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Abstract: Since the traditional real-time kinematic positioning method is limited by the reduced
satellite visibility from the deprived navigational environments, we, therefore, propose an improved
RTK method with multiple rover receivers sharing a common clock. The proposed method can
enhance observational redundancy by blending the observations from each rover receiver together
so that the model strength will be improved. Integer ambiguity resolution of the proposed method is
challenged in the presence of several inter-receiver biases (IRB). The IRB including inter-receiver code
bias (IRCB) and inter-receiver phase bias (IRPB) is calibrated by the pre-estimation method because of
their temporal stability. Multiple BeiDou Navigation Satellite System (BDS) dual-frequency datasets
are collected to test the proposed method. The experimental results have shown that the IRCB and
IRPB under the common clock mode are sufficiently stable for the ambiguity resolution. Compared
with the traditional method, the ambiguity resolution success rate and positioning accuracy of
the proposed method can be improved by 19.5% and 46.4% in the restricted satellite visibility
environments.

Keywords: real-time kinematic; common clock; inter-receiver code bias; inter-receiver phase bias

1. Introduction

The relative positioning of moving platforms derived by the real-time kinematic (RTK)
often suffers from satellite obstruction and deprived satellite visibility, which is especially
true for offshore loading operations. This situation is often experienced on vessels working
close to offshore platforms or other shadowing objects (e.g., island structure), where the
field view of antenna is continuously varying and different satellite signals will be tem-
porally blocked, as shown by the typical marine positioning applications in Figure 1. It is
imperative that at least four satellites must be common-in-view at both rover and reference
receivers. However, the traditional RTK usually implements high precision positioning
with a single rover receiver [1]. In the worst case, the common-in-view satellites between
the rover and the reference are insufficient to provide enough observations to enable
the integer ambiguity resolution [2–4]. Additionally, some observations are possibly cor-
rupted by multipath, so that more measurements than usually are necessary to strengthen
the relative positioning. To overcome this issue, one solution is taking advantage of the
multi-constellation to increase the number of satellites in view [5,6], whose benefits are
demonstrated in case of weakly obstructed conditions, but degrade likewise under the
severely satellite-limited environments. The other solution is to deploy multiple receivers,
exploring more available observations to improve ambiguity resolution and positioning
accuracy under the satellite-deprived environments [7–9].
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Figure 1. Schematic scenario of two rover-receivers equipped platform, Ant 1 and Ant 2 denote
antennas for rover receivers r1 and r2, respectively.

The multiple receivers-based positioning method is a generalized measurement con-
cept in RTK and precise point positioning (PPP) or PPP-RTK, which uses global navigation
satellite system (GNSS) data from multiple antennas to realize improved GNSS parameter
estimation [10,11]. Its applications have been widely extended in the fields of deformation
monitoring [12], flight formation [13], attitude determination [7,14], bias, and ionosphere
sensing [15,16]. The involved approaches of improving the model strength or estimation
accuracy are to combine common-in-view satellites’ observations among those available
receivers. Whereas under the constrained environment, particularly when there are various
observational occlusions for the receivers, the decreased number of common-in-view satel-
lites for those receivers will similarly weaken model strength relative to the conventional
multiple receivers RTK positioning method. Therefore, it is necessary to tightly integrate
the observations from all receivers and improve the strength of the positioning model, so
as to ensure the ambiguity resolution and the continuity of the RTK positioning method
under the restricted navigation environment [17]. Hence, we propose employing few
mounted antennas with corresponding, individual receivers on a platform and combine
their observations into a common set that has enough information to estimate an accurate
position. Thus, the effect of obstructions on relative positioning can be released. Related
research has demonstrated that increased precision in terms of dilution of precision (DOP)
is obtained, and continuity can be guaranteed in the positioning [18].

Generally, owing to the sky blockage, different antennas may have access to different
sets of satellite signals, and there are two strategies to deal with different available satellites
among those receivers to improve the field view when constructing double-differenced
(DD) observations [17,19]. The first strategy is that each rover receiver selects its own pivot
satellite with respect to the reference receiver individually [19,20], but the introduction
of multiple pivot satellites will reduce the redundancy of observation model. The other
strategy is to fix the pivot satellite relative to the reference receiver in order to enhance
the observation redundancy. However, when the clocks origination between each rover
receiver are independent of each other, the receiver hardware delay related biases and the
receiver clock errors are different from each other, which will yield inter-receiver bias (IRB)
in the double-differenced observations. IRB consists of inter-receiver hardware biases and
inter-receiver clock error. When the rover receivers utilize independent clocks, the inter-
receiver clock error is usually not stable and the IRB becomes a time-varying parameter to
be estimated. In addition, the number of IRB parameters increases exponentially with the
number of non-common clock-driven rover receivers [18], which reduces the redundancy
of the DD observations. Consequently, multiple rover receivers under the common clock
mode, i.e., the signals from multiple receivers are driven by a common clock, is a feasible
approach to improve the redundancy of DD observations [21].

