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Abstract: In order to acquire a high resolution multispectral (HRMS) image with the same spectral
resolution as multispectral (MS) image and the same spatial resolution as panchromatic (PAN)
image, pansharpening, a typical and hot image fusion topic, has been well researched. Various
pansharpening methods that are based on convolutional neural networks (CNN) with different
architectures have been introduced by prior works. However, different scale information of the
source images is not considered by these methods, which may lead to the loss of high-frequency
details in the fused image. This paper proposes a pansharpening method of MS images via multi-scale
deep residual network (MSDRN). The proposed method constructs a multi-level network to make
better use of the scale information of the source images. Moreover, residual learning is introduced
into the network to further improve the ability of feature extraction and simplify the learning process.
A series of experiments are conducted on the QuickBird and GeoEye-1 datasets. Experimental
results demonstrate that the MSDRN achieves a superior or competitive fusion performance to the
state-of-the-art methods in both visual evaluation and quantitative evaluation.

Keywords: pansharpening; multispectral image; panchromatic image; deep residual network; multi-
scale network

1. Introduction

In the field of remote sensing, fusion of a panchromatic (PAN) image and a multi-
spectral (MS) image, also called pansharpening, is a hot topic. Due to the limitation of
the existing sensor technology, the optical satellites cannot directly capture high spatial
resolution MS (HRMS) images. Usually, a PAN image with high spatial resolution and
low spectral resolution and a MS image with low spatial resolution and high spectral
resolution are provided. However, in actual applications, the images with high spatial and
spectral resolutions are usually required. Therefore, the pansharpening technique has been
proposed to generate the HRMS image that integrates the complementary information of
the PAN and MS images.

In recent decades, the pansharpening technique has greatly attracted the attention of
many researchers. A variety of pansharpening approaches have been developed, which
can be divided into three categories: component substitution (CS)-based approaches, multi-
resolution analysis (MRA)-based approaches, and model-based approaches [1].

The CS-based approaches are the most classical pansharpening technique. First, it
projects an upsampled MS image with the same scale of the PAN image into a new space.
Then, the component representing the spatial information of the MS image is replaced
with the histogram-matched PAN image. Finally, the fused image is generated by inverse
transformation. The typical CS-based approaches include intensity-hue-saturation (IHS) [2],
generalized IHS (GIHS) [3], principal component analysis (PCA) [4], Gram-Schmidt (GS) [5],
Brovey [6], etc. The CS-based approaches have two advantages: high fidelity in spatial
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information and fast and easy implementation. However, the pansharpened images
produced by the CS-based methods also exhibit obvious spectral distortions. To overcome
this drawback, many researchers have developed improved methods in terms of spatial
detail extraction and injection, such as adaptive component substitution with partial
replacement (PRACS) and band-dependent spatial detail (BDSD), which can be found
in [7,8].

The MRA-based approaches are also widely applied. The basic idea of this kind
of approach is to inject the extracted high frequency information from PAN image into
upsampled MS image. Analysis tools of this type of approach include a trous wavelet
transform (ATWT) [9,10], curvelet transform [11], Laplacian pyramid [12], high-pass fil-
tering (HPF) [13], etc. Compared with CS-based approaches, the MRA-based approaches
have higher spectral fidelity, but may suffer from spatial distortions and result in a worse
visualization of the fused image.

From the above discussion, it can be found that the CS-based approaches and MRA-
based approaches have their own advantages and disadvantages. Meanwhile, there exists
complementation between these two classes of approaches. Based on this, some hybrid
methods that combine the advantages of these two approaches are proposed, such as
the additive wavelet luminance proportional (AWLP) algorithm [14] and the generalized
BDSD pansharpening algorithm [15]. These methods can reduce spatial distortion and
spectral distortion of fused images to a certain extent, but the improvement is limited due
to manual design.

In addjition to the above two approaches, the model-based approaches have attracted
more and more attentions recently. One representative approach exploits sparse representa-
tion. In [16], the author first applied sparse representation to remote sensing image fusion
and achieved better fusion results. However, the ability of this approach is limited by the
dictionary construction method because the HRMS images are not available in practical
form. In order to overcome this problem, various learning-based dictionary construction
methods have been presented [17,18]. In [19], Zhu et al. proposed a sparse fusion method
that exploited the sparse consistency between the LRMS image patches and the HRMS
image patches. Based on this, a series of improved methods achieving good performances
have been proposed in [20,21]. However, this class of approaches take more computational
time due to the high complexity in the optimization process.

Besides sparse representation, deep learning is also a hot and advanced model-
based method. Due to its powerful performance in many fields, such as image super-
resolution [22], image denoising [23], image deblurring [24], and change detection [25],
it has become one of the most popular and potential methods. In deep learning, the con-
volution neural network (CNN) is one of the most widely used models. Recently, many
scholars and researchers have applied CNN models with different architectures to pan-
sharpening. Inspired by the image super-resolution network (SRCNN) [22], Masi et al. [26]
proposed pansharpening convolutional neural network (PNN). Based on the three-layer
network structure of SRCNN, the authors introduced the input of nonlinear radiometric
indices extracted from the multispectral image and took them as the guidance for learning
process of the network. To handle the problems and defects in the PNN network, Scarpa
et al. [27] proposed a target adaptive pansharpening network based on CNN (TACNN).
They introduced residual learning [28] based on PNN and adopted L1 loss function to
further improve the performance of the network. Wei et al. [29] proposed a deep residual
pansharpening network (DRPNN), which introduces residual learning and deepens the
structure of the network. Yuan et al. [30] proposed a multiscale and multidepth CNN
(MSDCNN) method, which consists of a shallow three-layer network and a deep network
introducing multi-scale feature extraction blocks. The final fused image is obtained by
adding the outputs of the two networks. Liu et al. [31] proposed a two-stream fusion
network (TFNet). In this network, the features of MS and PAN images are first extracted,
respectively, and then, the obtained features are merged to reconstruct the pansharpened
image. In these CNN-based methods, the source images are usually directly input to the
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trained network to obtain the output. However, this may not make full use of the detailed
information in the source images, resulting in the loss of high-frequency details in the
fused images.

