target detection and classification. In [9],
the authors introduced the use of multistatic radar and micro-Doppler analysis technology
to detect and identify UAVs. The classification accuracy of hovering small drones is
greater than 90%. Feature extraction methods, such as singular value decomposition (SVD)
and empirical mode decomposition (EMD), are used in [10,11]. The complexity of SVD
algorithm is too high, whereas the EMD algorithm has the problem of modal aliasing. A
convolutional neural network classification model based on spectral diagram and cadence
velocity diagram is proposed in [12], which achieves a 94.7% recognition rate of two types
of UAVs.

The above feature-based small drone’s detection and recognition require a large
amount of data to train the model. However, the data collection process not only takes
time but also leads to a deviation of the original features due to dynamic changes of UAVs,
such as vertical, pitch, forward and backward, roll, lateral, yaw, and other movements.
In the process of extracting the UAVs m-DS, the dynamic changes may affect the feature
distribution, so it is difficult to collect the UAV signals in all cases. The data can be aug-
mented by expanding the feature domain [13]. Jian et al. [14] studied the m-DS that can
be used to identify small UAVs and found that the angular micro-Doppler feature can be
used as a supplementary feature to identify small UAVs. In the field of image recognition,
data extension algorithms can be used for reference. In [15], the authors proposed a data
augmentation generation adversarial network (DAGAN) for data expansion and proved its
effectiveness through experiments. Nevertheless, deep learning methods, such as generat-
ing adversarial networks, will increase the complexity of the model. In [16], to solve related
problems in the field of image processing, an attribute-based augmentation (attribute-
guided augmentation, AGA) algorithm was proposed to deal with the phenomenon of
feature deviation caused by different radial distances between the observer and the target
by projecting the image into the attribute space for data augmentation. Chawla et al. [17]
proposed a synthetic minority oversampling technique (SMOTE) upsampling algorithm to
solve the problem of constructing a classifier in the case of imbalanced data sets, which can
improve the sensitivity of the classifier to a small number of classes.

In this paper, we use the combination of feature attribute enhancement and machine
learning algorithms to solve the problems with difficulty in identifying targets, poor ro-
bustness to scene transformation, and insufficient adaptive ability. The related methods of
feature extraction and migration and expansion domain are investigated to form an intelli-
gent recognition model that can adaptively, accurately, and efficiently cope with complex
multiclassification environments. While reducing the complexity, the DAGA algorithm
effectively expands the training domain of the signals and achieves the recognition of small
dynamic UAVs in the case of multiclassification of small samples. When the number of
dynamic samples reaches 300, the model reaches a stable state with an average recognition
rate of 97.75%.

The rest of this article is organized as follows. In the second section, we describe and
analyze the micro-Doppler signals of small UAVs. In the third section, the m-DS detection
and recognition algorithm based on DAGA is developed. In the fourth section, feature
extraction and analysis of UAV micro-Doppler signals are performed, including combined
PCA-DWT features and texture features. In the fifth section, experiments are carried out
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to verify the effectiveness of the proposed algorithm and test the performance of small
UAV recognition in the flight process under the condition of insufficient dynamic features.
Conclusions are given in the last section.

2. Micro-Doppler Signature Model of Small UAVs

Doppler frequency shift is recognized to be a unique feature of targets with vibration,
rotation, or other nonuniform motions [18]. From the perspective of electromagnetic
scattering, each blade of the rotor is composed of scattering centers. Each scattering center
is considered as a point with a particular reflectivity. For simplicity, assume that the same
reflectivity is assigned to all scattering centers, as shown in Figure 1. Take point P on
the blade as an example: the blade of the UAV rotates in an angular velocity Ω around
the z-axis. The distance from the radar to the blade center is R0 . As the initial rotation
angle of the UAV changes from ϕ0 to ϕt , the blade will generate a Doppler modulation
on the echo. The m-DS generated by the rotating target can then be used for classification
and recognition of UAVs. Next, we will discuss the m-DS model of the rotor blade of
small UAVs.
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Figure 1. Micro-Doppler effect of UAV’s rotor.