Multiple rover receivers sharing the common clock does not imply that the inter-
receiver biases for each rover are identical [22]. It is because that the clock provides each
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rover receiver with only a stream of pulses without an absolute time tag. Therefore, due
to the inconsistent transmission clock signal delays to those receivers when the receivers
are powered on, the inter-receiver clock errors under the common clock mode will be
time-varying [23]. Odijk and Teunissen [24], Paziewski and Wielgosz [25], and Zhang and
Teunissen [26] have shown that inter-receiver hardware biases have time-domain stability,
and its stability is affected by ambient temperature and so on, which can be regarded
as a time-invariant to be pre-estimated and calibrated for eliminating the influence on
ambiguity resolution [27]. Therefore, the common clock-induced IRB is anticipated to
have a stable time-domain feature, which provides the foundation to perform calibration.
In this contribution, the RTK positioning method with multiple rover receivers sharing
the common clock (C-RTK) is investigated to calibrate the IRB by the pre-estimated correc-
tion strategy for suppressing the influence on the integer ambiguity resolution, thereby
improving the strength of the observational model.

This contribution is structured as follows: taking the Beidou Navigation Satellite
System (BDS) dual-frequency signal as an example, we formulate the RTK positioning
method with multiple rover receivers sharing the common clock under short-baseline cases.
Then, the IRB stability characteristics under the common clock mode and non-common
clock mode are compared by three different datasets with non-common clocks and a set of
BDS dual-frequency short baseline dataset. Additionally, by simulating the constrained
environment, the performance of the proposed method is explored. At the last section,
the corresponding conclusions are drawn.

2. Methodology

We describe the observation models of IRB-float and IRB-fixed for the C-RTK method,
respectively. Specifically, the IRB-float method estimates the unknown IRB simultaneously
with the baseline coordinates and DD ambiguities. While the IRB-fixed method corrects
the IRB using available calibrations in which no unknowns at all for the IRB is estimated.
Meanwhile, the statistical characterization of IRB is introduced, including inter-receiver
code bias and inter-receiver phase bias, which is followed by the two-step calibration
procedure to implement IRB correction for the inter-receiver DD observations. The last of
this section comes up with the redundancy and solvability analysis for C-RTK method.

2.1. IRB-Float Model

To derive the methodology of IRB-float positioning model, it is necessary to briefly
review the single-differenced (SD) observations between rover receivers “ri” and reference
receivers “b”, in which the satellite-specific biases are eliminated. The SD phase and code
observations are expressed as [28],{

E(∆ps
rib,j) = us

rib
xrib

+ µj∆Is
rib,j + ∆dtrib + ∆drib,j

E(∆ϕs
rib,j) = us

rib
xrib
− µj∆Is

rib,j + ∆dtrib + ∆δrib,j + λjN
s
rib

(1)

where (·)rib
= (·)ri

− (·)b, with i = 1, 2 and E(·) is the expectation operator, s = 1, . . . , n.
The subscript j identifies a term associated with a frequency band. ∆ϕs

rib,j and ∆ps
rib,j de-

note the observed-minus-computed code and phase residual observations at frequency Bj,
respectively. xrib

denotes a vector of non-dispersive terms including incremental receiver
positions and zenith tropospheric delay with its design matrix us

rib
. ∆Is

rib,j is SD ionospheric

delay with the first order ionospheric coefficient µj = B2
j /B2

1 . ∆dtrib is the SD receiver clock
error. ∆drib,j and ∆δrib,j are SD receiver hardware delays with respect to code and phase ob-
servations. Ns

rib
is SD integer ambiguity. Note that we focus on short-baseline applications

for which the differential atmospheric delays are absent in the future derivation.
As shown in Figure 1, assuming that the satellites tracked by r1 are s = {1, 2, . . . , m},

and satellites tracked by r2 are q = {m + 1, m + 2, . . . , n}. With “classical” double differencing,
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we form double differences for per receiver pair, i.e., (r1, b) or (r2, b). For the receiver pair
(r1, b), if we fix the pivot satellite as 1, the DD observations read,{

E(∇∆ϕs,1
r1b,j) = us,1

r1bxr1b + λj∇∆Ns,1
r1b,j

E(∇∆ps,1
r1b,j) = us,1

r1bxr1b
(2)

Here, ∇∆ represents a double differencing operator. Similarly, provided m+1 as the
pivot satellite for the receiver pair (r2, b), the DD observations read as,{

E(∇∆ϕ
q,m+1
r2b,j ) = uq,m+1

r2b xr2b + λj∇∆Nq,m+1
r2b,j

E(∇∆pq,m+1
r2b,j ) = uq,m+1

r2b xr2b
(3)

where (∗)s,1 = (∗)s − (∗)1, with s = 2, . . . , m, q = m + 2, . . . , n. In order to benefit from the
increased number of observations, we have to establish a common solution for the multiple
rover receivers. With xr1b = xr2b + xr2bxr1r2

, we rewrite Equation (3) to construct the loosely
coupled RTK using non-common clock (NC-RTK) method,

E(∇∆ϕs,1
r1b,j) = us,1

r1bxr1b + λj∇∆Ns,1
r1b,j

E(∇∆ps,1
r1b,j) = us,1

r1bxr1b

E(∇∆ϕ
q,m+1
r2b,j + uq

r2bxr1r2) = uq,m+1
r2b xr1b +∇∆δtr2b,j + λj∇∆Nq,m+1

r2b,j

E(∇∆pq,m+1
r2b,j + uq

r2bxr1r2) = uq,m+1
r2b xr1b +∇∆dtr2b,j

(4)

for q = m + 1, . . . , n. The implementation of (4) is the traditional RTK method, by which 2
satellites’ observations are decreased owing to DD operation with multiple pivot satellites.