Based on the powerful potential of deep learning models and the successful application
of CNN in the field of pansharpening, a multi-scale deep residual network (MSDRN)
for pansharpening is proposed in this article to provide a feasible solution to the above
problems. The idea of coarse-to-fine reconstruction is introduced into the network to
make better use of the different levels of detail information contained in the source images.
Moreover, aiming to extract more abstract and expressive features, the residual learning
is introduced to deepen the network structure, so that the network performance can be
further improved. The main contributions of this paper are listed as follows:

e Inspired by the idea of coarse-to-fine reconstruction, a multi-scale pansharpening net-
work is constructed. The proposed network adopts a progressive reconstruction strat-
egy to make full use of the multi-scale information contained in the original images.

e  Residual learning is introduced into the network to further improve fusion perfor-
mance. First, it can effectively alleviate the problem of gradient disappearance in
deepening the network to make the network extract more complex and abstract fea-
tures. Second, it enables the input of the network to be completely transmitted to the
output of the network to preserve more spectral and spatial information. Finally, it
makes network training easier.

e  Experiments were conducted on different satellite datasets. Meanwhile, qualitative
evaluation based on visual observation and quantitative evaluation based on indicator
calculation were performed on the fused images. The experimental results based
on simulated data and real data show that the proposed method achieves better or
competitive performance than the state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, the background knowledge
of deep learning, residual learning and convolution neural network are introduced, and
the CNN-based pansharpening methods are briefly described. In Section 3, the proposed
MSRDN is introduced in detail. In Section 4, the network parameters setting, experiments
and analysis results are discussed. In Section 5, a conclusion of this paper is drawn.

2. Related Works
2.1. Deep Learning and Convolution Neural Network

It is widely acknowledged that deep learning is one of the most innovative and
promising technologies. Recently, deep learning has drawn attention from researchers over
the world, and it has become a research hotspot in artificial intelligence.

Artificial neural network (ANN) is a representative model in deep learning. Origi-
nating from the neural structure and operation mechanism of animals, ANN is formed by
artificial neurons with a certain topology, simulating the structure and behavior of animal
neural networks. Therefore, like the animal neural networks, ANN can automatically learn
from external things and obtains relevant knowledge, which is one of its most remarkable
and amazing characteristics. Specifically, the ANN'’s learning refers to finding optimal
values of the weights and biases in the network through the backpropagation of the error
between the expected output and the actual output of the network. After learning, a
nonlinear mapping relationship between input and output is obtained. Then, this mapping
relationship can be used to predict the potential output for a given input.

One representative application of ANN is back-propagation (BP) neural network. In
this network, any two neurons in two adjacent layers are connected to each other, which is
called full connection. The input of the full-connected layer is one-dimensional data. When
an image (usually three-dimensional data) is input to the network, it needs to be flattened
to one-dimensional data, but the spatial structure information of the image is ignored. In
addition, the fully connected network needs to learn a large number of weight parameters
from a lot of training samples, leading to high computational complexity. These problems
can be solved by CNN. In CNN, the input and output can keep in the same dimension, so
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CNN can better understand and utilize the data with spatial shape. On the other hand,
CNN uses local connection of neurons to reduce the number of weights, thus reducing the
complexity of the network.

CNN is usually composed of convolutional layers, activation functions and pooling
layers. The convolutional layer carries out feature extraction from input data, and this
layer consists of multiple convolution kernels (also known as filters). Each element in
this layer is equivalent to a neuron with a weighting. The convolution layer performs
convolution operation: convolution kernel scans the input feature maps according to a
certain stride, and each element of the convolution kernel is multiplied with input elements
corresponding to each resident area. Then, the products are summed up and add a bias to
obtain the output of corresponding position. For one convolutional layer in a CNN, if the
input is the mth feature map, which is denoted as x;,, the nth output feature map can be
expressed as

Yn = Zwm, n * Xm + bn, 1
m

where w;, , represents the nth filter applied to the mth feature map of the input; b, repre-
sents the corresponding biases, and * denotes the convolution operation.

The activation function usually follows the convolutional layer, and it should be a
nonlinear function, such as rectified linear unit (ReLU), sigmoid, etc. The application
of activation function is to improve the nonlinear degree of the network. The pooling
layer is generally located behind the activation function, and it compresses the input
feature maps to obtain more abstract data features. The pooling layer can prevent over-
fitting and improve the generalization ability of the network. The operation of pooling
layer is similar to that of convolutional layer. The difference of these two layers is the
operation performed in the receptive field, and the operation of pooling layer is to average
or maximize the input data. However, the pooling layer is usually not used in the field of
pansharpening, because the operations performed by the pooling layer lose the information
in the feature maps, thereby reducing the quality of the fused image. Each layer of CNN
has a corresponding data processing function. Stacking multiple layers can form a highly
nonlinear transformation, which simulates the mapping relationship between input and
output data. When the input is a three-dimensional image, CNN extracts and utilizes the
feature information of the image, making it convenient for the subsequent image processing.
Therefore, CNN is widely used in image classification, image super-resolution and other
related fields.

2.2. Residual Learning

For a convolutional neural network, the forward convolutional layers tend to extract
more elementary information, such as edges and patches in the image. The neurons in
deepening network layers gradually respond to complex information, such as textures
and object parts. This shows that convolutional neural networks extract information
hierarchically and deeper networks can extract more complex and abstract features. Besides,
a nonlinear activation function usually follows the convolutional layer. Therefore, through
the stack of the convolutional layers, the degree of nonlinearity from the input to the output
of the network can be increased, thereby improving the expressiveness of the network.
However, the deepening layer causes some problems. When a deep network is trained
through back-propagation, the gradient of the loss function to the network parameters
(weights and biases) continues to decrease or even disappear. This makes it difficult to
find the optimal parameters for those layers close to the input, and the deepening layer
loses its meaning at this time. Fortunately, this problem can be solved by residual learning.
The idea of residual learning was first proposed by He et al. [28]. In their article, the
authors added a simple and effective structure called “skip connection”, which effectively
alleviated the problem of vanishing gradient caused by deepening layer. Since the skip
connection transmits the input data to the output and the data is kept unchanged, the
gradient from the upstream is transmitted to the downstream during the backpropagation,
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and the value is intact. In the ILSVRC competition, the authors used their network to
achieve a commendable recognition performance. Since then, residual networks have been
increasingly applied in many image-related fields. There are many such networks for
pansharpening problems, such as literature [27,29-31].

