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Abstract: Equivalent water thickness (EWT) is a major indicator for indirect monitoring of leaf water
content in remote sensing. Many vegetation indices (VIs) have been proposed to estimate EWT based
on passive or active reflectance spectra. However, the selection of the characteristics wavelengths of
VIs is mainly based on statistical analysis for specific vegetation species. In this study, a characteristic
wavelength selection algorithm based on the PROSPECT-5 model was proposed to obtain charac-
teristic wavelengths of leaf biochemical parameters (leaf structure parameter (N), chlorophyll a + b
content (Cab), carotenoid content (Car), EWT, and dry matter content (LMA)). The effect of combined
characteristic wavelengths of EWT and different biochemical parameters on the accuracy of EWT
estimation is discussed. Results demonstrate that the characteristic wavelengths of leaf structure
parameter N exhibited the greatest influence on EWT estimation. Then, two optimal characteristics
wavelengths (1089 and 1398 nm) are selected to build a new ratio VI (nRVI = R1089/R1398) for EWT
estimation. Subsequently, the performance of the built nRVI and four optimal published VIs for
EWT estimation are discussed by using two simulation datasets and three in situ datasets. Results
demonstrated that the built nRVI exhibited better performance (R2 = 0.9284, 0.8938, 0.7766, and RMSE
= 0.0013 cm, 0.0022 cm, 0.0030 cm for ANGERS, Leaf Optical Properties Experiment (LOPEX), and
JR datasets, respectively.) than that the published VIs for EWT estimation. It is demonstrated that
the built nRVI based on the characteristic wavelengths selected using the physical model exhibits
desirable universality and stability in EWT estimation.

Keywords: PROSPECT model; characteristic wavelength selected; vegetation indices; equivalent
water thickness

1. Introduction

Leaf water content (LWC) is a significant variable involved in physiological processes
and drought stress of plants and is an influencing factor on short-term risk of fire [1–5].
Hence, LWC variation is a significant factor in estimating plant growth status and in
providing guidance for agricultural water management [6–8].

Traditional methods for monitoring LWC are time-consuming, laborious, and destruc-
tive [9]. Remote sensing technology can be an effective method for quantitative assessment
of a crop’s water content from the leaf-scale to canopy-scale [10]. In addition, accurately
obtaining LWC is the foundation of evaluating canopy water content [11]. Due to the char-
acteristic wavelengths of water absorption in short-wave infrared (SWIR) (1300–2500 nm)
and near-infrared (NIR) (750–1300 nm), changes in LWC will result in differentiation of
reflectance spectra. Then, the reflectance spectrum can be used to estimate LWC [12–14].
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Equivalent water thickness (EWT), which refers to the leaf water mass per leaf area unit, is
a major indicator for quantitatively estimating LWC [15].

At present, two major remote sensing methods are used to retrieve EWT based on
reflectance measurements. First, reflectance spectra can be obtained based on a physical
model by setting different leaf biochemical parameters. Leaf biochemical parameters can be
retrieved based on the model by using the reflectance spectrum as input parameter [16–19].
The forward model can be used to simulate the physical process of interaction between dif-
ferent leaf components and radiation, whereas the backward model can invert different leaf
components, such as EWT, through spectral information [20]. Among these physical mod-
els, PROSPECT is widely used as a leaf level radiative transfer model (RTM). PROSPECT
is based on the plate model [21] and can simulate the directional-hemispherical reflectance
and transmittance spectra of different species leaves in the range of 400–2500 nm with 1 nm
resolution by using the input parameters of N and other different leaf biochemical compo-
nents [22]. Several versions of PROSPECT have been proposed. PROSPECT-4 and 5 were
published, meanwhile, which provided improved specific absorption coefficients and a
new refractive index of leaf traits compared with the previous versions [23]. The difference
between PROSPECT-5 and 4 was the separation of carotenoid (Car) from total chlorophyll
(Cab). The newest version, PROSPECT-D, adds anthocyanins (Canth) to Cab and Car. Due
to the addition of new leaf pigment and the recalibrated refractive index, PROSPECT-D can
simulate real leaf optical properties with minimal error in the visible range. However, the
performance of PROSPECT-D in the near-infrared and shortwave infrared domains was
similar to that of other versions [24] and retrieval of EWT by PROSPECT-5 and PROSPECT-
D versions was slightly biased [25]. According to the difference of versions and the spectral
characteristics of EWT [26], PROSPECT-5 was used to select the characteristic wavelengths
for EWT estimation in this paper. However, model inversion often contains the well-known
“ill-posed” problem [19,27] and generally exhibits complexity and difficulty.