2.1. Analysis of a Micro-Doppler Model of UAVs

The radar sends electromagnetic signals to the small UAVs and receives the echo
signals. If the UAV is moving, the frequency of the received signals will deviate from that
of the transmitted signal, resulting in a Doppler frequency shift. At the same time, the
rotation of the UAV rotor causes additional frequency modulation on the echo signal. It
generates side frequencies near the Doppler shift frequency of the transmission signal,
which is generated by the main part movement. This is called the micro-Doppler effect [19].
The radar uses micro-Doppler effect to detect the micromotion characteristics of small
UAV rotors, which can be extracted by a quadrature-phase detector. The quadrature phase
detector generates the in-phase component I and quadrature-phase component Q from the
input signal. The received signal is as in (1) [19].

sr(t) = A cos[2π( fc + fD)t] = A cos[2π fct + φ(t)] (1)

In (1), A is the amplitude of the received signal, fc is the carrier frequency of the
transmitted signal, fD is the Doppler frequency shift, and φ(t) = 2π fDt is the phase shift
on the received signal caused by small movement of the rotating rotor of the UAV. By
mixing transmission signals with (2) [19] and combining I and Q outputs, a micro-Doppler
complex output signal can be obtained, as shown in (3) [19].
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st(t) = cos(2π fct) (2)

sD(t)= I(t)+ jQ(t)=
A
2

exp[−jφ(t)]=
A
2

exp(−2jπfDt) (3)

The complex output signal in (3) can be used to extract and analyze the m-DS of small
UAVs. The conventional methods of analyzing micro-Doppler signals are instantaneous
frequency analysis and joint time–frequency analysis. When a small multirotor UAV is used
for target recognition, its micro-Doppler signal is a multicomponent signal with prominent
time–frequency characteristics. The instantaneous frequency analysis only provides one
frequency value at a time, which is not suitable for the signal with different oscillation
frequency components at the same time. The traditional Fourier transform cannot provide
the time-related spectrum description. Therefore, the joint time–frequency method is
considered in this paper to extract and analyze the m-DS.

2.2. Rotor Echo Modeling for UAV

For UAVs, the echoes are superimposed by several single rotor echoes. In the entire
radar coordinate system, the distance between the rotors is relatively small and can be
ignored. Therefore, according to the helicopter rotor model [19], the echo signal model of
the small UAV rotor is represented in (4) [20].

s∑ (t)=
Nr

∑
i=1

N−1

∑
k=0

slk (t)=
Nr

∑
i=1

l0exp
{
−j

4π

λ

[
D0i+h0i sin βi

]}
•

N−1

∑
k=0

sin c
{

4π

λ

l0
2

cos βi cos(ωit + ϕ0i + k2π/N)

}
•

exp
{
−jΦi,k(t)

}
(4)

The phase formula is as follows:

Φi,k(t) =
4π

λ

l0
2

cos βi cos(ωit + ϕ0 i
+ k2π/N) (5)

where Nr and N indicate the number of drone rotors and the number of single rotor blades,
respectively, and l0 is the rotor blade length. D0i is the distance from the radar to the center
of the ith blade. h0i indicates the height of the ith rotor blade. βi, ωi, and ϕ0i represent the
pitch angle of the radar to the center of the ith rotor, the rotation frequency, and the initial
rotation angle of the ith rotor, respectively.

Rotating characteristics of rotor blades are essential features for identifying UAVs.
The short-time Fourier transform is used to generate a joint time–frequency transform to
obtain the m-DS of the rotating blades. The number and phase of the characteristic curve
are related to the number of blades. Therefore, from the characteristics, information such
as the number of blades, the length of the blades, and the rotation speed of the rotor can
be estimated.