2.3. CNN-Based Methods for Pansharpening

In SRCNN [22], a low-resolution image is input to a trained convolutional neural
network to obtain a high-resolution reconstructed image. The purpose of pansharpening is
to fuse the observed low-resolution MS image and high-resolution PAN image to obtain the
HRMS image with the same resolution as the PAN image. Obviously, pansharpening can
be regarded as super-resolution reconstruction of low-resolution MS image. The difference
is that the information of PAN image needs to be injected into the fused image. Inspired by
this idea, Masi et al. [26] first proposed a CNN method for pansharpening, and they used a
three-layer network similar to the SRCNN network structure. The difference is that the
input of SRCNN is only one image, while the input of pansharpening includes MS and
PAN images. To solve this problem, Masi et al. connected MS and PAN images to form an
input in the band direction. Besides, they added nonlinear radiometric indices extracted
from MS image to obtain better network performance. Since then, the application of CNN
in the field of pansharpening has gradually increased. For example, Zhong et al. [32]
proposed a pansharpening method combining SRCNN and GS [5]. In this method, SRCNN
network is used to improve the spatial resolution of the low-resolution MS image; then,
the GS algorithm is used to fuse the enhanced resolution MS image and PAN image. Wei
et al. [29] proposed a deep residual network (DRPNN). They introduced residual learning
in the network and stacked more convolutional layers to extract more abstract and more
deep-level features from the source images. At the same time, a higher degree of nonlinear
model is built to more accurately simulate the mapping relationship between input and
output. Yuan et al. [30] proposed a network with two branches, i.e., deep branch and
shallow branch. The shallow branch uses a three-layer network structure similar to PNN
to extract the shallow-level features of the source images, while the deep branch uses
two continuous multi-scale convolution kernel blocks to extract image information in
different levels. The final fusion result is obtained by the sum of the output of the two
branches. Liu et al. [31] proposed a two-stream network. The networks mentioned above
usually stack the MS and PAN images to form an input for feature extraction. In contrast,
the authors used two sub-networks to extract the features of MS image and PAN image
separately. Then, the extracted features were fused to reconstruct the pansharpened image.
Wang et al. [33] proposed a densely connected convolutional neural network, and they
introduced some dense connection blocks composed of several continuous convolutional
layers to the network. The input of each convolutional layer in the dense connection block
is formed by the concatenation of output feature maps of all previous layers, and the
output feature maps of this layer is also used by all subsequent convolutional layers. The
advantages of this network are reusing the feature maps to reconstruct more fine details in
the pansharpened image and promoting the gradient flow in the training process. More
recently, Yang et al. [34] proposed a progressive cascade deep residual network (PCDRN).
A coarse-to-fine reconstruction strategy is adopted in this network. Firstly, the upsampled
MS image by a scale of 2 and the downsampled PAN image by a scale of 2 are fused at a
coarse level; then, the fusion result is upsampled by a scale of 2 and fused with the original
PAN image at a fine level. This strategy makes full use of the detail information in different
levels of the source images, so that the loss of high-frequency details can be reduced, and a
more refined fused image can be obtained.

Compared with the traditional CS-based and MRA-based methods, the fused images
obtained by the CNN-based methods show better performance in both the spatial domain
and the spectral domain. Therefore, the CNN-based method is favored by researchers in
recent years, and it is increasingly applied to the field of pansharpening.
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3. The Proposed CNN-Based Pansharpening Method
3.1. Motivation

The goal of pansharpening is to combine the abundant spectral information in MS
image with the rich spatial information in PAN image to obtain the HRMS image. As
mentioned above, the fused images obtained by CS-based methods and MRA-based meth-
ods suffer from spectral distortions and spatial distortions, respectively. However, the
CNN-based methods can effectively improve the spectral fidelity and spatial fidelity of the
fused image. In terms of the powerful performance of CNN in image feature extraction
and image reconstruction from the extracted features, CNN is still used to perform the
pansharpening work.

An original image contains abundant detail information. If the image is downsampled
by a certain scale, much detail information in the image is lost, but the downsampled
image can coarsely reflect spatial structure of the original image. Therefore, utilizing the
coarse-level structure of an image to reconstruct the fine-level structure is considered. In
some literatures [35-37], this coarse-to-fine idea has been applied, and successful practices
have been achieved. For example, in the image deblurring network proposed by Nah
et al. [35], the authors divided the entire network into three levels. From top level to
bottom level, the input of each level of network is the original image that needs to be
deblurred, the medium-level blurred image that is downsampled once from the original
image, and the coarse-level blurred image that is downsampled twice, respectively. Each
level of the network uses the same structure, and they output the deblurred image under
the corresponding level respectively. To make full use of the information in different levels
of the blurred image, the restored image in the coarser level is concatenated with the
next relatively finer blurred input image as the input of the finer-level network. Finally, a
fine-level deblurred image with better performance is obtained. Inspired by such successful
cases, the coarse-to-fine idea is introduced into the field of pansharpening in this paper, so
that the detail information in different levels (coarse-level, fine-level, etc.) of the source
images can be fully exploited to reconstruct high-resolution MS image that retain more
details. Besides, in order to give full play to the advantages of deep learning, residual
learning is introduced and the depth of the network is deepened, so that the mapping
relationship between the input images and the pansharpened image can be simulated more
accurately, and the learning process is also simplified.

3.2. The Architecture of Proposed Network

The architecture of the proposed MSDRN is shown in Figure 1. For convenience of
modeling, the original MS and PAN images are represented as X1 and Xp; with size of
H x W x sand rH x rW, respectively. H, W, and s respectively denote the height, width,
and channels of MS image, and r denotes the ratio of spatial resolution between MS image
and PAN image. The upsampled MS image by ratio r is denoted as Xy; the images that are
downsampled once and twice for X,y are respectively represented as Xy, and Xj3; the
images that are downsampled once and twice for Xp; are respectively represented as Xp;,
Xp3, and the scale of each downsampling is 2 x 2. From top to bottom, three different levels
of high-resolution pansharpened images to be predicted are represented as Y1, Y> and Y3,
respectively. The concatenation of images along the band direction is denoted as “®”. For
example, the concatenation of upsampled MS image and PAN image can be represented as
[Xm1, Xp1] = Xann © Xpy, where [Xpy1, Xp1] indicates the concatenated data.

The network flowchart is for 4-band MS image, and the size ratio of PAN image to
MS image is 4. In Figure 1, “1” means upsampling operation. Moreover, it can be seen
from Figure 1 that the entire network is divided into three levels, i.e., fine-level network,
medium-level network and coarse-level network, from top to bottom. The networks in
all levels have a similar structure, which consists of a sub-network (“Net” in the Figure)
and a subsequent convolutional layer. The original data of the pansharpening problem is
composed of MS image and PAN image, while that of the image deblurring network [35] is
only one RGB image. To this end, the original MS image is first interpolated to the same
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Figure 1. The framework of the multi-scale deep residual network (MSDRN).