The observation model in (4) is a relatively classical coupling to integrate observa-
tions from different rover receivers. When tight observation integration is considered for
complementing the receiver pairs {(r1, b) and (r2, b)} SD observations, we construct the DD
observations with respect to the common pivot satellite from the receiver pair (r1, b). Thus,
the inter-receiver tightly coupled DD observations read,

E(∇∆ϕs,1
r1b,j) = us,1

r1bxrb1 + λj∇∆Ns,1
rb1,j

E(∇∆ps,1
r1b,j) = us,1

r1bxrb1

E(∇∆ϕ
q,1
r2−1b,j + uq

r2bxr1r2) = uq,1
r2−1bxr1b +∇∆δtr2−1b,j + λj∇∆Nq,1

r2−1b,j

E(∇∆pq
r2−1b,j + uq

r2bxr1r2) = uq,1
r2−1bxr1b +∇∆dtr2−1b,j

(5)

where (·)r2−1b = (·)r2b − (·)r1b , with q = m + 1, . . . , n. Therefore, for the phase as well
as code observations, one more DD observation can be obtained by (5) when compared
with (4). On the other hand, the inter-receiver bias terms are not eliminated during double
differencing,

∇∆δtr2−1 b,j = (∆dtr2b − ∆dtr1b) + (∆δr2b,j − ∆δr1b,j)

∇∆dtr2−1 b,j = (∆dtr2b − ∆dtr1b) + (∆dr2b,j − ∆dr1b,j)
(6)

where ∇∆δtr2−1b,j and ∇∆dtr2−1b,j are referred as inter-receiver phase bias (IRPB) and inter-
receiver code bias (IRCB), respectively. Unfortunately, the inter-receiver tightly coupled
model described by (5) is rank deficient. It is, therefore, impossible to simultaneously
estimate the IRB parameters and the ambiguity by (5) owing to the linear correlation
between ∇∆Nq,1

r2−1b,j and IRPB. The rank deficiency is of size f (equal to the number of

frequencies). Hence, we re-parametrize ∇∆Nq,1
r2−1b,j as,

∇∆Nq,1
r2−1 b,j = (∆Nq

r2b,j − ∆Nm+1
r2b,j ) + (∆Nm+1

r2b,j − ∆N1
r1b,j)

= ∇∆Nq,m+1
r2b,j +∇∆Nm+1,1

r2−1b,j

(7)
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Furthermore, we select ∆Nm+1
r2b,j as reference ambiguity to re-parametrize the inter-

receiver DD ambiguity ∇∆Nq,1
r2−1 b,j. The DD ambiguities relative to the same receiver

pair, i.e., ∇∆Nq,m+1
r2b,j , plus inter-receiver ambiguity between the pivot satellite belonged to

different receiver pairs, i.e., ∇∆Nm+1,1
r2−1b,j. The ambiguity ∇∆Nm+1,1

r2−1b,j is lumped to the IRPB
term as,

∇∆δ̃tr2−1 b,j = ∇∆δtr2−1 b,j + λj∇∆Nm+1,1
r2−1 b,j (8)

We substitute (8) into (5), the full-rank IRB-float model can be expressed as,
E
[
∇∆ϕ
∇∆p

]
=

[
e f ⊗A e f ⊗ e∗ 0 Λ⊗ In−2
e f ⊗A 0 e f ⊗ e∗ 0

]
x

δ̃tr2−1b
dtr2−1 b

a


D
[
∇∆ϕ
∇∆p

]
=

[
Qϕ 0
0 Qp

] (9)

in which⊗ denotes Kronecker product. D[·] is dispersion operator. ∇∆ϕ= (∇∆ϕ1
T, . . . ,∇∆ϕ f

T
)T

is the DD phase observation vector with ∇∆ϕj= (∇∆ϕm1
rb,j, . . . ,∇∆ϕn1

rb,j

)T
.

∇∆p= (∇∆p1
T , . . . ,∇∆p f

T
)T

is the DD code observation vector with

∇∆pj = (∇∆pm1
rb,j, . . . ,∇∆pn1

rb,j)
T . e f is f×1 vector of 1’s. A is the design matrix. Λ =

diag(λ1, . . . , λj) with λj being the wavelength on frequency j. e∗ =
[

0T
(m−1)×1 1T

n−m+1

]T

with 0 being m − 1 of 0’s vector and 1 being n − m + 1 vector of 1’s. x denotes the baseline

vector.
~
δtr2−1b = [∇∆δ̃tr2−1b,1, . . . ,∇∆δ̃tr2−1b,j]

T
, dtr2−1b = [∇∆dtr2−1b,1, . . . ,∇∆dtr2−1b,j]

T .
a is the DD ambiguity vector. Qϕ and Qp are covariance of DD phase and DD code, re-

spectively. When n ≥ 5, δ̃tr2−1b and dtr2−1 b can be resolved by (9) with the dual-frequency
single-system observations. However, when compared with the NC-RTK method as shown
by (4), the increased number of observations for the IRB-float model is counter-balanced by
the parameters to be estimated, which indicates the model strength of the IRB-float model
is equivalent to the traditional NC-RTK method.