As shown in Figure 2, the m-DS spectrum of the rotating rotor of UAVs’ blades has
unique periodicity characteristics, which can be used to estimate the rotation speed of the
rotor for later feature analysis and state estimation. According to the sampling parameter
of the radar and the periodicity of the rotating rotor, the rotation rate of the rotor in the
hovering state can be calculated. As shown in (6), Tp and T indicate the periodic time and
the total sampling time, respectively. Np is the number of periodic sampling points and N
is the total number of sampling points.

Ω =
Tp × N
Np × T

(6)
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Take DJI Phantom2 and DJI Phantom3 produced by DJI Innovation Technology Co.,
Limited as examples. Both products have a pair of propellers, including a pair of positive
and negative blades, and the diameter of each blade is 24 cm. The rotation rate is approxi-
mate 30–40 r/s. In general, the bird’s wing rate is not higher than 15 r/s, which is much
lower than the rotation rate of the UAV rotor. Therefore, the rate estimation can be used as
a first step to distinguish small UAVs from birds.

Time (s)

(H
z)

Figure 2. Micro-Doppler signature of rotors.

2.3. Dynamic Characteristics Analysis of UAV Micro-Doppler

The amplitude and phase of the m-DS curve of the UAV are easily affected by the flight
status and initial phase. The UAV m-DS in different states is shown in Figure 3. Figure 3a
shows the UAV’s m-DS during takeoff; it can be seen that the rotor speed is gradually
accelerating, and the period is correspondingly changed and eventually converges to
a stable value. Figure 3b,c show the m-DS of the UAV in hovering and flying state,
respectively. When the UAV is flying freely in the air, its m-DS will change significantly
with the change of azimuth angle. Figure 4 illustrates the m-DS of UAV at different azimuth
angles in flying state.

It can be observed from these figures that the period and amplitude of these features
are affected by the rotor speed, angle, and distance of the received signal. It is difficult to
collect m-DS covering all conditions because the attitude of the UAV varies greatly when it
flies freely in the air. Therefore, it is necessary to realize effective identification of UAV in
dynamic flight without sufficient features.
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Figure 3. Micro-Dppler signature of different status of UAV.



Remote Sens. 2021, 13, 1205 6 of 17
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Figure 4. Micro-Doppler signature of drones at different azimuth angle.

3. UAV Recognition Based on Dynamic Attribute-Guided Augmentation Algorithm

In practice, the sneaky behavior and changeable flight status of the UAVs make their
feature distribution change. Figure 5 takes texture features as an example, and we take the
first three dimensions for visualization. Among them, the static and dynamic features of
DJI Phantom 2 and DJI Phantom 3 are concentrated in different areas, and the dynamic
features of different drones are closer. We define the features acquired by hovering UAVs
as static features, and by flying UAVs with various gestures as dynamic features. Therefore,
it is not enough to train the model using only static features. Dynamic features need
to be considered as well. However, due to the complex flight status of UAVs, such as
vertical, pitch, and roll, dynamic features are difficult to be collected completely, and it is
difficult to train a suitable model based on the small number of existing dynamic features.
In this paper, a DAGA algorithm is proposed to achieve UAV recognition during flight.
Specifically, by learning the mapping of the data, the DAGA algorithm generates synthetic
samples and enhances the feature attributes.

When training a small sample multiclass model, we can expand the training domain
by generating new dynamic features of UAVs. Commonly used multisample synthesis
methods include the SMOTE algorithm [17], hard example mining algorithm [21], and
neighborhood risk minimization [22]. The SMOTE algorithm is a frequently-used upsam-
pling method in image data expansion. In this paper, SMOTE algorithm is adopted to
expand the training domain of dynamic samples on the feature level, as shown in Figure 6.
The dynamic features and static features of a UAV are taken as the original features, and
the generation features are obtained through the nearest neighbor interpolation between
them. Next, the weights of the generation features are set according to a cost-sensitive
algorithm [23], and the input feature vector is formed together with the original feature
to train the classifier. Until the training times n reaches the maximum iterations and the
model is stable, the training process ends and the final classification result is obtained.

