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Abstract: The extent, timing, and magnitude of soil moisture in wetlands (the hydropattern) is a
primary physical control on biogeochemical processes in desert environments. However, determining
playa hydropatterns is challenged by the remoteness of desert basin sites and by the difficulty in
determining soil moisture from remotely sensed data at fine spatial and temporal scales (hundreds
of meters to kilometers, and hours to days). Therefore, we developed a new, reflectance-based soil
moisture index (continuum-removed water index, or CRWI) that can be determined via hyperspectral
imaging from drone-borne platforms. We compared its efficacy at remotely determining soil moisture
content to existing hyperspectral and multispectral soil moisture indices. CRWI varies linearly with
in situ soil moisture content (R2 = 0.89, p < 0.001) and is comparatively insensitive to soil clay content
(R2 = 0.4, p = 0.01), soil salinity (R2 = 0.82, p < 0.001), and soil grain size distribution (R2 = 0.67,
p < 0.001). CRWI is negatively correlated with clay content, indicating it is not sensitive to hydrated
mineral absorption features. CRWI has stronger correlation with surface soil moisture than other
hyperspectral and multispectral indices (R2 = 0.69, p < 0.001 for WISOIL at this site). Drone-borne
reflectance measurements allow monitoring of soil moisture conditions at the Alvord Desert playa test
site over hectare-scale soil plots at measurement cadences of minutes to hours. CRWI measurements
can be used to determine surface soil moisture at a range of desert sites to inform management
decisions and to better reveal ecosystem processes in water-limited environments.

Keywords: soil moisture; Alvord desert; drone; reflectance spectroscopy; hydropattern; hyperspec-
tral; SWIR; clays

1. Introduction

The extent, timing, and magnitude of inundation in terrestrial wetlands, also called
the hydropattern, is a primary physical control on biogeochemical processes in surface
environments ranging from coastal plains to desert playas [1]. A wetland’s hydropattern is
influenced by the net difference between inflows and outflows of water—whether through
runoff, groundwater flow, or evaporation [1,2]. The spatial extent, temporal duration, and
concentration of soil moisture are three key components of dryland playa hydropatterns
that directly control microbial and floral biodiversity and community functioning in these
environments [3,4]. Insight into soil moisture control of biological community functioning
is essential information used to inform wilderness management decisions concerning these
fragile desert ecosystems [5,6].

However, determining playa hydropattern directly is challenged by the remoteness of
desert basin sites and by the difficulty in determining soil moisture content from remotely
sensed data at spatial and temporal scales suitable for evaluating rapidly changing pro-
cesses in small basins. Playa hydropatterns change over meter length scales, within regions
hundreds of meters to a few kilometers wide, over daily to sub-daily timescales.

Remote sensing of surface soil moisture typically uses microwave, radar [7], or thermal
measurements to infer the water content of the soil, for example, using the changing heat
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capacity of wetted ground [8], however, the complex interplay between soil moisture,
albedo of barren ground, and changing density, compaction, and heat capacity can reduce
correlations between thermal remote sensing measurements and soil water content [9].
Synthetic aperture radar can be used to determine soil moisture [10], as can reflectance
imaging in the shortwave near-infrared (SWIR) [11–14], although in some studies, SWIR
reflectance indices are found to correlate more closely with matrix-bound-water under
tension, rather than with total pore water content [6].

In barren soils free of vascular vegetation, optical reflectance measurements in the
near-infrared can be used to directly observe the 1.4 µm absorption from water that fills
surface pore space [13,15], or broadband multispectral indices can be used to infer soil
moisture content, for example, through detections of minimum NDVI [14]. Others have
combined plant stress measurements (NDVI) with soil surface temperature measurements
(a function of soil heat capacity), to derive soil moisture in agricultural, grassland, and
forested settings [16–18]. Multi-sensor fusion modeling has been successful at retrieving soil
moisture at high temporal (~daily) and spatial (~30 m/pixel) scales with low uncertainty
(RMSE errors ranging from ~3 to 11 volume percent) [19], but even these spatial and
temporal scales exceed the size of ephemeral desert wetland features, e.g., [20,21] that may
be meters wide and that may change soil moisture on hourly timescales. NDVI-derived soil
moisture retrievals are most sensitive in regions with abundant plant cover, however, they
can also be employed in low-NDVI barren soil regions (e.g., Taklimakan desert), but these
data fusion products are most effective when combined with microwave measurements
that have spatial resolution on the order of kilometers to tens of kilometers [22].

Direct observations of the 1.4 µm water absorption are possible for small soil moisture
anomalies in desert landscapes, provided the spatial resolution of the sensor is finer than
the scale of the groundwater plume and provided the spectral resolution is fine enough
to resolve the feature [13,15]. Orbital reflectance sensors, however, are typically designed
to filter around the 1.4 µm water absorption, minimizing atmospheric loss of incident
radiation. Non-optical orbital remote sensing platforms typically do not have the repeat
cadence or ground resolution needed to image soil moisture at the small spatial scales of
playas and other ephemeral wetlands. Together, these challenges raise the possibility that
in dryland playa systems, airborne remote sensing may be able to capture the shoulders of
the 1.4 µm water absorption during rapid follow-on repeat sorties, allowing for the direct
measurement of surface soil moisture in playa environments across fine spatial scales and
at high temporal resolution.

Therefore, this project seeks to determine if SWIR reflectance spectral indices devel-
oped for remotely determining surface soil moisture content in temperate soils and in sandy,
cold desert soils [11,13,15] can be applied to barren ground cover types, including clay and
silt dominated soils in continental playa settings. Past studies on playa soil moisture and
runoff processes have focused on large lake and sheetwash-dominated systems in which
standing water and lake formation is common [23,24]. In contrast, our goal is to determine
if is it possible to use drone-borne hyperspectral imaging to determine the size, extent, and
soil moisture distribution within a groundwater plumes in a playa environment.

2. Materials and Methods
2.1. Field Site: Alvord Desert, Eastern Oregon, USA

Remote sensing and ground-truth fieldwork in support of this objective occurred in
the Alvord Desert of southeastern Oregon (Figure 1), a ~13 km wide by 18 km long playa
located in the vicinity of the Steens Wilderness Study Area (42.539◦N, −118.513◦E). The
Alvord Desert is representative of playa and basin fill sites within the Basin and Range
province, and hosts an assemblage of Pleistocene-aged paleo-lake deposits from Pluvial
Lake Alvord that are comparable to larger and more widespread basin fills from other
ice-age lakes, such as Lahontan [25], making the Alvord Desert playa a type locality for
clay and silt-dominated playa environments.
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Planet image 20190814_182056. (c) Overview of the AHS plume sampling site. Green points denote 
ground sampling transect points. Orthoimage produced from drone-derived color imagery. 