Each level of the network is added a “skip connection”, which points from the input of
the sub-network at each level to the output of the sub-network. Apart from stacking more
layers, skip connections can also transmit the network’s input to the output intactly. In each
level of the network, the network inputs including MS and PAN images of corresponding
scale are transmitted unchanged to the output of the corresponding sub-network (Net),
so that the loss of spectral information and spatial information in the fused image can be
reduced. Since the element-wise addition operation requires the objects to be added to have
the same dimensions, a convolutional layer needs to be added behind the skip connection
to reduce the number of bands of the output data. Besides the initial inputs, the fused image
from the next relatively coarser level is taken as part of the inputs by the medium- and fine-
level networks. Specifically, the medium-level network uses the coarse-level fused image
as part of inputs, and the fine-level network uses the fused image of the medium-level
network as part of inputs. In this way, different levels of detail information from the source
images can be exploited. In [26], the authors indicate that some class-specific radiometric
indices having a high correlation to some feature maps from different layers can guide
the learning process of the network. Hence, some well-known indices for 4-band MS, i.e.,
normalized difference water index (NDWI) and normalized difference vegetation index
(NDVI) [26,38], are used in our proposed network. Their definitions can be expressed as

MSGreen — MSNir - NDVI = MSNir — MSRed

NDWI = _
MSGreen + MSNir MSNir + MSRed

()

where MS, represents corresponding band of MS. The concatenation of these extended
inputs is expressed as NDXI, i.e., NDXI = NDWI @ NDVI. In order to reduce the com-
plexity of the network, they are only considered as part of the inputs of the fine-level
network, because the fusion target of pansharpening is only generated by the fine-level
network. Like the original MS image, NDXI is first interpolated to the same size as the
PAN image, and these extended inputs of interpolating r times are denoted as NDXI").
Then, it is concatenated with the initial inputs (upsampled MS image and PAN image) of
the fine-level network and fed into the fine-level network. The network fusion process is



Remote Sens. 2021, 13, 1200

8 of 26

divided into three stages, starting with coarse-level fusion, transitioning to medium-level
fusion, and ending at the final fine-level fusion. Here, the number of layers in each level of
the network is set to /. The detailed descriptions of fusion are as follows.

Stage 1: The five-band data [Xj3, Xp3] obtained by performing 4 x 4 downsampling
is input to the coarse-level network. The output after the skip connection should also be
five-band data, and it can be expressed as

BV = [Rus, Xps] + 3[R0 Xpal, Wa, bs), ©)

where f; represents the mapping of “Net3” sub-network input to output; W3 and b3
represent the weights and biases of the sub-network, respectively; | — 1 represents the
(I —1)th layer, and subscript “3” represents the coarse-level network. To obtain four-band
coarse-level HRMS image, it is necessary to add another convolutional layer to reduce the
spectral dimension, thus the resulting coarse-level HRMS image can be expressed as

A

Vs = Vs w460, (4)

where WB(I) and bél) , respectively, represent the weights and biases in the /th layer of the
coarse-level network, and * represents the convolution operation.

Stage 2: To match the input image size of the medium-level network, the coarse-level
fused image needs to be upsampled. The commonly used upsampling methods include
the linear interpolation, bicubic interpolation, etc., but the up-convolution method is used
in this paper. On the one hand, the up-convolution method has been claimed by some
literatures [31,39] to have better performance. On the other hand, it can be used as a part of
the entire network to make all layers of the entire network learn together without other
interventions. The image after the coarse-level fused image is upsampled by a scale of 2

with the up-convolution method, which is denoted as ?3(2). The coarse-level fused image
after up-convolution is concatenated with the initial inputs of the medium-level network to

form inputs with nine bands, which can be expressed as [X M2, Xpo, YS(Z)}. Then, it is feed
into the medium-level network, the output after the skip connection can be expressed as

Fz(lil) = [Xm2, Xp2, Yéz)] + fo([Xm2, Xp2, ?3(2)], Wy, by), ®)

where f, represents the mapping of “Net2” sub-network input to output; W, and b, respec-
tively, represent the weights and biases of the sub-network, and subscript “2” represents the
medium-level network. Similarly, a convolutional layer needs to be added behind the skip
connection, so that a medium-level HRMS image can be obtained by the following formula

Vo = E Vsl 4 b0, ©6)

where Wz(l) and bgl) respectively represent the weights and biases in the /th layer of the
medium-level network.
Stage 3: The medium-level HRMS image is upsampled by a scale of 2 with up-

convolution manner, and the obtained image is expressed as 172(2). Concatenating the
obtained image with the initial inputs of the fine-level network, the data obtained is used
as the inputs of the fine-level network, and this whole data can be expressed as

[Xu1, Xp1, NDXIO, ¥12] = Ry @ Xpy © NDXI?) @ 742, @)

Similar to the above two stages, the output after the skip connection of fine-level network
and the output after adding the convolutional layer can be respectively expressed as
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F7Y = [Ran, Xpr, NDXIO), V2] + £ (R, Xp1, NDXIO), V2], Wy, by)
®)

Y =E W 4p)

where Y] is the final pansharpened image; fi, Wi and b; represent the mapping of “Net1”
sub-network input to output, the weights and biases of the sub-network; Wl(l) and bil),
respectively, represent the weights and biases in the /th layer of the fine-level network, and
subscript “1” represents the fine-level network.

Except the up-convolution layers, each level of the network has the similar struc-
ture but different parameters, and number of layers is set to 11. The detailed structural

parameters of the network are listed in Table 1.

Table 1. Structural parameters of the MSDRN.

Layer Input Channels Sizgf’::ijing Output Channels Ratio
1 11 3/1 64 /
. 2~9 64 3/1 64 /
Fine-level 10 64 3/1 11 /
11 11 3/1 4 /
1 9 3/1 64 /
2~9 64 3/1 64 /
Medium-level 10 64 3/1 9 /
11 9 3/1 4 /
up-convolution 4 3/1 4 2
1 5 3/1 64 /
2~9 64 3/1 64 /
Coarse-level 10 64 3/1 5 /
11 5 3/1 4 /
up-convolution 4 3/1 4 2

3.3. Training of Network

The goal of pansharpening is to obtain a HRMS image with the same spatial resolution
as the PAN image, so it is desired that the spatial resolution of the fused image be as close as
possible to that of the PAN image. However, the ideal image does not exist, which hampers
the training of the network and the quality evaluation of the fused image. These problems
can be solved by the Wald protocol [40]. The Wald protocol is to first downsample the
original MS and PAN images at the same time based on the ratio of the spatial resolution
of the MS and PAN images. The downsampled PAN image has the same spatial resolution
as the original MS image. In this case, the original MS image can be used as a reference,
and the downsampled MS and PAN images can be used as the inputs of the network.
After the network training is completed, the original MS and PAN images are used as
the inputs of the network, and the optimized model parameters are used to predict the
pansharpened image.