Assume that a training set has two classes, which are defined as a minority class and
a majority class according to the number of class samples. The number of samples of the
minority class and the majority class is T and NT, respectively. Take a sample i from the
minority class, whose feature vector is Fi = { fi

1, fi
2, ..., fi

M}, and M is the dimension of
i. k nearest neighbors (in regard of Euclidean distance) of the Fi are found from all the T
sample feature vectors of the minority class and recorded as Fi(near), near ∈ {1, 2, ..., k}. A
sample feature vector Fi(nn) is randomly selected from the k neighbors, and a new feature
vector Fi1 is synthesized from the random number ζ ∈ (0, 1) using (7).

Fi1 = Fi + ζ1 · (Fi(nn) − Fi) (7)
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Figure 5. Three-dimensional feature distribution of UAVs.

Generation 

features

Computational error

Weight initialization

Update the weight

Generated feature classifier

Classified probability

SMOTE

Cost-Sensitive

Input feature vector

Original 

features

n>maximum 

iterations

Yes

No

Figure 6. Flowchart of the dynamic attribute-guided augmentation (DAGA) algorithm.

The sampling rate is set according to the sample imbalance ratio N of the minority
class and the majority class. A new feature vector Finew, inew ∈ 1, 2, ..., N is synthesized
for each sample in the minority class. The effect of data expansion is shown in Figure 7.
DJI Phantom 2 is attributed to a minority class, whereas DJI Phantom 3 to a majority class.
The feature samples of DJI Phantom 2, including static and dynamic features, are fed to
the model. Note that there are far more static features than dynamic features, and the total
number of feature samples of DJI Phantom 2 is much smaller than the number of samples
of DJI Phantom 3. Next, we generate synthesized DJI Phantom 2 features according to the
imbalance ratio.

The SMOTE algorithm is prone to the problem of distribution marginalization, and
artificial samples will increasingly be on the edge of the sample set, making the boundaries
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of different categories blurred. As shown in Figure 7, some of the generated features of
DJI Phantom 2 will overlap with the static features of DJI Phantom 3, and it is necessary to
discard such features through further feature selection.

Mixed data

Before data expansion
After data expansion

First dimension

S
ec

on
d
 d

im
en

si
o
n

Figure 7. Distribution of generated features.

Let us calculate the Euclidean distances of the k nearest neighbor feature vectors of the
feature vector Finew in the same group and different groups, denoted as disame and didi f f ,
respectively. The formula is as follows:

disame =

√√√√ K

∑
k=1

(Finew − Fksame )
2 (8)

didi f f =

√√√√ K

∑
k=1

(Finew − Fkdi f f )
2 (9)

By comparing the values of disame and didi f f , we set the initial weight of the feature
vector as 0.5, if disame is higher than didi f f . Otherwise, we set it as 0, and the initial weights
of the original samples as 0.5. The generated dynamic samples and the original samples
are fed to different classifiers. The final classification results are obtained after the model is
trained stably. The classifiers can be replaced according to the requirements of the actual
scenario. Here, we chose k-nearest neighbor (k-NN) [24] and support vector machine
(SVM) [25] for comparison. For k-NN, the parameter called nearest neighbors is set to the
default value 5. As for SVM, the penalty parameter of a SVM is set to 1.0, and the kernel
function is the radial basis kernel function. The kernel function of SVM is shown in (10).

K(x, y) = exp(
−|x− y|2

d2 ) (10)

Then, we use the AdaBoost algorithm [26] to select appropriate features to update
the feature vector library and classifier, as described in (11), where ε is the error rate and α
is the weight of the classifier. If the classification probability is higher than the previous
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classification probability, the weight is updated following (12) and (13) until the training
error rate becomes 0 or a specified number of training iterations is reached.