The Alvord Desert has nearly barren soils and is largely free of vegetation outside of 
halotolerant grasses and fungi that fringe perennial pools and wetlands [3]. Scattered hy-
drothermal springs fringing the valley walls emerge from faults and produce ephemeral 
wetland conditions on the playa, supporting a robust bacterial ecosystem [4,26]. The soils 
of the central playa are fine grained (silt and clay sized particles) and are composed largely 
of smectite-dominated clays [27]. Strong, convective winds, coupled with low precipita-
tion, result in extremely desiccating conditions in the Alvord Playa outside of the hydro-
thermal spring plumes [28], and repeated wetting and drying results in the widespread 
occurrence of desiccation cracks along the playa floor. 

The specific field sampling location for this project is the discharge plume of the Al-
vord Hot Spring (AHS, Figure 1), a digitate hydrothermal plume that flows out onto the 
flat playa floor. The spring water infiltrates into the soil at the site, forming a lobe of wet-
ted sediment that is several hundred meters long and tens of meters wide. The balance of 
spring discharge, runoff from the neighboring slopes, and evaporation determine the ex-
tent and degree of saturation of the wetland plume along a gradient from saturated soils 
with standing water to fully dried playa sediment. 

Field mapping via drone-borne reflectance spectroscopy and ground sampling of the 
Alvord Hot Spring site occurred in August 2019. Field measurements were complemented 
by laboratory analysis of sediment properties, soil moisture, and plume salinity in order 
to calibrate a predictive reflectance model for soil moisture at the site. Measurements were 
collected during the local dry season to minimize atmospheric water vapor concentrations 
and improve the probability of surveying under cloud-free or scattered cloud conditions. 

  

Figure 1. Context map of the Alvord Desert and Alvord Hot Springs (AHS). (a) Regional setting
showing the full Alvord Desert playa and context location map in Oregon, USA. Portion of Landsat 8
image LC08_L1TP_043030_20190816_20190902. (b) Overview of the AHS discharge plume. Planet
image 20190814_182056. (c) Overview of the AHS plume sampling site. Green points denote ground
sampling transect points. Orthoimage produced from drone-derived color imagery.

The Alvord Desert has nearly barren soils and is largely free of vegetation outside
of halotolerant grasses and fungi that fringe perennial pools and wetlands [3]. Scattered
hydrothermal springs fringing the valley walls emerge from faults and produce ephemeral
wetland conditions on the playa, supporting a robust bacterial ecosystem [4,26]. The soils
of the central playa are fine grained (silt and clay sized particles) and are composed largely
of smectite-dominated clays [27]. Strong, convective winds, coupled with low precipitation,
result in extremely desiccating conditions in the Alvord Playa outside of the hydrothermal
spring plumes [28], and repeated wetting and drying results in the widespread occurrence
of desiccation cracks along the playa floor.

The specific field sampling location for this project is the discharge plume of the
Alvord Hot Spring (AHS, Figure 1), a digitate hydrothermal plume that flows out onto
the flat playa floor. The spring water infiltrates into the soil at the site, forming a lobe of
wetted sediment that is several hundred meters long and tens of meters wide. The balance
of spring discharge, runoff from the neighboring slopes, and evaporation determine the
extent and degree of saturation of the wetland plume along a gradient from saturated soils
with standing water to fully dried playa sediment.

Field mapping via drone-borne reflectance spectroscopy and ground sampling of the
Alvord Hot Spring site occurred in August 2019. Field measurements were complemented
by laboratory analysis of sediment properties, soil moisture, and plume salinity in order to
calibrate a predictive reflectance model for soil moisture at the site. Measurements were
collected during the local dry season to minimize atmospheric water vapor concentrations
and improve the probability of surveying under cloud-free or scattered cloud conditions.

2.2. Field Methods

The SWIR reflectance properties of the AHS plume were determined via drone-borne
point hyperspectral measurements. An Ocean Optics FLAME NIR spectrometer was
deployed over the site to collect three sorties of reflectance measurements. The FLAME
NIR is an InGaAs-detector-based reflectance spectrometer that has a spectral range of
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940-1646 nm, ~12 nm FWHM optical resolution, and was configured to sample across
128 spectral channels via the OceanView software tool. A SpectralonTM white reference
was used to determine incoming solar radiance prior to each of the three sorties, and
all spectra are dark current corrected. Measurements were integrated for 100 ms per
measurement, and ten spectra were averaged per sampling point to improve signal to
noise. Spectra were averaged into one-second reduced reflectance measurements in Matlab.
An example is shown in Figure 2, and data are provided in full in the Supplementary Data.
A total of 1627 averaged measurement points were collected over three sorties (AHS4,
AHS5, and AHS7), covering an area of ~15,000 m2 at the distal end of the hot spring plume.
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Figure 2. Comparison between ground spectra and airborne reflectance of plume soils measured
using the same spectrometer. Note, ground spectra were collected at ~10:00 local time; airborne
spectra were collected 11:37 local time.

The SWIR spectrometer was flown aboard a DJI Matrice 210 RTK aircraft (Figure 3).
The spectrometer was mounted in a nadir-pointing fixed mount with vibration-damping
Velcro strapping. A collimating Gershun tube with 14◦ field of view fore-optics was flush-
mounted with the bottom of the drone landing skid. This flush mounting facilitated the
synchronization of the aircraft position measurements with reflectance measurements
by aligning launch of the aircraft with the first reflectance measurements exceeding the
dark background. The UAV was flown 17 m above the ground surface, producing a
ground footprint ~2 m in radius. The aircraft was flown in concert with a GNSS ground
station allowing for real-time kinematic GPS correction, resulting in cm-scale horizontal
positioning uncertainty for the aircraft. Across all three sorties, median roll and pitch were
2.46◦ and 2.03◦, respectively, producing median ground position uncertainty for reflectance
measurements of ±1 m.
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Figure 3. Schematic illustration of the drone-borne spectrometer system. Drone and camera system in flight.