The proposed network has three different levels of input and output. To make the
network fully trained, a reference image is set at each level of the network. According to
the Wald protocol, the reference images from the fine-level network to the coarse-level
network respectively are the original MS image, the MS image after downsampling at the
scale of 2, and the MS image after downsampling at the scale of 4. For the loss function, the
mean square error (MSE) is chosen. In the case of reduced resolution, if the inputs of the
fine-level to coarse-level network are simplified as X;, X, and X3, and the corresponding
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reference images are Y7, Y, and Y3, respectively, then the loss function of the kth level
network can be expressed as

1 N o 2 1 N 2
Ly = NZ 1 Yii — Yeill” = NZ | Ye,i — G (Xgir Wi, i), )
i=1 i=1

where k =1, 2, 3, and i represents the number of the sample in a batch size; Wy and by
represent the weights and biases of the kth level network, respectively; Gy denotes the
mapping of kth level network, and N is the training batch size. During training, the loss
functions of three different levels of network are averaged, i.e., the total loss function is

1.3
L=- L. 10
3k:21k (10)

The optimal values of the parameters (weights and biases) are obtained by minimizing
L. The Adam [41] method is used to update the network parameters. If all the parameters
in the network are expressed as 0, the update formula can be expressed as

8t = VoLi(6;—1)

my = Bymy_1+ (1 — PB1)g:

Ut = :BZUf—l + (1 - ﬁZ)g% (11)
tiy =my/(1—Bh) ,

o = v/ (1— Bb)

Or =01 — 17 -1/ (\/Or +¢)

where g; represents gradients at timestep t; m; and v; represent biased first moment estimate
and biased second raw moment estimate, respectively; #1; and 0 represent bias-corrected
first moment estimate and bias-corrected second raw moment estimate, respectively; 5
represents the learning rate; ¢, 1, B2 are usually taken as 108, 0.99, 0.999, respectively.

4. Experiments
4.1. Datasets and Settings

The proposed MSDRN was tested on two different datasets, i.e., GeoEye-1 and Quick-
bird. As a commercial satellite of the United States, GeoEye-1 was launched in 2008, and it
is one of the most advanced optical digital remote sensing satellites in the world today. The
GeoEye-1 satellite carries a panchromatic sensor and a multispectral sensor. The former
acquires a single-band panchromatic (PAN) image with a spatial resolution of 0.5 m, and
the latter acquires a multispectral image with a spatial resolution of 2 m. The MS image
has four bands, including red, green, blue, and near-infrared (Nir). The Quickbird satellite
was launched by Digital Earth in 2001. It carries sensors that can acquire MS images with a
spatial resolution of 0.6 m and PAN images with a resolution of 2.4 m. The bands of MS
images obtained by Quickbird are the same as that of GeoEye-1. The main characteristics
of the two satellites are shown in Table 2.

Table 2. Spectral bands and spatial resolution of GeoEye-1 and Quickbird satellites.

Satelli Spectral Bands (nm) Spatial Resolution (m)
atellites Blue Green Red Nir PAN MS PAN
GeoEye-1 450-510 510-580 655-690 780-920 450-800 2.0 0.5
QuickBird 450-520 520-600 630-690 760-900 450-900 24 0.6

Considering that different satellites have different characteristics, the model are trained
and tested on two datasets, respectively. Each dataset is divided into two subsets, i.e.,
training set and test set, and the samples in these two subsets do not overlap. The group
number of image patches of the training set and the test set are shown in Table 3. For
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each training set, the image patches are divided into three different levels, corresponding
to the levels of the proposed network. From fine-level to coarse-level, the sizes of the
training patches are 32 x 32, 16 x 16, and 8 X 8, respectively, where the latter two are
obtained through downsampling the previous one by scales of 2 and 4, respectively. For
each test set, a group of data is composed of an original 256 x 256 MS image and an original
1024 x 1024 PAN image. For the interpolation method, the polynomial interpolator with
23 coefficients proposed in the literature [42] are chosen.

Table 3. Dataset division.

Satellites Training Set Test Set
GeoEye-1 37632 30
Quickbird 32320 23

The deep learning framework PyTorch [43] is used to build the network, and the
training process is supported by an Intel Core i7-10700 CPU. The training runs for 20
epochs maximumly. The initial learning rate is set to 0.001, and it decays by 50% every two
epochs. The mini-batch size is set to 28. The training on each dataset takes about 20 h.

4.2. Quality Indicators

The simulated experiments use downsampled MS and PAN as the images to be
fused and the original MS as a reference. The quality of the fused image is evaluated
through six commonly used full-reference indicators, including spectral angle mapping
(SAM) [44], erreur relative globale adimensionnelle de synthese (ERGAS) [45], root mean
square error (RMSE), correlation coefficient (CC), universal image quality index (Q) [46]
and an extended version of Q (Q2") [47]. For experiments with real data, since there is no
reference image, the quality no-reference index (QNR) [48], spectral distortion index D
and spatial distortion index Dg are used. In the following description, the reference image
and the fused image are denoted as R and F, respectively.

e SAM measures the spectral similarity between the pansharpened image and the
corresponding reference image. A smaller value of SAM indicates a higher spectral
similarity between two images. SAM is defined by the following formula

T
SAM(R, F) = 1<RF) 12
(R, F) = cos ™\ TRTTEY 12)

e ERGAS represents the degree of spatial distortion between the fused image and the
reference image. The smaller the ERGAS, the higher the quality of the fused image.
ERGAS is defined as

h| 1 RMSE(Bi)r
ERGAS = 100- 4| — ¥ | ——— | , 13
! J NZZ%[ 1(B;) (13)

where h1/1 is the ratio of the spatial resolution between PAN and MS; N is the number
of MS bands; RMSE(B;) is the root mean square error between the band of the fused
image and the reference image, and y(B;) is the average of the original MS image
band Bi-

e RMSE measures the difference between pixel values of the fused image and the
reference image. The smaller the RMSE, the closer the fused image to the reference
image. RMSE is defined as

c h w
- .. 2
RMSE_\thWXCE } } (i, j, k) = F(i, j, k)], (14)
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where h, w and ¢ respectively represent the height, width, and band number of the
MS image.

CC reflects the strength of the correlation between the fused image and the reference
image. The closer the CC is to 1, the stronger the correlation between the two objects.
CC can be calculated by the following formula

cC = Cov(R, F) (15)

V/Var(R) - Var(F)’

where Cov(R, F) represents the covariance between R and F, and Var(-) represents
the variance.

Q can be used to estimate the global quality of the fused image. It measures the degree
of correlation, the similarity of average brightness, and the similarity of contrast
between the fused image and the reference image. The closer the value of Qis to 1,
the better the quality of the fused image. The definition of Q is

ORF  2URMF  20ROF
Q(R, F) = . . p 16
( ) OROE %+ u2 0%+ 02 16)

where 0., represents the standard deviation of the image; . represents the mean value
of the image; orr represents the covariance between R and F.

Q2" is an extended version of Q. It is also called Q4 when applied to four-band MS
image, and Q8 when applied to eight-band MS image. It is defined as

Q2°(R, F) = Onzy  2WzPzy 2020z

, (17)
Uzl UZZ V%l + V%Z 0'221 + 0-222

where z; and z, represent two quaternions (for four-band MS images) or two octonions
(for eight-band MS images), which are respectively composed of radiation values of
given image pixels in each band of reference MS image and fused MS image. Q2"
introduces the measurement of spectral distortion of fused image based on Q. The
closer the value is to 1, the better the fused image quality is.