2.2. IRB-Fixed Model

It has been shown that if we parameterize the IRB for inter-receiver observations,
it does not strengthen the model relative to NC-RTK method using the classical double
differencing. However, the observation redundancy can still be retrieved if the statistical
knowledge of the IRB can be provided [24]. For instance, given the stable statistical
characteristics of the IRB, the observation redundancy can be obtained by a two-step
method, i.e., the pre-estimation and post-calibration sequentially. Otherwise, if the IRB
behaves without stationary statistical characteristics, then the IRB need to be estimated
epoch-wisely. Correspondingly, the number of increased DD observations is equal to the
number of additional parameters to be estimated, which takes no improvement on the
DD observation redundancy. There is no doubt that the statistical characteristics of IRB
determine the compensation strategy of IRB.

We can decompose the IRB term in the IRB-float model into two parts, the first part
being an initial bias and the second part being the drift over time. Driving both rover
receivers with a common clock only retains the identical second part for all rover receivers.
Therefore, the IRB are treated as time-invariant terms instead of time-varying parameters,
which are deterministic to be subtracted from the phase and code observations. The IRB-
float model can be used to solve ∇∆dtr2−1b,j and ∇∆δ̃tr2−1b,j. However, we can see from (8)
that ∇∆δ̃tr2−1b,j is biased by ∇∆Nm+1,1

r2−1b,j. This will be an issue for the IRB calibration when
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the pivot satellite change or in the presence of cycle slip. In order to avoid this issue, we
separate ∇∆δ̃tr2−1b,j into integral part and fractional part, respectively.

∇∆δ̃tr2−1b,j = λj

(
z0 +∇∆Nm+1,1

r2−1b,j)

}
integer

+∇∆δtr2−1,j
}

f raction

, z0 ∈ Z (10)

Obviously, the integral part of ∇∆δ̃tr2−1b,j can be merged with ambiguity ∇∆Nq,m+1
r2b,j ,

∇∆Nq,m+1
r2b,j = z0 +∇∆Nm+1,1

r2−1b,j +∇∆Nq,m+1
r2b,j (11)

Fortunately, the ambiguity retains the integer nature, which has no impact on instan-
taneous ambiguity resolution. However, when the factional part of (10) is not calibrated,
it will undermine the ambiguity resolution success rate performance. Herein, in order to
resolve the ambiguity, consideration should be taken into eliminating the factional part
subsequently. Firstly, through removing the integer of IRPB z0 +∇∆Nm+1,1

r2−1b,j by the nearest
rounding method, the fractional calibration reads,

∇∆δtr2−1,j = ∇∆δ̂tr2−1b,j − λjround[
∇∆δ̂tr2−1b,j

λj
] (12)

where round[·] is rounding to the nearest integer estimator. ∇∆δ̂tr2−1b,j denotes the estima-
tion of∇∆δ̃tr2−1b,j. The following experimental results will prove the time-domain stability
feature of the IRB. As a result, IRB can be corrected by pre-calibration. On the basis of (12),
the IRB-fixed model can be given as,

E(∇∆ϕs1
r1b,j

) = us1
r1bxr1b + λj∇∆Ns,1

r1b,j

E(∇∆ps1
r1b,j

) = us1
r1bxr1b

E(∇∆ϕ
q1
r2−1bj

+ uq
r2bxr1r2 −∇∆δtr2−1b,j) = uq1

r2−1bxr1b + λj∇∆Nq,1
r2−1b,j

E(∇∆pq1
r2−1bj

+ uq
r2bxr1r2 −∇∆dr2−1b,j) = uq1

r2−1bxr1b

(13)

When the IRB is calibrated, the above full-rank model will regress to the traditional
RTK positioning model. From this follows the important conclusion that when the inter-
receiver biases are corrected (2f corrections), the fused observations from each receiver
pair can be processed as if they were stemmed from one common receiver pair. The model
strength is improved ultimately, which is further clarified in Section 3.

3. Redundancy and Solvability Analysis

Provided that there are k + 1 rover receivers tracking n satellites simultaneously,
Table 1 gives the number of observations, the number of parameters, and the observation
redundancy for different RTK models. It can be found that the IRB-float model is equivalent
to the NC-RTK model. Compared with the IRB-float model, the unknown parameters
amount of the IRB-fixed model is decreased by kf, which means that the strength of the
observation model is further enhanced after IRB is eliminated.

Table 1. Model redundancy analysis.