α =
1
2

In(
1− ε

ε
) (11)

Dt+1
i =

Dt
i ε
−α

Sum(D)
(12)

Dt+1
i =

Dt
i ε

α

Sum(D)
(13)

The resulting classifier is shown in (14), where αm is the weight coefficient, ym is the
classification probability of the classifier, and Ym is the final total classification result.

YM(x) = sign(
M

∑
m=1

αmym(x)) (14)

DAGA combines the idea of cost-sensitive algorithm and ensemble learning to help
solve the classification problem of unbalanced category proportion. It can avoid overfitting
under the training of few samples and improve the generalization performance of classifier.

4. Micro-Doppler Signature Extraction of UAV

Existing methods for analyzing m-DS include time–frequency analysis, image process-
ing, orthogonal matching pursuit decomposition, empirical mode decomposition (EMD),
and high-order moment function analysis [27]. Among them, the orthogonal matching
pursuit decomposition [28] method and EMD method [3] are mainly used for signal de-
composition and reconstruction. In the process of feature extraction, there are too many
parameters to be searched and the calculation time is too long. The high-order moment
function analysis [29] method can extract m-DS features in the form of rotation and vibra-
tion, but the method has poor antinoise performance. Considering the complexity and
practicability of the algorithm, this paper extracts the PCA-DWT feature and texture feature
of the UAV Doppler signal from the perspective of time–frequency analysis and image
processing, and selects a better feature for UAV recognition through comparison.

4.1. Feature Extraction Based on Combined PCA-DWT

The UAV m-DS is intercepted in one cycle and reduced to one dimension by PCA to
obtain the signal features in the time domain. Then DWT is performed to extract eight
feature values. The specific signal extraction process is shown in Figure 8, where Figure 8a
illustrates a partial m-DS image with a dimension of 128 × 512, and the signal of Figure 8b
has a dimension of 128 × 1 after being reduced by PCA. Figure 8c is the 8 × 1 characteristic
coefficient obtained after DWT.

The purpose of PCA dimensionality reduction is to extract the high-frequency compo-
nents of the signal and reduce the data complexity while minimizing the loss of information.
Suppose there are n UAV m-DS samples X = {x1, x2, . . . , xn}A×p×n, the dimension of each
sample data is A × p, and the sample data are mapped to the subspace of B < p and
decentralized, as shown in (15). In this article, A =128, p =512, and B = 1.

µ =
1
n ∑n

i=1 xi, xi = xi − µ, i = 1, 2, . . . , n (15)
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The calculation of the covariance matrix is shown in (16), where X is the centralized
data, ∑ is a p× p symmetric matrix, and the eigenvalue decomposition is performed on
the covariance matrix ∑ .

∑=
1
n

XXT (16)

The eigenvalue λ1, λ2, . . . , λp is obtained, and the proportion of the first k eigenvalues

representing the total variance of the data is
k
∑

i=1
λi/

p
∑

i=1
λi. A projection matrix is formed by

selecting λ1 as the feature vector, and the original sample is projected onto the new feature
space to obtain a new dimension-reduced sample X′ with the dimension A× n.
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Figure 8. Combined PCA-DWT feature extraction flow chart.

After PCA dimensionality reduction, DWT feature extraction is performed on the UAV
sample features. Assume that the UAV micro-Doppler signal after dimension reduction is
x(n) ∼ X′, and the wavelet transform is shown in (17).

Cj,k =2−
j
2

∞

∑
n=−∞

x(n)ψ̄j,k(2
−jn−k)=

〈
x(n), ψj,k

〉
, j, k∈Z (17)

In (17), ψ is the wavelet base coefficient, j, k represent the frequency resolution and
time shift, respectively. Perform finite layer decomposition on the signal, as shown in Equa-
tion (18).