D, is an indicator that measures the spectral similarity between the fused image and
the low-resolution MS image. The closer the value of Dy is to 0, the more similar the
spectral information between the fused image and the low-resolution MS image is.
D, is defined by

. N L OO
Dy = p ml; r¥1 ‘Q(Gl’ Gr) = QG G - 19

r#1

In this formula, G represents the fused image; G represents the low-resolution MS
image; Q represents the Q index; N is the number of bands of the MS image; p is a
constant, and it is usually set to 1.

Dg is a measure of the spatial similarity between the fused image and the PAN image.
The closer the value of Dg is to 0, the smaller the spatial distortion of the fused image.
Dg is defined by

1N . ~ 1
Dg =7 —Z‘Q(GZ,P)—Q(GI,P) . (19)
N

In the formula, P refers to the PAN image and P refers to the degraded PAN image; g
is a constant, and it is usually set to 1.
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e  QNR can measure both the spectral distortion and spatial distortion of the fused
image, which is based on the spectral distortion index D, and the spatial distortion
index Dg. QNR is defined as

QNR = (1 — D,)*(1 — Dg)?, (20)

where « and 8 control the relative degree of correlation between the spectral index and
the spatial index. If D) and Dg equal to 0 at the same time, QNR obtains the optimal
value of 1.

4.3. Comparison Algorithms

To verify the effectiveness and reliability of the proposed network, some representative
traditional algorithms and algorithms based on deep learning are selected for performance
comparison. The selected traditional algorithms include the CS-based methods, such as
IHS [2], PCA [4], BDSD [8], and PRACS [7]. The recently proposed robust BDSD (RBDSD)
algorithm [49] is also considered, which is an extension of BDSD. As for the MRA-based
methods, smoothing filter-based intensity modulation (SFIM) [50], ATWT with injection
model 3 (ATWT_MB3) [51], Indusion [52] and generalized Laplacian pyramid with MTF-
matched filter (MTF_GLP) [53] are considered. Moreover, the AWLP with haze correction
(AWLP_H) algorithm [54] is taken into consideration, which is an improved version of
AWLP [14]. For the deep learning method, the PNN network [26] which first uses CNN
for pansharpening and the deep residual network DRPNN proposed by Wei et al. [29] are
selected. Most of the traditional algorithms are implemented based on the pansharpening
toolbox provided by Vivone et al. [1].

4.4. The Influences of Scale Levels and Kernel Sizes

In this subsection, some experiments were conducted to discuss and analyze the
influences of scale levels and kernel sizes on the performance of the proposed method.
Firstly, we discuss and analyze the effect of the number of levels of the network on the
performance of the proposed method. The experiments on K = 1, K = 2, and K = 3 are
conducted, respectively. The network with K = 3 is shown in Figure 1. When K = 2, the
coarse-level network is removed on the basis of the network shown in Figure 1; when
K = 1, the bottom coarse-level network and the medium-level network are removed.
As for the removal of the network, the inputs of the network are changed, while the
unremoved network structure remains unchanged. In this set of comparative experiments,
the convolution kernel sizes of the entire network are set to 3, and the remaining parameters
are set as that described in Section 4.1. The simulated experiments were conducted on
GeoEye-1 and QuickBird datasets, respectively. For each group of test images in two
datasets, experiments were performed at different network levels, and the quality indicators
of fused image were calculated. The curves showing the quality indicators of the fused
image on two datasets with the image number are shown in Figures 2 and 3, respectively.

From Figures 2 and 3, it can be seen that as the network level increases, the six quality
indicators all show better values, confirming the effectiveness of introducing multi-scale
convolutional neural network into the pansharpening problem. However, increasing levels
of the network results in a more complex network structure with more parameters needed
to be trained; thus, the training time is increased, and an overfitting problem may be caused
in the network. Therefore, to balance the relationship between the network performance
and training time, the network level is finally set to 3.
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Figure 2. Quality indicator curves of the fused image with network level set to 1, 2, and 3 on the GeoEye-1 dataset. (a) SAM;
(b) ERGAS; (c) RMSE; (d) CC; (e) Q; (f) Q2.



Remote Sens. 2021, 13, 1200 15 of 26

4.8 5 T
4.6 E 48
44k i 4.6
4.4r
4.2 b
4.2
L 4 %)
s ! <
< Lz‘_ﬂj s
P38t B
3.8
3.6 b
3.6
34 1 341
32r b 321
3 . . . 3
0 5 10 15 20 25 0
number
(a)
45 T 0.99
0.985
40 - b
0.98
351 b 0.975
% 0.97
Saof 1Y
F~ 0.965
251 1 0.96
0.955
20 N
0.95
15 1 1 L 1 0.945 1 1 Il L
0 5 10 15 20 25 0 5 10 15 20 25
number number
0.98 0.98
0.97 0.97 1 1
0.96 [ b
0.96 -
0.95 N
0.95
- 0.94 b
L o
094 &
093 q
093
092 ° 1
092 091 - i
091 - ool i
0.9 0.89 ! : ! 3
0 0 5 10 15 20 25
number number

(e) ()

Figure 3. Quality indicator curves of the fused image with network level set to 1, 2, and 3 on the QuickBird dataset. (a) SAM;
(b) ERGAS; (¢) RMSE; (d) CC; (e) Q; (f) Q2".
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After determining the level of the network, the kernel size of the convolutional layer
is discussed, and its impact on the fusion result is explored. The kernel size of the up-
convolutional layer is fixed to 3. In the experiments, the size of three convolution kernels is
set, and two of them are set to the same value throughout the entire network, i.e., 3 and
5. In another case, considering that the patch size of input images in different levels of
the network is different. Moreover, we assume that a smaller kernel is more suitable for
extracting features of a smaller image patch, and a larger kernel tends to extract features of
a larger image patch. Therefore, the kernel sizes from fine-level to coarse-level networks
are set to 7, 5 and 3, respectively. The simulated experiments were conducted on all the
test images of two datasets, and the curves showing the quality indicators of the fused
images versus the image number are shown in Figures 4 and 5, respectively. It can be seen
from two figures that relatively better indicator values appear when the convolution kernel
sizes are set to 3, and relatively poor indicator values appear when the convolution kernel
is set to a larger size, although it is generally believed that a larger convolution kernel
corresponds to a larger receptive field and can extract richer image information. However,
this is not the case in our work, which may be due to the particularity of the pansharpening
task. Therefore, the kernel sizes of the convolutional layer of the entire network are set
to 3. A smaller convolution kernel indicates that fewer parameters need to be trained,
which contributes to a decreased training time. Besides, it is worth mentioning that for
the QuickBird dataset, setting the convolution kernel sizes of the fine-level network to the
coarse-level network to 7, 5 and 3 is better than setting the convolution kernel sizes of the
entire network to 5, which is different from the case appears in the GeoEye-1 dataset. This
may be due to the different characteristics of different satellites.

Based on the above discussion, it is determined that the number of levels of the
proposed network is 3, and all the convolution kernel sizes of the entire network are also
set to 3, as listed in Table 1.