Model NC-RTK Model IRB-Float Model IRB-Fixed Model

# of observations 2f (n − k − 1) 2f (n − 1) 2f (n − 1)
# of parameters f (n − k − 1) + 3 f (n + k − 1) + 3 f (n − 1) + 3

Redundancy f (n − k − 1) − 3 f (n − k − 1) − 3 f (n − 1) − 3
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4. Experimental Analysis and Discussion

To test the proposed method, a series of experiments were carried out. Firstly, we
analyze and compare the stability of IRCB and IRPB under the common clock mode
and the non-common clock mode, respectively. With different cut-off elevations, this
contribution simulates the satellite-deprived environment. Because the short baseline data
were collected, the atmospheric delays are neglected in the experimental data processing.
Additionally, to analyze the ambiguity solution success rate and the positioning accuracy
performance, the variants of two RTK algorithms compared in this contribution are NC-
RTK and the C-RTK driven by the IRB-fixed model. Besides, assuming that multipath error
is coupled with the thermal noise, the elevation-dependent weighting model is applied to
account for the effect of multipath, and the observational standard deviation (STD) with
elevation angle θ is set as σ(θ) = σ0(1 + 1/ sin(θ)), in which σ0 takes 30 cm and 3 mm for
original code and phase observation, respectively [29,30]. Since in the short-baseline case
most receiver-dependent and satellite-dependent errors are eliminated by DD operation,
the instantaneous ambiguity resolution strategy is applied to the fix/float solutions. Herein,
we utilize the metrics of success rate and the positioning accuracy to evaluate the fix and
float solutions for the NC-RTK and C-RTK models. It has been widely proven that the
LAMBDA algorithm performs excellent ambiguity resolution performance among the
different integer aperture estimation methods [3]. We, therefore, apply LAMBDA to fix
ambiguity, in which the threshold for the ratio test is set as 3 [31].

4.1. Receivers Setup

The experimental datasets were collected at Harbin Engineering University in China,
where several high-grade receivers with geodetic antennas were setup under an open-sky
environment to disentangle the multipath effect. The rover receivers are BDStar UB380
with non-common clocks, the ComNav K708 with non-common clocks, and the Septentrio
PolaRx5 with an external common clock. Note that the time-frequency stability of the
common clock for Septentrio PolaRx5 receivers is up to 10−11 level. The datasets we
collected include dual-frequency BDS code and carrier phase measurements. IRB-float
model is used to estimate the corresponding IRB sequences, by which the stability of IRB
under the common clock and non-common modes are, respectively, analyzed during a 96-h
time span and a 24-h time span. All receivers were installed in a room with a relatively
constant ambient temperature, including HEUA0-HEUA4 and HEU0-HEU1 connected to
one same antenna GNSS750. Therefore, we can form several different configurations of
zero-baseline and short baseline. The schematic overview of all receivers and antennas
involved is shown in Figure 2 and the detailed baseline configurations are listed in Table 2.

Table 2. Baseline setup.

No. Reference Rover Signals Interval(s) Distance(m) Observation Span

1 HEUA2
HEUA0 B1 B2 30 0

DOY147, 2019HEUA1 B1 B2 30 0

2 HEU2
HEU0 B1 B2 30 5.0

DOY153–156, 158–161, 2020HEU1 B1 B2 30 5.0

3 HEUA0
HEUA2 B1 B2 30 0

DOY147, 2019HEUA3 B1 B2 30 0

4 HEUA4
HEUA2 B1 B2 30 0

DOY148, 2019HEUA3 B1 B2 30 0



Remote Sens. 2021, 13, 823 8 of 16

Figure 2. Receivers and antennas setup.

4.2. IRPB Estimation Results

Considering a typical example, 24-h time series of epoch-wise IRPB estimated results
are presented in Figure 3, which are determined by IRB-float model using BDS dataset
collected with the short baseline {HEU0, HEU1}-HEU2 on day 160 of 2020. It can be found
in Figure 3 that significant jumps ranging from several cycles during the 24 h continuous
arc, which takes a detrimental effect on the acquisition of IRPB correction. It additionally
confirms that each jump occurs immediately at the instant when the current pivot satellite
sets and a new pivot satellite comes into view. Prior to our analysis, appropriate handling
of these jumps should be taken. Therefore, the removal of integer part for the estimated
IRPB results allows us to eliminate those jumps, resulting in the second panel time series
that is jump-free. It can be used for further analysis without destroying the integer nature
of ambiguity.
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Figure 3. 24 h-time series of estimation results with Septentrio PolaRx5 receivers. The panels from left
to right are the inter-receiver phase bias (IRPB) before and after eliminating the jumps. The subplots
from top to bottom correspond to pivot satellites visibility, IRPB at B1 and B2 frequency, respectively.
The single differenced ambiguities belonged to Sat.a and Sat.b form the ambiguity Nab, which is
coupled in the IRPB. As an example, the hexagram marker specifies the time to alter.
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4.3. IRB Analysis under the Non-Common Clock Mode

With the IRCB and IRPB estimated model, we obtain the epoch-wise results of IRB for
UB380 and K708, in which the fractional part of IRPB is given in Figure 4. It can be found
that the IRCB is not affected apparently by non-common clocks-based rover receivers. It is
very stable in a 24-h observation span, making slight random fluctuations around its mean
value. However, the fractional part of IRPB for B1 and B2 ranges from −0.5 to 0.5 cycles
irregularly, whose STD reaches 0.3 cycles. Therefore, the IRB over the 24 h short-term
temporal time series fluctuated too wildly to be calibrated in advance.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 3. 24 h-time series of estimation results with Septentrio PolaRx5 receivers. The panels from 
left to right are the inter-receiver phase bias (IRPB) before and after eliminating the jumps. The 
subplots from top to bottom correspond to pivot satellites visibility, IRPB at B1 and B2 frequency, 
respectively. The single differenced ambiguities belonged to Sat.a and Sat.b form the ambiguity 
Nab, which is coupled in the IRPB. As an example, the hexagram marker specifies the time to 
alter. 