Ground sampling and measurement was conducted in order to provide calibration
for remotely sensed measurements. Measurements were collected at 26 ground control
points in two transects that crossed the AHS plume (Figures 1 and 4). At each point, a
reflectance spectrum was collected of the ground surface from ~10 cm standoff distance
using the same FLAME-NIR spectrometer that flew on the drone. Sediment samples were
collected for laboratory analysis from fifteen of the ground control points, and soil moisture
volumetric water content, temperature, and electrical conductivity were measured with
a Decagon Devices 5-TE soil probe at all sites. Volumetric water content (VWC) for each
sample was calculated using the raw 5TE voltage data and the Topp equation [29]:

VWC =4.3·10−6 εa
3 − 5.5·10−4 εa

2 + 2.92·10−2 εa − 5.3·10−2 (1)

where εa = raw dielectric permittivity measured at the sensor.
A similar process was used for calculating the electrical conductivity (converted from

raw mV to dS/cm). For conductivities up to 700 dS/cm, conductivity is measured mV
divided by 100. For higher conductivity samples:

EC = 700 + (5 ∗ (Measured mV − 700))/100 (2)

Ground truth samples and spectra were collected prior to drone activities between
9:30 and 10:00 a.m. local time.

Three drone sorties (AHS4, AHS5, and AHS7) were conducted to collect SWIR re-
flectance spectra over the plume and the ground sampling sites. Sorties were launched
from outside the plume area and reflectance measurements were taken continuously from
launch to landing. Sorties were launched sequentially, starting at 11:28 a.m. (AHS4),
11:51 a.m. (AHS5), 12:41 p.m. (AHS7) and were timed to avoid scattered cloud shadows in
the study site.

2.3. Spectral Index Methods

Reflectance data from 940–1646 nm were processed to calculate the continuum-
removed water index (CRWI) modified from the ground-based methods described in [15]
and the WISOIL moisture index of [13]. The CRWI index targets the 1.4 µm water ab-
sorption driven by the O-H stretching fundamentals [30]. Many hydrated minerals (e.g.,
clays) have absorption features associated with O-H absorptions, such as smectite, which
is the dominant clay in the Alvord Desert. These clays typically have sharp absorption
features close to 1.4 µm [31]. For that reason, and to avoid incident photon loss from
atmospheric water vapor, CRWI is calculated to measure the broad shoulder of the 1.4 µm
water absorption by comparing reflectance at 1.5 µm to a continuum slope between two
spectral regions that are unaffected by the 1.4 µm absorption.
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Figure 4. Ground truth data summary for the two sampling transects crossing the AHS plume from dry soil north of the
plume, through the plume thalweg, to the south margin. Net GWC is net gravimetric water content (soil water mass per
gram of soil), VWC is volumetric water content (cm3 of water per cm3 of soil) measured via 5TE probe. Extract EC is soil
electrical conductivity converted to ppm (parts per million) solutes. CRWI and WISOIL are two reflectance spectroscopic
soil moisture indices (see text).
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CRWI is calculated as shown in Equation (3):

CRWI = ρ1.5,continuum − ρ1.5 (3)

where ρ1.5 is the mean measured reflectance at 1.5 µm (reflectance in spectrometer channels
with centers at 1495.69 µm, 1500.85 µm, and 1506.01 µm) and ρ1.5,continuum is the expected
reflectance value calculated by fitting a continuum slope across the 1.4 µm water absorption.
ρ1.5,continuum is calculated as shown in Equation (4):

ρ1.5,continuum = ρ1.335 +

(
ρ1.63 − ρ1.335

0.295

)
·0.165 (4)

ρ1.335 is mean measured reflectance at 1.335 µm (spectral channels with centers at
1329.04 µm, 1334.35 µm, and 1339.65 µm), while ρ1.63 is mean measured reflectance at
1.63 µm (the average of spectral channels with centers at 1625.58 µm, 1630.86 µm, and
1636.14 µm). CRWI, then, is the difference between the continuum slope value at 1.5 µm
and the measured reflectance at 1.5 µm. In all cases, averaging is conducted to increase
signal to noise.

This CRWI index is a modification of that defined by [15], which subtracted average
reflectance at the deepest measurable part of the absorption feature from the continuum
reflectance. Under the lab conditions described in [15], reflectance values were reported at
the minimum absorption feature value, typically 1.425 µm. Instead, CRWI, as formulated
here, avoids directly targeting the center of the 1.4 µm water absorption feature, and
instead measures on the shoulder of the absorption at 1.5 µm, outside the free and/or
mineral-bound water absorption.

The WISOIL index is calculated using methods described in [13]:

WISOIL = ρ1.45/ρ1.3 (5)

where ρ1.45 and ρ1.3 are measured reflectance at 1.45 and 1.3 µm, respectively (as measured
at spectral channels centered on 1.449 µm and 1.302 µm).

2.4. Lab Methods

Soil samples were dried to determine gravimetric water content (GWC) via weighing
of wet and dry soil splits. Samples were oven-dried at 105 ◦C for 24 h. High-temperature
oven drying resulted in both removal of pore waters and also mineralogically bound water
in clays. Net GWC is reported as the measured GWC minus the minimum value of GWC
measured from the air-dried samples collected from the field, recognizing that smectite-
dominated soils may contain up to 30% mineral-bound water by mass which would be
removed by drying at 105 ◦C, but would not have been removed via lower-temperature
air-drying) [32]. The potential residual water content (pore-bound or grain-bound water)
for each sample was determined by saturating the oven-dried soils and then air drying
them at room temperature, under a fume hood, for three weeks.

Approximately 50 g of each (dry) sample was prepared for grain size analysis. Samples
were rid of organic matter using hydrogen peroxide, were mixed with 100 mL of dispersing
agent (75 g of powdered Calgon cleaning solution and 1500 mL of distilled water), and
were dispersed in a Vitamix immersion blending system. The samples were centrifuged
at 7200 rpm for 15 min to settle all particles. The solution was decanted and sediment
was introduced to the METER Pario automated settling column system for grain size
analysis [33].

The soil salt extract electrical conductivity of each sample was determined using a
Mettler Toledo FiveEasy Plus Conductivity meter. Sediment pastes were made using an
~100:1 water to soil extract by mass. Mixtures were blended, settled, and the filtered using
0.45 µm syringe filters. Salinity is reported as electrical conductivity-derived total dissolved
solids in ppm (e.g., Table 1). Soil salt extract composition was measured using a Metrohm
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930 Compact IC Flex ion chromatograph to determine sodium concentration (the primary
cation in Alvord desert region hot springs.

Table 1. Total dissolved solids (TDS) and pH measurements of spring discharge in and around
the plume. AHS081019-1 was collected from the plume center, Alvord Pool was collected from a
valley-wall spring pool, and AHS2 was collected from spring discharge upslope from the pool.