x(n) = AL +
L

∑
j=1

Dj (18)

where AL is the approximate component and Dj is the detail component.
The wavelet coefficient can express the energy distribution of the micro-Doppler

signal of small UAV in the time domain and the frequency domain. After the wavelet
transform, classification is performed and the norm of the approximate coefficient array
node is obtained, i.e., ‖A‖2 = (|A1|2 + |A2|2 + ... + |An|2)1/2. Eight nodes are considered
in this paper. We compare the wavelet features of DJI Phantom 2 and DJI Phantom 3.
Although the two UAVs have the same rotating blades, DJI Phantom 3 rotates faster and
has higher stability than DJI Phantom 2. As a direct result, the UAV ’s m-DS are clearly
distinguishable, as shown in Figures 9 and 10. Among them, Figure 9 is a three-dimensional
visualization diagram of PCA-DWT features and Figure 10 is a statistical box diagram of
PCA-DWT features.
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Figure 9. Three-dimensional visualization diagram of PCA-DWT features.

Figure 10. Statistical box diagram of PCA-DWT features.

4.2. Texture Feature Extraction Based on Micro-Doppler Signal

In image processing, mathematical morphological image methods such as Hough
change are used to perform edge detection to extract signal contours and other important
micromotion features. The differences in drones and rotors will result in different texture
features, so the feature matrix formed by the texture features can be used to recognize
small UAVs.

When m-DS is processed as time–frequency images, texture features of the images
can be analyzed for drones of different flight states and types. In the analysis of texture
features, the gray-level co-occurrence matrix (GLCM) [30] can be used to calculate the
distribution of the image to distinguish different textures. Commonly used ones include
angle second moment (ASM), correlation, contrast, and incomplete difference matrix (IDM).
In this paper, we use these four statistics as the characteristics of micro-Doppler signals.

(1) ASM can measure the uniformity of gray distribution and texture thickness of
m-DS of small UAVs. When the m-DS texture distribution is uniform and regular, the ASM
is small. In (19), X(i, j) is a micro-Doppler feature image, i and j are image dimensions.
When the performance of the small UAV is more stable, then the ASM obtained is smaller;
otherwise, the ASM is larger.

ASM = ∑
i

∑
j

X(i, j)2 (19)
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(2) Correlation measures the similarity of m-DS of small UAVs in the row or column
direction and exhibits the local gray-scale correlation in the image. The higher the change in
the micro-Doppler image, the stronger the correlation is. When the flying state of the small
drone changes, the more the image changes, the higher the correlation is. The correlation
can be represented by (20).

Cor = ∑
i

∑
j

(i− ui)(j− uj)X(i, j)
σiσj

(20)

(3) Contrast can measure the sharpness of the m-DS of small drones and the depth of
the grooves in the texture. The clearer the texture, the greater the contrast is. Correspond-
ingly, the higher the contrast is, the clearer the visual effect is. In (21), when the small drone
is farther away from the radar, the more the image noise is, the larger the contrast Con is,
and vice versa.

Con = ∑
i

∑
j
(i, j)2X(i, j) (21)

(4) The IDM shows the tightness of the elements in the m-DS image of the small UAV
regarding the diagonal distribution. It can measure the sharpness and regularity of the
micro-Doppler texture features of small UAVs. When the texture is clear and regular, the
homogeneity value is high, as denoted through (22). When the small UAV is in a static
state such as hovering, the stronger the regularity of the m-DS, the larger the IDM is.

IDM = ∑
i

∑
j

X(i, j)

1 + (i− j)2 (22)

After obtaining the texture features of the m-DS, a four-dimensional feature matrix
FN×4 can be formed by (23).

FN×4 =


Con1,1 Cor1,1 Asm1,1 Idm1,1
Con2,1 Cor2,1 Asm2,1 Idm2,1

...
...

...
...

ConN,1 CorN,1 AsmN,1 IdmN,1

 (23)

An example of 3D feature visualization of texture features of the UAV micro-Doppler
image is shown in Figure 11. The drone models include DJI Phantom 2, DJI Phantom 3,
SYMA, and TELLO.