4.3. IRB Analysis under the Non-common Clock Mode 
With the IRCB and IRPB estimated model, we obtain the epoch-wise results of IRB 

for UB380 and K708, in which the fractional part of IRPB is given in Figure 4. It can be 
found that the IRCB is not affected apparently by non-common clocks-based rover 
receivers. It is very stable in a 24-h observation span, making slight random fluctuations 
around its mean value. However, the fractional part of IRPB for B1 and B2 ranges from 
−0.5 to 0.5 cycles irregularly, whose STD reaches 0.3 cycles. Therefore, the IRB over the 
24h short-term temporal time series fluctuated too wildly to be calibrated in advance. 

 

0

10

20

Pi
vo

t S
at

.

Sat.a

Sat.b

0

10

20

Pi
vo

t S
at

.

Sat.a

Sat.b

-1.1359

-1.1358

-1.1357

IR
PB

[1
0

6
cy

c]

-0.5

0

0.5

IR
PB

[c
yc

]

0 500 1000 1500 2000 2500

nEpoch

-0.8784

-0.8783

-0.8782

0 500 1000 1500 2000 2500

nEpoch

-0.5

0

0.5

Figure 4. Estimation results for inter-receiver code bias (IRCB) and IRPB under non-common clock
mode. The panels from left to right are the IRB for UB380 receiver and K708 receiver. The subplots
from top to bottom correspond to IRCB and IRPB at B1 and B2 frequency, and the blue-green dotted
line is the corresponding mean of IRB.

As shown by Figure 4, the IRCB estimation results for UB380 under non-common clock
mode are not stable within the 24 h fixed arc and reach the order of 105m. In addition, IRB
with respect to the carrier phase for the two frequencies also presents random fluctuations
ranging from −0.5 to 0.5 cycles, which is difficult to be accurately modeled. Furthermore,
at the 1500th epoch, the IRCB of both B1 and B2 frequency have obvious jump. It is because
the internal clocks of UB380 receiver used in those two receivers are independent quartz
clocks, in which the clock errors for two rover receivers will gradually drift. Generally,
when the clock errors of the receiver exceed a certain threshold, the clock jump will be
inserted for reset control to keep its accuracy within a certain range. However, for the case
of non-common clock mode, the clocks of independent receivers are inconsistent owing to
asynchronous processing strategies by two independent rover receivers. Hence, the jump
phenomenon as shown in Figure 4 is present. However, it is noted that the phenomenon
might not necessarily appear owing to asynchronous characteristics of random for every
rover receiver clock. We collected another data using three UB380 receivers with non-
common clocks on DOY148, 2019. Figure 5 shows that the clock jump is not present but
with a trend item because the practical clock drifts for the rover receivers are neither
common nor up to the level to reset control. In conclusion, the IRB under the non-common
clock mode is not stable, which has shown that the pre-estimated correction method cannot
be applied to calibrate the non-common clock-based IRB (Table 3).
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Figure 5. The estimation results for IRCB and IRPB under non-common clock mode. The receiver
types are all UB380. The panels from top to bottom represent IRCB and IRPB at B1 and B2 frequency,
and the blue-green dotted line is the corresponding mean of IRB.

Table 3. IRB statistics results under non-common clock mode.

Baseline Fre
IRCB IRPB

Mean (m) STD (m) Mean
(Cycle) STD (Cycle)

{HEUA0,HEUA1}-
HEUA2

B1 −0.8725 0.3399 0.0045 0.30
B2 −0.8320 0.3249 0.0050 0.30

{HEUA2,HEUA3}-
HEUA0

B1 65,902.9 139,203.6 0.0067 0.29
B2 65,902.5 139,203.7 0.0010 0.29

{HEUA2,HEUA3}-
HEUA4

B1 −57,534.6 5843.1 0.0128 0.29
B2 −57,535.1 5843.2 0.0036 0.29

4.4. Characterization of IRB under the Common Clock Mode

The time-domain stability of IRB is the key for C-RTK method to improve the strength
of the positioning model. Therefore, this contribution spares more attention on analyzing
the stability of IRB under the common clock mode. Firstly, the IRB-float model is utilized
to estimate the IRCB and IRPB sequences, and the corresponding IRB results are shown in
Figure 6.