Site pH TDS (ppm)

AHS 081019-1 9.24 8300

Alvord Pool 8.41 2250

AHS2 9.47 13,400

A calibration curve for Alvord Desert soils was created via linear regression of ground-
measured reflectance-derived CRWI values to lab-measured water content (net GWC).
The linear relationship between CRWI and net GWC was inverted to provide a predictive
relationship from which drone-measured CRWI values could be used to predict surface
soil water contents. These predicted net GWC values were then compared to lab-measured
net GWC values from ground control points to evaluate the predictive model.

2.5. Geospatial Analysis and Orbital Data Intercomparison Methods

Orthomosaics and a stereo digital elevation model of the study area were generated
from geotagged drone color photographs and positional data using Agisoft Photoscan Pro.
Approximately 30 ground-control targets were included in the UAS photograph dataset
to provide spatial registration. Ground control target locations were determined using
an Archer Field PC with an external GPS antenna. Orthomosaics were generated with
<1 cm spatial resolution and were orthorectified using the concurrently produced digital
elevation model.

Two multispectral soil moisture parameters were also examined at the site: normalized
difference vegetation index: NDVI, which has been shown to inversely correlate with bare
land soil moisture by [14], and normalized difference water index (NDWI—here, the open
water index described by [34] is used to target standing water in the AHS plume—not the
NDWI plant moisture index of [35]. NDWI in the [34] formulation is the ratio between
green and SWIR channels:

NDWI = ρgreen/ρSWIR (6)

where ρgreen and ρSWIR are reflectance in Landsat 8 bands 3 and 6, as processed and
delivered as surface reflectance by [36] via USGS Earth Explorer. NDVI was calculated as

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) (7)

where ρNIR and ρRed are surface reflectance in NIR and red channels, respectively, as
processed and delivered via Planet Explorer.

NDWI was calculated using 30 m/pixel Landsat 8 image LC08_L1TP_043030_2019081
6_20190902, collected 16 August 2019 (five days after ground sampling and airborne
measurements). NDVI was calculated using 3 m/pixel PlanetScope image 20190812_181021
collected during field operations on 12 August 2019. Both Landsat 8 and Planet images
were processed to surface reflectance using standard methods (e.g., [36]). NDWI and NDVI
values were extracted from the gridded data at the ground control sampling points in ESRI
ArcMap, as well as at all airborne spot spectra points for which CRWI was calculated.

3. Results

Ground and airborne observations show that the Alvord hot spring discharge plume
is a digitate zone of soil with spatially heterogenous moisture, grain size, and salinity
conditions that vary over meter length scales (Figure 4). All graphical spectroscopic results
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are shown with standard error (dataset standard deviation divided by square root of
sample size) unless otherwise indicated.

The Alvord hot spring plume varies in net soil moisture content from dry (0% by
mass) to water saturated (18% by mass). The plume is dry on the margins and becomes
increasingly wet towards the center (Figure 4), measured both via gravimetric and dielectric
permittivity methods. The plume soils are saltier at the margins, having elevated total
dissolved solids and higher concentrations of sodium ions at edge sites than in the plume
interior. The plume soils are silt and clay dominated; collected samples are 30–80% silt,
up to 55% clay, and <20% sand (Figure 5). Soils are enriched in clay at the margins of
the plume and are dominated by silt-sized grains in the interior, while sand is dispersed
throughout the plume and does not vary systematically with location (Figure 4).
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Figure 5. Sediment grain size distribution for ground control samples at the Alvord Hot Springs
plume discharge site.

Ground-based and drone-borne reflectance measurements show slight increases in
reflectivity near ~1.4 µm, with the shoulders of the 1.4 µm absorption feature appearing
most strongly and consistently near 1.5 µm (Figure 2). Reflectivity at 1.5 µm is used as the
basis for calculating CRWI, the continuum-removed water index.

Continuum-removed water index correlates strongly with net soil moisture (Figure 6).
CRWI increases linearly with increasing soil moisture content (R2 = 0.89, p < 0.001) (Here
and throughout linear regression correlation coefficients, R2, are reported along with p
values for model slope). Although wet field samples were enriched in clay and silt-sized
particles, CRWI does not positively correlate with clay content in the soil. Instead, CRWI is
inversely correlated with clay content (Figure 7).

CRWI is also inversely related to potential residual water content measured in the
soils (Figure 8). Soils that would retain intergranular water during air drying have lower
CRWI values measured in the field than soils that air dry to nearly zero net soil moisture.
CRWI is anti-correlated with soil extract total dissolved solids—saltier soils have lower
CRWI values (Figure 9). Likewise, soil moisture content in the plume is inversely correlated
with total salinity. Drier, plume-margin soils show higher soluble salt concentrations than
plume-interior sampling points that were wetter at the time of sampling.
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Figure 9. Continuum removed water index (CRWI) versus soil extract TDS. More saline samples
have lower CRWI measured in the field. p < 0.001.

Inverting the linear relationship between net gravimetric water content and CRWI re-
sults in a predictive linear function relating CRWI to net GWC, allowing soil moisture to be
predicted based on drone-borne reflectance measurements (Figure 10). The 95% confidence
interval for the linear regression of CRWI versus net GWC results in a net GWC maxi-
mum uncertainty of ±1.5 wt.% water over the calibrated range of CRWI values (Figure 10).
This uncertainty is less than typical general dielectric soil moisture sensor uncertainty,
but higher than the best possible soil-specific calibrations for in situ sensors [37,38]. It is
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also less uncertainty than the range of soil moisture uncertainty associated with orbital,
NDVI-thermal fusion data products [18,19].
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via CRWI analysis.

The functional relationship between ground-based CRWI index value, and measured
net soil moisture content provides a forward model for predicting soil moisture based on
airborne CRWI index values:

Predicted Net-GWC = (0.03·CRWI) − 0.05 (8)

CRWI index values from airborne spectra range from ~−1.5 to 9.1, with a median
value across the site and across all sorites of 2.1. Maximum CRWI values decrease over the
three sorties, from ~9.1, to ~6.0, to ~5.3. Employing Equation (6), predicted GWC values
based on drone-measured CRWI values across the plume site span 0–27% (Figure 11).

The WISOIL index calculated using ground-based observations is also linearly corre-
lated with ground sampling point water content (Figure 12), although the correlation is
weaker than the CRWI-GWC relationship (Figure 10). WISOIL decreases with increasing
soil moisture.