T T o) T
kernel size =3 kernel size =3

kernel size =5 kernel size =5
kernel size=7,5, 3

kernel size=7,5,3 45

number number
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Figure 4. Cont.
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Figure 5. Quality Indicator curves of different convolution kernel sizes (evaluated on 23 groups of test images of QuickBird dataset).
(a) SAM; (b) ERGAS; (c) RMSE; (d) CC; (e) Q; (f) Q2™.

4.5. Simulated Experiments

In this subsection, the simulated experiments were conducted on two datasets, and
the proposed method is compared with some widely used algorithms (mentioned in
Section 4.3). It should be illustrated that the optimal convolution kernel sizes of the original
DRPNN [29] are 7. The DRPNN trained on our datasets with this setting, but relatively
poor results were obtained during the performance test. Experiments have shown that
better results are achieved when the convolution kernel sizes are set to 3 on our datasets, so
the convolution kernel sizes of the DRPNN are set to 3 when comparing. Figures 6 and 7,
respectively, report the fusion results of our proposed MSDRN and other 12 algorithms
on two datasets. Based on the results, it can be seen that compared with the upsampled
low-resolution MS images using bicubic interpolation, the spatial resolution of the fused
images obtained by all methods has been improved to a certain extent. For the CS-based
methods, the algorithms including IHS, PCA and BDSD achieve high spatial resolution
on two datasets. However, compared with the reference image (Ground Truth), these
algorithms all suffer from spectral distortions, which is particularly evident for the IHS
algorithm in Figure 7a. The RBDSD method produces some blurring effects in the fused
images as shown in Figures 6d and 7d. The fused images of the PRACS methods are shown
in Figures 6e and 7e; they show natural colors but some blurring effects in spatial details.
As shown in Figure 6f,i, and Figure 7{,i, the SFIM and Indusion methods perform better on
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the QuickBird dataset but produce some spectral distortions on the GeoEye-1 dataset. It
can be clearly observed from Figures 6g and 7g that the AWLP_H method achieves good
performance in both spatial resolution and spectral resolution. The ATWT_M3 method
suffers from severe blurring and artifacts, especially on the white building near the middle
of Figure 6h. The blurring also appears in the fused images of the MTF_GLP method
with a relatively low degree as shown in Figures 6j and 7j. Compared with the CS-based
and MRA-based methods, the CNN-based methods show better performance in terms of
spectral fidelity and spatial detail preservation, and the results obtained by them are very
close to the reference images. In terms of the colors of the red buildings in the fused image
of Figure 6, our proposed method and DRPNN perform better than PNN, showing the
powerful potential of the deep network.

(h) ATWT_M3
-

% Ll R
(g) AWLP_H

odpw ped M

L |

(n) LRMS (bicubic)

3 g3 b RN S8 D] s
(m) MSDRN (o) Ground Truth

Figure 6. An example of simulated experiments on the GeoEye-1 dataset. From (a—o0) IHS, PCA, BDSD, RBDSD, PRACS,
SFIM, AWLP_H, ATWT_M3, Indusion, MTF_GLP, PNN, DRPNN, MSDRN, LRMS (bicubic), Ground Truth.
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(m) MSDRN

(n) LRMS (bicubic) 0) Ground Truth

Figure 7. An example of simulated experiments on the QuickBird dataset. From (a—o0) IHS, PCA, BDSD, RBDSD, PRACS,
SFIM, AWLP_H, ATWT_MS3, Indusion, MTF_GLP, PNN, DRPNN, MSDRN, LRMS (bicubic), Ground Truth.

In addition to the subjective evaluation, the quantitative analysis of the fusion results
is also essential. Tables 4 and 5 report the quantitative assessment results of all methods on
the GeoEye-1 and QuickBird datasets. The numerical values are obtained by averaging the
evaluation results of the test images on the entire dataset. From Tables 4 and 5, it can be
seen that among the traditional CS-based algorithms, the BDSD and PRACS algorithms
achieve the best results for the GeoEye-1 and the QuickBird datasets, respectively. As to
the MRA-based algorithms, the SFIM and AWLP_H methods perform better. Among all
the traditional algorithms, BDSD, SFIM, AWLP_H and PRACS achieve competitive and
promising numerical values. Besides, it can be seen that our proposed MSDRN achieves
the best results in all indicators, indicating that MSDRN can effectively improve the spatial
detail quality of the fused images while reducing spectral distortion. In addition, the other
two methods based on deep learning, PNN and DRPNN, achieving satisfactory results.
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Furthermore, the deep learning methods surpass the traditional algorithms in terms of
all indicator values, fully demonstrating the powerful potential and performance of deep
learning technology to solve the pansharpening problem.

Table 4. Quantitative evaluation comparison of fusion results on the GeoEye-1 dataset.

Methods SAM| ERGAS,| RMSE| ccr ot Q2™
IHS 4.4140 3.1285 26.4895 0.8513 0.7727 0.7694
PCA 3.9789 3.0007 26.5368 0.8927 0.7977 0.7965

BDSD 3.9735 2.7022 23.5327 0.9079 0.8484 0.8561
RBDSD 3.9825 3.0700 25.8186 0.9023 0.8360 0.8366
PRACS 4.3271 3.0731 29.4296 0.8704 0.7666 0.7913

SFIM 3.5414 25713 22.6677 0.9154 0.8545 0.8597

AWLP_H 3.4584 2.6888 24.2338 0.9166 0.8703 0.8736

ATWT_M3 4.5294 3.2148 29.0548 0.8881 0.7711 0.7884
Indusion 4.0914 3.0006 26.4354 0.8796 0.8142 0.8069
MTF_GLP 3.6305 2.7271 23.8208 0.9119 0.8596 0.8645

PNN 3.0958 2.1421 18.6478 0.9351 0.8876 0.8857
DRPNN 2.4700 1.7173 14.7505 0.9568 0.9221 0.9222
MSDRN 2.2316 1.5520 13.2829 0.9642 0.9342 0.9332

The best values in the tables are marked in bold.
Table 5. Quantitative evaluation comparison of fusion results on the QuickBird dataset.

Methods SAM| ERGAS| RMSE| ccr ot Q2™
IHS 7.2528 8.7268 65.9077 0.8657 0.7748 0.7591
PCA 6.9194 8.5394 65.7315 0.8895 0.8022 0.7931

BDSD 6.8038 8.2385 62.7310 0.8892 0.8315 0.8268
RBDSD 7.2400 9.3112 71.0934 0.8749 0.8127 0.8061
PRACS 6.2884 7.7160 58.8591 0.9003 0.8454 0.8444

SFIM 6.0100 7.7309 58.7138 0.8998 0.8476 0.8452

AWLP_H 6.2810 8.1511 62.1131 0.9008 0.8543 0.8527

ATWT_M3 6.9392 8.4402 64.6093 0.8897 0.7977 0.7989
Indusion 7.5891 8.8763 67.4352 0.8650 0.7915 0.7806
MTF_GLP 7.0071 8.0474 61.2067 0.8435 0.8954 0.8405

PNN 5.0045 4.8858 36.8934 0.9579 0.9293 0.9238
DRPNN 4.2391 4.1576 31.3161 0.9689 0.9444 0.9425
MSDRN 3.8476 3.5824 26.7683 0.9766 0.9571 0.9543

The best values in the tables are marked in bold.