Figure 6. The estimation results of IRCB and IRPB under common clock mode. Each row corresponds
to B1 and B2 frequency from top to bottom, and the blue-green dotted line is the corresponding mean
of IRB.
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Figure 6 depicts that the IRCB at B1 and B2 frequency reach the order of magnitude of
105 m with slight fluctuation near the mean value. The standard deviations corresponding
to B1 and B2 frequencies are 0.28 m and 0.22 m, respectively, which reflect the statistical
stability of IRCB. In addition, it can also be seen from Figure 6 that the IRPB for B1 and
B2 frequency is also relatively stable because the standard deviations reach 0.021 cycles
and 0.015 cycles for B1 and B2, respectively, which has no influence on the ambiguity
resolution. Therefore, with the common clock mode, the averaging IRB estimation results
over multiple epochs can be used as the calibration for the ambiguity resolution.

Previous studies have shown that the stability of IRCB and IRPB can be affected by
a restart of the receiver and temperature fluctuation of the hardware [22,26]. Since our
datasets are collected indoor environment with nearly constant temperature, therefore,
the effect of temperature fluctuation on the IRB will not be considered in this contribution.
Herein, we only test whether the stability of the IRCB and the IRPB are affected by the
receiver restart. Additional datasets are collected by {HEU0, HEU1}-HUA2 at Harbin,
China, for 4 days from DOY 153, 2020 with the sampling period of 30 s, in which the restart
of the receiver will be executed about every 24 h for three times. The IRCB and the IRPB
estimation results are shown in Figure 7. It can be seen that the fluctuation of IRPB caused
by the receiver’s restart may be significantly larger than the phase observational noise.
Similarly, the jumps are presented for IRCB estimated results that dramatically outweigh a
lot before and after reboot, which implies that it is impossible to be calibrated by one same
correction. Therefore, the IRCB and IRPB should be re-calibrated in IRB-fixed model when
the receiver is restarted.

Figure 7. IRCB and IRPB estimation results once restart of the receiver. The panels from left to right
represent IRCB and IRPB, whose rows from top to bottom denote B1 and B2, respectively.

4.5. Performance of the IRB-Fixed Model

In order to evaluate the advantages of the proposed method over the traditional NC-
RTK method in terms of positioning accuracy and integer ambiguity resolution, we simulate
the obstructed satellite visibility cases. In this section, an experiment was conducted with
three PolaRx5 on DOY158, in which two receivers, indicated as r1 and r2, were equipped
with a common clock and a common antenna. Moreover, the third receiver as the reference
receiver, denoted as b, has a 5 m baseline distance with the other two receivers. The sky
plot of all tracked BDS satellites for r1 and r2 is given in Figure 8. In order to simulate
the constrained environment, firstly, we manipulate the available satellites for r1 are
corresponding to the azimuths ranging from 180◦ to 360◦, the available satellites for r2 are
from 0◦ to 180◦. Therefore, the extreme case that there are no common-in-view satellites
between rover can be created. Secondly, the elevation mask θ is adjusted from 10◦ to 30◦

for all the receivers with step of 5◦. Thirdly, the azimuth mask α for r1 and r2 with the step
of 10◦ is decreased to create less available satellites between rover receivers. The satellite
constrained environment may also introduce multipath and sometimes other types of
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interference that are not considered in this contribution. We use the ambiguity dilution of
precision (ADOP) and position dilution of precision (PDOP) to show the benefit of more
observation redundancy from utilizing the proposed method [32]. The mean values of the
estimated IRCB and IRPB sequences listed in Table 4 are used as a correction to calibrate
the IRB for the second baseline configuration with a common clock. The empirical success
rate Ps for ambiguity resolution is defined as the ratio between the correctly-fixed epochs
and the total epochs.

Figure 8. The sky-plot of r1 and r2. Various colors denote different satellite tracking situations in the
simulation, respectively. The light blue area denotes that the satellite signal tracked by r1 and the
yellow represents tracked signals for r2, respectively.

Table 4. IRB statistics under the common clock mode.

Type B1 B2

Mean STD Mean STD

IRCB (m) −218,128.42 0.28 −218,128.20 0.22
IRPB (cycle) −0.081 0.021 −0.40 0.015

Figure 9 gives the positioning results, including the fixed solutions and float solutions.
The statistical results are summarized in Table 5, including the root mean square (RMS)
of 3D positioning errors and the success rate of ambiguity resolution. Note that Figure 9
only shows the worst case of all the experimental results, only a fraction of epochs was
processed due to either the insufficient satellites for positioning or extremely poor satellite
geometry (PDOP>30) under the BDS-only situation. Furthermore, it can be observed from
Figure 9 that when the azimuth masks for r2 and r1 are up to (160◦, 200◦), the NC-RTK
has more positioning interruptions due to the number of satellites are required at least
five for the traditional RTK method. In contrast, the C-RTK method has better continuity
performance because of the observation redundancy from IRB calibration.



Remote Sens. 2021, 13, 823 13 of 16

Figure 9. Positioning results with different cutoff elevation angles, in which r1 and r2 can track satellites whose azimuth
masks are 200◦ and 160◦. The column panels from left to right represent different cutoff elevation angles (10◦, 15◦, 20◦, 25◦,
30◦), respectively. The row panels from top to bottom are tracked satellite numbers, PDOP, ADOP (the ADOP is depicted in
blue color, the 0.12-cycles level as orange dash line), and errors conditioned on PDOP<30 in east-north-up direction for the
RTK positioning method using non-common clock receivers (NC-RTK) and the RTK positioning method with multiple
rover receivers sharing the common clock (C-RTK), respectively.