Figure 11. Texture feature distribution of different UAV micro-Doppler images.
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5. Experiment

In this section, the performance of the algorithm is experimentally verified. Figure 12
shows the framework of the dynamic feature attribute enhanced recognition model.

Millimeter-wave 

radar

micro-Doppler signals

Textural features PCA-DWT feature

Determine the type of drone

DAGA algorithm

Train model

Small UAVBirds/OthersBirds/Others Other types of UAVOther types of UAV

Estimation 

of period

Millimeter-wave 

radar

micro-Doppler signals

Textural features PCA-DWT feature

Determine the type of drone

DAGA algorithm

Train model

Small UAVBirds/Others Other types of UAV

Estimation 

of period

Figure 12. Recognition framework based on dynamic feature attributes.

5.1. Signal Acquisition and Analysis

The experiments used different types of drones for testing, including DaJiang Innova-
tion Phantom 2/3(DJI 2/3), SYMA remote drones, and Tello aerial drones. The radar model
used in the experiment is SDR-KIT 2400AD2. The scanning time was set to 1 ms to reduce
the impact of the UAV rotor speed on the m-DS. The number of sampling points was set to
128 to reduce the computational complexity. The signal acquisition block diagram is shown
in Figure 13, and the quantitative analysis is performed by collecting the characteristics of
a single rotary rotor of a UAV.

rotor

UAV Micro-doppler signal interfaceSignal processing center

rotor

UAV Micro-doppler signal interfaceSignal processing center

Figure 13. UAV micro-Doppler signal acquisition block diagram.

The m-DS of small UAVs may be affected by the environment, including birds, kites,
balloons, trees, and other factors. Therefore, after the signal acquisition is completed, a
preliminary judgment can be made by period estimation to make a distinction between
UAVs and determine the flight status of UAVs. The specific process of period estimation is
shown in Figure 14, where (a) is peak filtering and binarization, (b) is the peak statistical
process, (c) is the calculation process of peak and valley values, and (d) is median filtering.

First, the micro-Doppler signals of the UAV are collected. In order to facilitate pro-
cessing, the long signal is divided into bins of 0.5 s, and the time–frequency spectrum is
obtained by short-time Fourier transform.

Then, the binarization process is performed. Calculate the mean value of the time–
frequency spectrum in each time period (0.5 s) and take it as the threshold value. The
spectral value at each time point is compared to this threshold. If the value of a point is
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greater than the threshold, the value does not change. Otherwise, change the value as this
threshold. The binarization results are shown in Figure 14a.

(c) Calculate peak and valley values (d) Median filtering

(a) Peak filtering and binarization (b) Peak statistical

Figure 14. The process of period estimation.

Next, at each time point, we count the number of time–frequency spectrum that is
higher than the threshold, as shown in Figure 14b, and count the peaks and valleys of the
threshold, which is shown in Figure 14c.

Finally, as shown in Figure 14d, median filtering is performed, and peak and valley
values are calculated to estimate the rotation speed of UAV.

The formula used to estimate the rotation speed of UAV is as follows:

Period estimation :
P× N
n× t

=
8× 7488
128× 15

≈ 31 r/s

where P is the number of peaks, and t is the total sampling time. N and n are the total
number of sampling points and the number of partial sampling points (within 0.5 s). We
can determine that the speed of the UAV rotary rotor is 31 r/s , which is consistent with
the theoretical value.

5.2. Performance Analysis of Dynamic Attribute Enhancement Algorithm

In order to verify the performance of feature generation algorithms, we compared
the recognition effects of various sample generation algorithms. Let us take DJI 2/3 as an
example, and the result is shown in Figure 15. Among them, the method of generating new
sample feature vectors includes the SMOTE algorithm, SMOTEENN algorithm (SENN), the
Random Under Sampler algorithm (RUS), and SMOTE Tomek algorithm (ST) [31]. It can be
seen that after adding the feature vectors generated by different algorithms, the recognition
rate of the classifiers is significantly different. The recognition rate of the SMOTE algorithm
is most evident with the increase in the number of generated dynamic samples. Therefore,
in this paper, this algorithm is selected to generate features.