In all airborne CRWI measurements, the soil moisture plume is wettest along the
plume centerline, with soils becoming drier towards the plume margin. The highest soil
moisture values measured in the plume using the relationship shown in Figure 10 were
recorded during the first sortie of the morning (flight AHS4), with progressively lower soil
moisture values measured during flights occurring into the early afternoon (Figure 13).
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Figure 11. CRWI-derived soil moisture for each of the three completed overflights. Color composite
panel shows just the color ortho-image of the Alvord hot spring plume. Panels AHS 4, 5, and 7 show
gridded data for three drone sorties.
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Figure 13. Ground control point net gravimetric water content (GWC) versus CRWI-derived GWC at the ground sampling
points. Linear fit show is for AHS 7, R2 = 0.42, p = 0.017.

Point reflectance measurements for each flight (AHS 4, 5, and 7) were interpolated in
ArcMap using a natural-neighbor algorithm and were gridded at 1 m/pixel (approximate
spacing between measurement centroids). Gridded, soil moisture values above the dry
background largely correlate with the observed locations of bright, white plume-deposited
sediments in the concurrent drone ortho-image (Figure 11). However, the spectral index
maps provide information not available in the ortho-image alone, i.e., soil moisture con-
ditions. Measured net GWC values at the ground sampling points vary linearly with
CRWI-derived net GWC values predicted from the drone-borne reflectance measurements
(Figure 13). Soil moisture measured via drone-borne CRWI varies over the course of the
day: it is highest during the earliest sortie (AHS 4: 8/11/19: 11:28), lower during the
middle sortie (AHS 5: 8/11/19: 11:51), and lowest during the last sortie (AHS 7: 8/11/19
12:41) (Figure 13).

Airborne CRWI index values systematically under-predict ground sampling point
soil moisture, except for the wettest measurement points imaged early in the day during
sortie AHS4. This under-prediction of soil moisture at ground control points may result
from desiccation of the sample sites during the course of the day, or may result from CRWI
calculations made on comparatively large spectrometer imaging spots: soils in the 2 m
radius footprint of the spectrometer may vary in soil moisture content, reducing the overall
intensity of the water absorption feature shoulder measured by the CRWI index.

It is not possible to interpolate WISOIL-derived soil moisture measurements between
airborne measurement points because WISOIL indices calculated using the airborne re-
flectance measurements exceed 1 and therefore produce negative apparent soil moisture
values. See discussion for analysis of possible reasons.

Soil moisture measurements derived from airborne CRWI values and from ground
sampling show small, but significant correlations with satellite-derived wetness indices
such as NDWI and minimum-NDVI. CRWI measurements and NDWI have a small, but
significant, positive linear correlation (R2 = 0.009, p = 0.0001), while CRWI measurements
and NDVI have a small, but negative correlation (R2 = 0.006, p = 0.002).
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4. Discussion

Together, these results suggest that drone-borne reflectance spectroscopy can be used
to calculate the continuum-removed water index (CRWI), which in turn, can be used to
measure the time-transgressive distribution of soil moisture in barren ground soils, even
those with high concentrations of hydrated clay minerals. The strong, linear correlation
between soil surface net water content and CRWI suggests that with site-specific calibration,
e.g., [15], CRWI can be used to determine soil moisture distribution at the surface of barren,
ephemeral wetlands. However, it should be noted that the natural calibration targets used
to determine these relationships do not fully populate the range of measured soil moisture
values. Prior studies relating reflectance index values to soil moisture content report linear
variation across experimentally fixed soil moisture ranges, e.g., [13,15], suggesting that
linear variation of CRWI with net GWC is not an artifact of regression against a high and a
low soil moisture cluster.

To verify that the CRWI-net GWC prediction function has limited bias based intro-
duced by the clustering of ground truth GWC samples, e.g., [39], we analyzed the linear
model shown in Figure 10 using the carData package in R [40] (Figure 14) to determine if
systematic variation exists in the residuals of the linear model relating CRWI to net GWC.
Pearson residuals are small (typically < ±0.04) and are not structured: the model does
not appear to be under- or over-fitting the data, and there is no evidence of non-constant
variance (i.e., systematic changes across the measurement domain). Quantile-quantile (QQ-
plot) analysis (Figure 14) shows no major departures from normality: the standardized
residuals of the CRWI-net GWC linear model lie on a straight line.
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This ground-sample/air-borne measurement range mis-match is similar to the well-
known challenges of validating large-footprint satellite soil moisture sensors (e.g.,
microwave-based) using point-based measurements of soil moisture (e.g., [41]). As shown
above, ground-truth sampling at length scales approximating the spatial resolution of the
airborne reflectance sensor (5 m distance between samples with ~2 m sensor footprint and
~1 m gridding) produce a CRWI-net GWC function that shows little systematic bias, but
does suffer from the shortcoming that it does not reflect the full range of CRWI index values
measured by the airborne sensor. See future work recommendations below for proposed
approaches to provide synchronous measurements of soil moisture and reflectance as a
model for further enhancing site-specific calibrations.

While CRWI could be applied to Alvord desert soils to predict soil moisture content,
WISOIL could not owing to widespread WISOIL index values exceeding 1 (and thus,
negative apparent soil moisture). One possible reason that WISOIL-derived soil moisture
estimates may include unrealistic values (i.e., negative soil moisture content) is enhanced
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reflectivity observed in airborne measurements near 1.45 µm (Figure 2). This enhanced
reflectivity may be a consequence of changing atmospheric water vapor conditions during
white reference measurements versus airborne spectral measurements, coupled with en-
hanced reflectivity resulting from zenith effects closer to solar noon (i.e., 10:00 versus 11:37
am local time).

WISOIL parameter measurements require complete removal of atmospheric contri-
butions to reflectance measurements [13]. While all reflectance measurements were made
relative to a white reference, and drone-borne spectrometer measurements resulted in
minimal path length between the ground and the sensor, it is possible that a lower level of
atmospheric water vapor during the measurement interval vs. during the white-reference
collection could result in a higher apparent illumination at that point, and a larger apparent
reflectance than the irradiance that was measured during the white reference collection
when water vapor content may have been higher. It is also possible that the high clay
concentrations at the site provide enhanced absorptions near 1.45 µm, reducing the value
of the WISOIL parameter. This would be consistent with the large step-changes in WISOIL
parameter values and the reduction in linear correlation coefficient between soil moisture
and WISOIL seen at moderate to high soil moisture contents in clay-rich arid soils [13].

In contrast, by measuring along the shoulders of the atmospheric and ground water
absorption at 1.5 and 1.63 µm, CRWI avoids atmospheric noise expected closer to 1.4 µm.
For that reason, coupled with the higher correlation coefficient between CWRI and soil
moisture content than between WISOIL and soil moisture content (0.89 vs. 0.69), we suggest
that CRWI may be a more suitable soil moisture index for measurement of near-surface
water content in sandy and/or clay-rich soils similar to those of the Alvord playa.