Table 5. Positioning performance and ambiguity resolution success rates.

α
(deg)

θ
(deg)

NC-RTK (cm) C-RTK (cm)

σE,RMS σN,RMS σU,RMS Ps σE,RMS σN,RMS σU,RMS Ps

(180,180)

10 0.35 0.34 0.82 100% 0.19 0.28 0.68 100%
15 0.35 0.34 0.76 100% 0.19 0.27 0.63 100%
20 0.31 2.40 2.51 99.96% 0.24 0.33 0.92 100%
25 0.32 2.41 2.52 99.96% 0.25 0.34 0.95 100%
30 8.97 10.09 25.01 98.2% 0.35 0.44 1.28 100%

(170,190)

10 17.27 33.91 69.47 97.57% 0.98 2.41 4.50 99.96%
15 19.82 41.65 83.66 97.03% 0.59 5.88 11.75 99.86%
20 21.93 45.97 92.03 95.62% 0.13 9.3 18.49 99.67%
25 28.90 61.88 122.84 93.33% 2.20 10.18 20.26 99.57%
30 29.52 34.72 83.48 82.5% 14.48 31.78 51.81 95%

(160,200)

10 25.93 56.59 104.86 93.44% 0.68 5.12 9.69 99.86%
15 32.58 70.51 129.95 93.04% 0.84 8.84 18.63 99.67%
20 37.84 78.22 143.88 90.29% 2.20 10.23 20.46 99.52%
25 41.76 84.42 158.05 88.77% 2.32 11.37 22.71 99.45%
30 51.61 56 114.76 72.83% 16.69 34.64 61.61 92.32%

When the sky blockage is not severe (e.g., the azimuth masks for r2 and r1 are all 180◦,
and the cutoff elevation is less than 25◦), the performance of the C-RTK is comparative to
NC-RTK. Because in the open sky scenario spliced jointly by r1 and r2, the C-RTK method
can rarely improve DOP values and there are sufficient numbers of satellites to fix the
ambiguity. However, this situation will change with the decrease of satellites in view. As
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shown in Figure 9, the C-RTK method has better ADOP relative to NC-RTK, which is
further validated by the ambiguity resolution success rate. In addition, Figure 9 shows
that the incorrectly fixed cases are present when the ADOPs are significantly more than
the 0.12 cycle level. When the cutoff elevation angle is set to less than 20◦, it can be seen
from Table 5 that the integer ambiguity resolution and positioning performance of C-RTK
are better with closely Ps of 99.5%, and the positioning accuracy within 30 cm. The results
indicate that the proposed method is comparable with the traditional NC-RTK method
since the advantages of additional observations remain tiny for the two methods under
the open-sky environments. Furthermore, we find that the C-RTK behaves better in the
satellite-deprived environment. Particularly, when the cutoff elevation is increased up to
30◦, the integer ambiguity resolution and positioning performance for the NC-RTK method
are much worse than the proposed C-RTK method. Specifically, the success rate of the
NC-RTK method decreases by 27.17%, and the positioning accuracy is up to the meter level.
Correspondingly, the success rate of C-RTK method decreases by 7.68%. Nevertheless,
compared with NC-RTK method, the C-RTK method improves success rate by 19.5% and
positioning accuracy by 46.4%. It is because the averaging of IRB as the correction to
calibrate bias sequences will not affect the integer ambiguity resolution. In addition, the C-
RTK method has more redundancy over the NC-RTK when the averaged IRB is used to
calibrate inter-receiver DD observations. A slightly better ADOP can be obtained due to
the increased observation redundancy. Therefore, the better ambiguity resolution success
rate and the positioning accuracy of C-RTK can be achieved under the satellite-deprived
environment owing to stronger observation model strength.

5. Concluding Remarks

To improve the integer ambiguity resolution and positioning performance under the
satellite-deprived environments, we developed an RTK positioning method with multiple
rover receivers sharing common clock. The proposed method can improve the observation
redundancy by integrating the observations from multiple rover receivers. Regarding the
code and phase IRB resulting from the integrating multiple rover receivers, a code and
phase IRB estimation method is investigated, in which the phase IRB estimation is immune
to the cycle slip or the change of pivot satellite. Fortunately, the experimental results have
shown that the standard deviation of the carrier phase IRB under the common clock mode
is less than 0.1 cycles. We, therefore, can use the pre-estimation-based IRB calibration
strategy for the tightly integrating multiple rover receivers. However, the stability of code
IRB and phase IRB can be destroyed by the reboot of the receiver, which implies that it is
necessary to re-calibrate the IRB when the receiver is restarted.

Real-world datasets have demonstrated that, because of the stronger observation
strength obtained by calibrating IRB, the proposed tightly coupled C-RTK method can
obtain a higher positioning accuracy and ambiguity resolution performance achievement
relative to the traditional loosely coupled NC-RTK method when under the short baseline
satellite-deprived environment. It should be noted that we only compare the short baseline
application in mild multipath and homothermal environment. Further study will be
developed to investigate the temperature sensitivity of IRB and the multipath effect on the
proposed method.
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