4.6. Real Data Experiments

The original MS and PAN images need to be fused in practical applications. In the
experiments on real data, the original MS and PAN images are taken as inputs, and the
model parameters used in the simulated experiments are also used to generate a fused
image. Examples of fused images on two datasets are shown in Figures 8 and 9. In these
two figures, a rectangle region is magnified and put at the bottom of each image.

Through the observation and comparison illustrated in Figure 8, the results obtained
by most fusion methods are greatly improved compared with the LRMS images using
bicubic interpolation and show the similar phenomena as in the simulated experiments. It
can be seen that the ATWT_M3 method produces obvious spatial blurring. The IHS method
suffers from serious spectral distortion. In addition, BDSD and PNN also suffer from some
spectral distortions. It can be observed from the magnified regions that the former appears
on the red buildings with deeper color in the fused image, which is called over-saturation;
the latter appears on the red buildings with lighter color. The result obtained by the
Indusion method exhibits serious artifacts, and this phenomenon is also shown in the result
obtained by MTF_GLP. The DRPNN method produces slight spectral distortion. For our
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proposed method, both the spatial information and the spectral information are preserved
to produce relatively better results.

In Figure 9, it can be observed that some methods exhibit similar phenomena that
appear in Figure 8, such as IHS, ATWT_M3, BDSD, Indusion, MTF_GLDP, etc. In addition, it
can be seen that the PNN method also results in some artifacts in the magnified region, and
the PRACS method produces a slight spatial blurring. In contrast, the other pansharpening
algorithms obtain relatively better fusion results. The fused image of our method is shown
in Figure 9m, which shows good spatial and spectral qualities. It demonstrates that the
proposed MSDRN method achieves competitive performance.

(d) RBDSD
T

(h) ATWT M3

(1) DRPNN

>

m) MSDRN n) LRMS (bicubic)

Figure 8. An example of real data experiments conducted on the GeoEye-1 dataset. From (a-o) IHS, PCA, BDSD, RBDSD,
PRACS, SFIM, AWLP_H, ATWT_M3, Indusion, MTF_GLP, PNN, DRPNN, MSDRN, LRMS (bicubic), PAN.
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g) AWLP_H h) ATWT M3

: /‘ A
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j) MTF_G

= A

(m) MSDRN (n) LRMS (bicubic) (0) PAN

Figure 9. An example of real data experiments conducted on the QuickBird dataset. From (a-o) IHS, PCA, BDSD, RBDSD,
PRACS, SFIM, AWLP_H, ATWT_M3, Indusion, MTF_GLP, PNN, DRPNN, MSDRN, LRMS (bicubic), PAN.

Since there is no reference image, no-reference indicators are used to evaluate the
performances of various fusion methods, i.e., Dy, Ds and QNR. Table 6 lists the quantitative
evaluation results of two datasets, in which the numerical values are obtained by averaging
the indictor values of all the test images. From the results, it can be seen that the PNN
achieves good results for most indicators on the GeoEye-1 dataset. Besides, the BDSD and
PRACS also achieve impressive performances, showing the superior numerical values
among traditional algorithms. In general, the top values of most indicators are obtained by
the deep learning methods, indicating the great potential and good performances of the
methods based on deep learning. Our proposed method achieves the best QNR and Dg
values on the QuickBird dataset but produces slight spectral and spatial distortion on the
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GeoEye-1 dataset. However, compared with most traditional algorithms, our algorithm
still has some advantages.

Table 6. Quantitative evaluation comparison of real data experiments on two datasets.

Methods GeoEye-1 QuickBird
ONR Dy Dg ONR D Dg

IHS 0.8386 0.0696 0.0993 0.7351 0.0817 0.2003
PCA 0.8327 0.0543 0.1195 0.7978 0.0537 0.1571
BDSD 0.9128 0.0237 0.0651 0.8623 0.0312 0.1099
RBDSD 0.8785 0.0429 0.0825 0.8083 0.0399 0.1584
PRACS 0.8909 0.0244 0.0868 0.8367 0.0342 0.1338
SFIM 0.8453 0.0767 0.0854 0.8496 0.0625 0.0945
AWLP_H 0.8453 0.0768 0.0852 0.7784 0.0889 0.1466
ATWT_M3 0.8729 0.0511 0.0803 0.9104 0.0528 0.0389
Indusion 0.8544 0.0624 0.0891 0.8607 0.0717 0.0735
MTF_GLP 0.8053 0.0951 0.1113 0.7961 0.0720 0.1428
PNN 0.9265 0.0336 0.0412 0.8810 0.0651 0.0574
DRPNN 0.8882 0.0450 0.0700 0.9072 0.0531 0.0422
MSDRN 0.8819 0.0418 0.0797 0.9238 0.0455 0.0324

In the table, the top three values of indictors are marked with red, green and blue colors, respectively.

5. Conclusions

Deep learning technology has made remarkable achievements in many fields, fully
demonstrating the great potential and considerable performance of this technology. In this
paper, a MSDRN pansharpening method is proposed. Based on the original three-layer
network in SRCNN and PNN, the strategy of coarse-to-fine is explored to make full use
of the details of different scales of the original images. Experimental results demonstrate
that the progressive reconstruction scheme is beneficial to improve the quality of the fused
image. Moreover, residual learning is used to extract deeper-level features of the images
and simplify the learning process. Experimental results on the GeoEye-1 and QuickBird
datasets demonstrate that when the scale level is fixed as 3 and the kernel size is fixed as 3,
the proposed method achieves the best performance. The fused images produced by the
proposed method exhibit better spectral and spatial qualities compared with those of 12
pansharpening methods. For two types of simulated data, the proposed method provides
the best SAM, ERGAS, RMSE, CC, Q, and Q2" values. For the real data, the proposed
method still has better values in terms of QNR, D,, and Ds. In general, the proposed
method has superior fusion performance for different remote sensing images.

In the future work, more feasible solutions that can further improve the network perfor-
mance will be studied, and a solution that combines deep learning methods with traditional
methods will be considered. In addition, hyperspectral and panchromatic/multispectral
image fusion is an interesting issue. Actually, the pansharpening is a special instance of
hyperspectral and panchromatic/multispectral image fusion. Our future work will also
study improving the proposed method and applying it to hyperspectral and panchro-
matic/multispectral image fusion.
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