Hydrogeological Summary and Future Work

To briefly characterize the hydrological activity of the investigated wetland hot spring
site based on this investigation, the Alvord hot springs discharge plume is a down-slope
digitate (elongate and branching) wetlands feature with a planform morphology consistent
with unconfined flow (e.g., [42] within and above the clay- and silt-rich playa aquitard. The
AHS plume is salty and fines-rich, especially at the edges, but despite these two hygroscopic
soil components, most soil moisture was confined to the central axis of the plume during
the observed discharge period. This may not be the case during low discharge events, when
the soils begin to desiccate. Plume-marginal sediments have both higher lab-measured
residual water contents (more pore-bound water after saturation and lab air-drying) and are
also saltier, which may preserve pore-bound brines that are more resistant to evaporation
than comparatively low-solute sediments at the plume interior.

The accumulation of both fines and soil salts at the plume margin suggest that the
Alvord Hot Springs plume is a wetland system with unidirectional flow, in which fines and
solutes are removed from the water-rich, high-CRWI main flow path to the plume edges,
resulting in evapoconcentration of groundwater solutions, e.g., [43], and advection of clay-
and silt-sized particles to the margins of the plume through the sandy matrix, producing
high-clay, high-salt, low-CRWI edge soils. Unidirectional flow of water in this flat-lying
distributary system is further indicated by generally decreasing soil moisture at lower
elevations over the 60–70 cm of relief at the site (Figure 15). This stands in contrast to more
typical groundwater systems in which soil moisture increases at lower elevations that have
greater upslope accumulation area to can capture and route precipitation and which are
typically less steep than soils high in drainage basins [44].
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Figure 15. CRWI-derived net GWC values versus ground surface elevation at AHS5 measurement
points. Soil moisture is highest at the plume center at the upslope end of the plume, and decreases
off the main plume axis and downslope.

As might be expected for small playa features such as the Alvord hot springs plume,
CRWI values derived from drone-based measurements are a much stronger predictor
(higher correlation coefficient) of surface soil moisture conditions than either Landsat-
derived NDWI or Planet-derived NDVI, suggesting that multispectral satellite observations
outside of water-active SWIR wavelengths may be less useful than hyperspectral indices
like CRWI for determining changing soil moisture content at local sites in desert soils.

In terms of using drone-borne measurements to monitor playa wetland soil moisture
and hydropattern, CRWI was shown to correlate linearly with net GWC, providing instan-
taneous surface soil moisture measurements to within ~±1.5% net GWC. This suggests
that drone-borne surveys could provide a rapidly deployable method for measuring barren
wetland inundation conditions over time. Such a high-cadence soil moisture monitoring
system could be used to monitor the propagation of soil moisture through precipitation-fed
groundwater systems in similar playa environments were hydrothermal systems are absent.

Decreasing CRWI values at ground control sampling sites over the course of the
measurement campaign are consistent with drying out of surface layer under low humidity
conditions, suggesting that CRWI could be used to determine wetland soil moisture
conditions over timescales as short as minutes to hours, depending on aircraft repeat
interval. However, the efficacy of CRWI-based soil moisture predictions under conditions
of varying atmospheric water vapor conditions remain unknown. If atmospheric water
vapor reduces incident photon flux significantly in the vicinity of the 1.4 µm feature,
humidity conditions may place seasonal operational constraints on data collection at
some sites.

Future efforts at applying SWIR reflectance to surface soil moisture determination
in wetland systems would benefit from ground control calibration measurements taken
across the full duration of aircraft operations, not just at the beginning. This would permit
calibration of net GWC to CRWI curves based on ground conditions at the site at the
instantaneous time of aircraft measurement. Continuous soil moisture monitoring through
time-domain reflectometry soil moisture probes could provide a point-scale soil moisture
record at a cadence approaching that of the airborne observations, resulting in even lower
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levels of uncertainty in the CRWI to net GWC calibration. Likewise, point-measurement
and imaging spectrometers with smaller ground footprints may reduce measurement noise
in soil moisture measurements by reducing the range of soil moisture conditions present in
the measurement area.

In addition, future drone-borne reflectance surveys could be designed to provide
a spatial and temporal resolution bridge between multi-dataset orbital measurements,
e.g., [16–19] and ground-based observations. For example, future drone-borne surveys
could expand the aircraft sensor suite from SWIR (used in this study) to include visible/near-
infrared, e.g., [45] reflectance imagers alongside thermal infrared sensors [46], which could
provide simultaneous NDVI and ground temperature measurements similar to those
collected from orbit, e.g., [18,19].

5. Conclusions

Reflectance measurements of the Alvord Hot Springs discharge plume in the Alvord
desert playa provide a reference case for measuring soil surface moisture content in barren
soils through direct observation of SWIR absorptions resulting from soil pore water. The
CRWI parameter varies linearly with soil water content (R2 = 0.89, p < 0.001), even in
clay rich soils, allowing for meter-scale aircraft-based measurements to be made of playa
hydropattern and groundwater distribution at a cadence of minutes to hours. The CRWI
index is comparatively insensitive to soil clay content (R2 = 0.4, p = 0.01), soil salinity
(R = 0.82, p < 0.001), and soil grain size distribution (R2 = 0.67, p < 0.001). CRWI is negatively
correlated with clay content, indicating it is not sensitive to hydrated mineral absorption
features, even then those clays are hydrated and contain mineral-bound water which
could generate at 1.4 µm absorption feature. CRWI has stronger correlation with surface
soil moisture than other hyperspectral and multispectral indices (R2 = 0.69, p < 0.001 for
WISOIL at this site), suggesting it can more effectively map soil moisture in these clay-rich
playa soils.

Reflectance-derived soil moisture measurements can be used to delineate groundwater
plumes and transitional environments in playas, where changing groundwater conditions
may shape ecosystem functioning and biogeochemical cycling. By incorporating dis-
tributed soil moisture sensors as part of CRWI-net-GWC calibration in future studies, it
may be possible to evaluate whether changing soil moisture conditions (i.e., drying) or
changing atmospheric water vapor conditions are responsible for mis-matches between
drone-derived spectroscopic soil moisture predictions and ground-truth observations. This
enhanced ground data collection strategy can provide a template for concurrent mea-
surements of soil moisture during future airborne soil moisture mapping and monitoring
campaigns.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/5/1035/s1, ground-based reflectance measurements for the two plume-crossing transects
(AHT3 and AHT4). Data show reflectance by wavelength at each scan position; reduced data records
(RDR) showing GPS position data for the drone and the associated reflectance measurement, by
wavelength, averaged over 1 s intervals for the three mapping sorties, AHS4, 5, and 7; and the sample
datasheet showing ground-based and lab-base measurements of the sampling transects. Data are
stored as .csv and .pdf documents.