The expanded features are the inputs of the model for classification, and the recogni-
tion rate of the four UAVs are listed in Table 1, where the word “Static” represents static
features, “Dynamic” represents dynamic features, and “SMOTE” represents the generated
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features expanded by SMOTE algorithm. When static features and generated features are
used as training sample sets, there are 300 samples in each category, and 1200 samples
in total. Since it is difficult to collect dynamic features, when they are used as training
samples, the training data of each category is 75 samples, with 300 total samples. The
dynamic features of UAVS have been adopted for test samples, with a total of 300 samples
and 75 samples in each category. During the training process, the ratio of training set to
verification set is 4:1.

Figure 15. The recognition rate of different generation algorithms.

Table 1. Comparison of recognition results of different algorithms.

Recognition
Algorithms

Different
Features DJI 2 DJI 3 Tello SYMA

SVM (Static)
Texture 0.00% 80.00% 92.00% 0.00%
PCA-DWT 0.00% 2.29% 98.04% 0.00%

k-NN (Static)
Texture 0.00% 0.00% 98.67% 0.00%
PCA-DWT 14.28% 31.60% 25.49% 52.17%

SVM (Dynamic)
Texture 94.67% 100.00% 1.33% 77.33%
PCA-DWT 64.06% 79.31% 32.35% 93.48%

k-NN (Dynamic)
Texture 97.33% 75.29% 86.67% 70.67%
PCA-DWT 64.06% 79.31% 26.00% 91.30%

SVM (SMOTE)
Texture 66.67% 78.67% 68.00% 76.00%
PCA-DWT 93.47% 80.59% 79.71% 94.12%

k-NN (SMOTE)
Texture 96.00% 100.00% 85.33% 92.00%
PCA-DWT 71.73% 87.31% 91.17% 93.47%

DAGA-SVM
Texture 98.67% 98.67% 90.67% 94.67%
PCA-DWT 98.91% 91.04% 76.81% 85.29%

DAGA-k-NN
Texture 100.00% 100.00% 93.33% 98.67%
PCA-DWT 100.00% 94.78% 84.06% 100.00%

For the above three different training sample sets, SVM and k-NN have been used to
compare the recognition effects. The results show that the recognition rate of the classifier
trained only by static features is low, and the recognition rate of some UAVs is 0%. In
the case of adding dynamic features or using SMOTE algorithm for data expansion, the
average identification of UAV is significantly improved. On this basis, we use the AdaBoost
algorithm to calculate the error of classifier and update the weight of the original SVM
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and k-NN, and finally get the identification results of test samples on DAGA-SVM and
DAGA-k-NN, which perform much better than the previous methods. Table 1 shows that
the DAGA algorithm is more suitable for k-NN classifier but not the SVM classifier. The
overall performance of texture feature is better than that of the PCA-DWT feature, which
is more suitable for the recognition of small UAVs in flight state. Due to the small rotor
diameter of Tello and SYMA, the signal acquisition is much difficult, and the features are
not stable and obvious, so the recognition rate is reduced. However, when DAGA-k-NN is
used, the average recognition rate of the four UAVs’ texture features is still up to 98%. In
general, when the number of dynamic samples of small UAVs is limited, DAGA algorithm
can be used to effectively improve the recognition rate of UAV in dynamic flight state.

6. Conclusions

In the challenging task of small UAV detection and identification, the drone has many
flight states, and its dynamic characteristics are difficult to collect. This paper proposes a
UAV micro-Doppler feature recognition method based on dynamic feature enhancement.
The texture features and the combined PCA-DWT features of the micro-Doppler signal
are extracted, and the training domain is expanded by the DAGA algorithm to effectively
improve the recognition of the drone in flight, with an average recognition rate of 98%.
This paper focuses on the single rotor of the UAV. In future research, we will conduct deep
analysis of multirotor UAVs.
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