Author Contributions: J.S.L. conceived of the project, conducted fieldwork and lab work, and
prepared the manuscript. J.T.E.J. conducted lab work, data analysis, and prepared the manuscript.
Both authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Science Foundation Office of Polar Pro-
grams grant number ANT-1847067; and the Colgate University Department of Geology Boyce Fund.

Data Availability Statement: All data are provided in the Supplementary Materials.

Acknowledgments: Thanks to Patrick Matulka and Michelle Tebolt for field assistance. Landsat data
and associated products courtesy of the U.S. Geological Survey.

https://www.mdpi.com/2072-4292/13/5/1035/s1
https://www.mdpi.com/2072-4292/13/5/1035/s1


Remote Sens. 2021, 13, 1035 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rasmussen, T. Methods for Evaluating Wetland Condition: Wetland Hydrology; United States Environmental Protection Agency Office

of Water: Washington, DC, USA, 2008; pp. 1–45.
2. Brinson, M.M. A Hydrogeomorphic Classification for Wetlands. Wetlands Research Program Technical Report WRP-DE; U.S. Army

Engineer Waterways Experiment Station: Washington, DC, USA, 1993; pp. 1–79.
3. Ho, I. Vesicular-arbuscular mycorrhizae of halophytic grasses in the Alvord desert of Oregon. Northwest Sci. 1987, 61, 148–151.
4. Lee, M.H.; Keams, J.L.; Helzer, D.W.; Leiser, O.P.; Ochoa, M.A.; Connon, S.A.; Magnuson, T.S.; Watwood, M.E. Evaluation of

viral and prokaryotic community dynamics in Alvord Desert hot springs, Oregon, USA. Aquat. Microb. Ecol. 2007, 48, 19–26.
[CrossRef]

5. Clausnitzer, D.; Huddleston, J.H. Wetland determination of a southeast Oregon vernal pool and management implications.
Wetlands 2002, 22, 677–685. [CrossRef]

6. Klemas, V. Using Remote Sensing to Select and Monitor Wetland Restoration Sites: An Overview. J. Coast. Res. 2013, 289, 958–970.
[CrossRef]

7. Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens.
Environ. 2002, 84, 42–52. [CrossRef]

8. Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future
trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56.

9. Davidoff, B.; Selim, H.M. Correlation between spatially variable soil moisture content and soil temperature. Soil Sci. 1988, 145,
1–10. [CrossRef]

10. Baghdadi, N.; King, C.; Chanzy, A.; Wigneron, J.P. An empirical calibration of the integral equation model based on SAR data,
soil moisture and surface roughness measurement over bare soils. Int. J. Remote Sens. 2010, 23, 4325–4340. [CrossRef]

11. Anne, N.J.P.; Abd-Elrahman, A.H.; Lewis, D.B.; Hewitt, N.A. Modeling soil parameters using hyperspectral image reflectance in
subtropical coastal wetlands. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 47–56. [CrossRef]

12. Fabre, S.; Briottet, X.; Lesaignoux, A. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5
µm Domain. Sensors 2015, 15, 3262–3281. [CrossRef]

13. Bryant, R.; Thoma, D.; Moran, S.; Holifield, C.; Goodrich, D.; Keefer, T.; Paige, G.; Williams, D.; Skirvin, S. Evaluation of
hyperspectral, infrared temperature and radar measurements for monitoring surface soil moisture. In Proceedings of the First
Interagency Conference on Research in the Watersheds, Benson, AZ, USA, 27–30 October 2003; pp. 27–30.

14. Fan, X.; Liu, Y.; Wu, G.; Zhao, X. Compositing the Minimum NDVI for Daily Water Surface Mapping. Remote Sens. 2020, 12, 700.
[CrossRef]

15. Levy, J.; Nolin, A.; Fountain, A.; Head, J. Hyperspectral measurements of wet, dry, and saline soils from the McMurdo Dry
Valleys: Soil moisture properties from remote sensing. Antarct. Sci. 2014, 26, 565–572. [CrossRef]

16. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment
of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]

17. Price, J.C. Using Spatial Context in Satellite Data to Infer Regional Scale Evapotranspiration. IEEE Trans. Geosci. Remote Sens.
1990, 28, 940–948. [CrossRef]

18. Sun, L.; Sun, R.; Li, X.; Liang, S.; Zhang, R. Monitoring surface soil moisture status based on remotely sensed surface temperature
and vegetation index information. Agric. For. Meteorol. 2012, 166–167, 175–187. [CrossRef]

19. Xu, C.; Qu, J.J.; Hao, X.; Cosh, M.H.; Prueger, J.H.; Zhu, Z.; Gutenberg, L. Downscaling of Surface Soil Moisture Retrieval by
Combining MODIS/Landsat and In Situ Measurements. Remote Sens. 2018, 10, 210. [CrossRef]

20. McNamara, J.P.; Kane, D.L.; Hinzman, L.D. An analysis of an arctic channel network using a digital elevation model.
Geomorphology 1999, 29, 339–353. [CrossRef]

21. Levy, J.S.; Fountain, A.G.; Gooseff, M.N.; Welch, K.A.; Lyons, W.B. Water tracks and permafrost in Taylor Valley, Antarctica:
Extensive and shallow groundwater connectivity in a cold desert ecosystem. Geol. Soc. Am. Bull. 2011, 123, 2295–2311. [CrossRef]

22. Do, N.; Kang, S. Assessing drought vulnerability using soil moisture-based water use efficiency measurements obtained from
multi-sensor satellite data in Northeast Asia dryland regions. J. Arid Environ. 2014, 105, 22–32. [CrossRef]

23. French, R.H.; Miller, J.J.; Dettling, C.; Carr, J.R. Use of remotely sensed data to estimate the flow of water to a playa lake. J. Hydrol.
2006, 325, 67–81. [CrossRef]

24. Starr, S.; Heintzman, L.; Mulligan, K.; Barbato, L.; McIntyre, N. Using Remotely Sensed Imagery to Document How Land Use
Drives Turbidity of Playa Waters in Texas. Remote Sens. 2016, 8, 192. [CrossRef]

25. Carter, D.T.; Ely, L.L.; O’Connor, J.E.; Fenton, C.R. Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee
River, Oregon. Geomorphology 2006, 75, 346–367. [CrossRef]

26. Connon, S.A.; Koski, A.K.; Neal, A.L.; Wood, S.A.; Magnuson, T.S. Ecophysiology and geochemistry of microbial arsenic oxidation
within a high arsenic, circumneutral hot spring system of the Alvord Desert. FEMS Microbiol Ecol. 2008, 64, 117–128. [CrossRef]

27. Nicholson, K.N.; Link, K.N.; Garringer, L. Relative Ages of the Borax Lake and Mickey Geothermal Systems, Alvord Basin,
Oregon, USA: Preliminary evidence from silica phase transitions. In Proceedings of the 26th NZ Geothermal Workshop, Taupo,
New Zealand, 6–9 December 2004; pp. 1–6.

http://doi.org/10.3354/ame048019
http://doi.org/10.1672/0277-5212(2002)022[0677:WDOASO]2.0.CO;2
http://doi.org/10.2112/JCOASTRES-D-12-00170.1
http://doi.org/10.1016/S0034-4257(02)00069-X
http://doi.org/10.1097/00010694-198801000-00001
http://doi.org/10.1080/01431160110107671
http://doi.org/10.1016/j.jag.2014.04.007
http://doi.org/10.3390/s150203262
http://doi.org/10.3390/rs12040700
http://doi.org/10.1017/S0954102013000977
http://doi.org/10.1016/S0034-4257(01)00274-7
http://doi.org/10.1109/36.58983
http://doi.org/10.1016/j.agrformet.2012.07.015
http://doi.org/10.3390/rs10020210
http://doi.org/10.1016/S0169-555X(99)00017-3
http://doi.org/10.1130/B30436.1
http://doi.org/10.1016/j.jaridenv.2014.02.018
http://doi.org/10.1016/j.jhydrol.2005.09.034
http://doi.org/10.3390/rs8030192
http://doi.org/10.1016/j.geomorph.2005.07.023
http://doi.org/10.1111/j.1574-6941.2008.00456.x


Remote Sens. 2021, 13, 1035 20 of 20

28. Jackson, B.; Lorenz, R.; Davis, K.; Lipple, B. Using an Instrumented Drone to Probe Dust Devils on Oregon’s Alvord Desert.
Remote Sens. 2018, 10, 65. [CrossRef]

29. Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission
lines. Water Resour. Res. 1980, 16, 574–582. [CrossRef]

30. Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J.
Geophys. Res. Solid Earth 1990, 95, 12653–12680. [CrossRef]

31. Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A. Reflectance and emission spectroscopy study of four groups of phyllosilicates:
Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [CrossRef]

32. Bish, D.L. Smectite Dehydration and Stability: Applications to Radioactive Waste Isolation at Yucca Mountain, Nevada; Los Alamos
National Laboratory: Los Alamos, NM, USA, 1988; p. 31.

33. Durner, W.; Miller, A.; Gisecke, M.; Iden, S. Testing the improved Integral Suspension Pressure method ISP+ with the PARIO™
device. In Proceedings of the 22nd European Geosciences Union General Assembly, Vienna, Austria, 4–8 May 2020; p. 10906.

34. McFeeters, S. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming
Pools for Mosquito Abatement: A Practical Approach. Remote Sens. 2013, 5, 3544–3561. [CrossRef]

35. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

36. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface
reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef] [PubMed]

37. Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor. Vadose Zone J.
2005, 4, 1070–1079. [CrossRef]

38. Bogena, H.; Huisman, J.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content Sensors.
Sensors 2017, 17, 208. [CrossRef]

39. Gruber, A.; De Lannoy, G.; Albergel, C.; Al-Yaari, A.; Brocca, L.; Calvet, J.C.; Colliander, A.; Cosh, M.; Crow, W.; Dorigo, W.; et al.
Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sens. Environ. 2020, 244, 111806. [CrossRef]

40. Fox, J.; Weisberg, S.; Price, B. carData: Companion to Applied Regression Data Sets. 2020. Available online: https://cran.r-project.
org/web/packages/carData/index.html (accessed on 2 February 2021).

41. Cosh, M.; Jackson, T.J.; Bindlish, R.; Prueger, J.H. Watershed scale temporal and spatial stability of soil moisture and its role in
validating satellite estimates. Remote Sens. Environ. 2004, 92, 427–435. [CrossRef]

42. Huber, C.; Ojha, L.; Lark, L.; Head, J.W. Physical models and predictions for recurring slope lineae formed by wet and dry
processes. Icarus 2020, 335, 113385. [CrossRef]

43. Matthews, J.; Atlaner, S. Contrasting mineral/water reaction pathways in three saline, alkaline lakes from southeast Oregon. In
Proceedings of the Clay Minerals Society 28th Annual Meeting, Houston, TX, USA, 5–10 October 1991; p. 110.

44. Sorensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on
field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [CrossRef]

45. Levy, J.; Cary, C.S.; Joy, K.; Lee, C.K. Detection and community-level identification of microbial mats in the McMurdo Dry Valleys
using drone-based hyperspectral reflectance imaging. Antarctic Sci. 2020, 32, 367–381. [CrossRef]

46. Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Everson, C.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier,
N.; Farias, J.R.B. UAV-based thermal imaging in the assessment of water status of soybean plants. Int. J. Remote Sens. 2020, 41,
3243–3265. [CrossRef]

http://doi.org/10.3390/rs10010065
http://doi.org/10.1029/WR016i003p00574
http://doi.org/10.1029/JB095iB08p12653
http://doi.org/10.1180/claymin.2008.043.1.03
http://doi.org/10.3390/rs5073544
http://doi.org/10.1016/S0034-4257(96)00067-3
http://doi.org/10.1016/j.rse.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/32020955
http://doi.org/10.2136/vzj2004.0148
http://doi.org/10.3390/s17010208
http://doi.org/10.1016/j.rse.2020.111806
https://cran.r-project.org/web/packages/carData/index.html
https://cran.r-project.org/web/packages/carData/index.html
http://doi.org/10.1016/j.rse.2004.02.016
http://doi.org/10.1016/j.icarus.2019.07.019
http://doi.org/10.5194/hess-10-101-2006
http://doi.org/10.1017/S0954102020000243
http://doi.org/10.1080/01431161.2019.1673914

	Introduction 
	Materials and Methods 
	Field Site: Alvord Desert, Eastern Oregon, USA 
	Field Methods 
	Spectral Index Methods 
	Lab Methods 
	Geospatial Analysis and Orbital Data Intercomparison Methods 

	Results 
	Discussion 
	Conclusions 
	References