Compared with physical models, the empirical statistical method was more widely
used because of its advantages of simplicity and speed. Additionally, many vegetation
indices (VIs) were proposed for estimations of leaf biochemical content. For EWT esti-
mation, the NIR and SWIR spectral regions were selected from two or more bands to
build VIs [1,2,18,28]. In contrast to model inversion, VIs are simpler and exhibit better
correlations with EWT. Some studies have successfully used empirical models to monitor
EWT through VIs [9,11,29]. However, the wavelength selection for building VIs is mainly
dependent on the statistical model for specific vegetation species, experimental area, and
growth stage of vegetation. The statistical model lacks a certain physical mechanism and
universality [18,30]. Hence, a significant target for the development of quantitative remote
sensing is how to combine the advantages of physical and statistical models to select the
optimal wavelengths to construct a VI. Then, the accuracy of EWT monitoring can be
efficiently improved. There have been efforts to build spectral indexes of leaf biochemical
traits using the RTM [31,32].

Nowadays, machine learning regression algorithms are considered to be effective in
estimating vegetation parameters, using hyperspectral remote sensing data [33]. Machine
learning regression algorithms can efficiently represent complex relationships and capture
the nonlinear relationships of image features without specifying the underlying data
distribution. Due to the facts above, a variety of different machine learning algorithms were
used for the estimation of vegetation parameters, such as artificial neural network, support
vector regression, and random forest, which performed well in the current biophysical
parameter estimation [34–36]. Furthermore, Gaussian process regression (GPR) with
flexible kernels was also considered to be a fast and stable nonlinear regression method [37].

The main objectives of the current study are as follows: (1) to extract the characteristic
wavelengths of leaf biochemical parameters (N, Cab, Car, EWT, and dry matter content
(LMA)) by using the proposed characteristic wavelength selection algorithm based on the
PROSPECT model; (2) to analyze the effect of the combined characteristic wavelengths of
different biochemical parameters and EWT on the accuracy of EWT estimation, and to select
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two optimal characteristics wavelengths to calculate the new ratio VI for EWT estimation;
(3) to analyze the robustness of the new ratio VI and the four published VIs; (4) to validate
the performance of the new ratio VI for EWT estimation by using two simulation datasets
(without and with 2% random Gaussian noise) and three in situ datasets (ANGERS, Leaf
Optical Properties Experiment (LOPEX), and JR) by comparing with the published VIs
based on the GPR model.

2. Materials and Methods
2.1. Datasets

In this study, two simulation datasets generated by the PROSPECT model and three
publicly available measured datasets (ANGERS, LOPEX, and JR) were used.

2.1.1. Simulation Datasets

The PROSPECT model is a radiative transfer model developed based on the plate
model to simulate hemispheric reflectance and transmittance in the 400–2500 nm spectral
range of broadleaf [21]. It assumes that the leaf is superimposed by N homogeneous
layers, with the upper layer denoted as leaf surface, and that the light exhibits non-diffuse
properties on the leaf surface and diffuse properties inside the leaf [23]. The optical
properties of vegetation leaves are mainly dependent on the biochemical components of
leaves. The PROSPECT model is widely used for the simulation of leaf spectral information
and corresponding biochemical components [7,38]. Different plant species and growth
states under different environmental conditions can be simulated based on the range of
variation in the input parameters of the PROSPECT model. The PROSPECT model includes
five main input parameters, which are four biochemical parameters: Cab, Car, EWT, and
LMA, and one leaf structure parameter N. N represents the number of leaf layers and
is generally entered as continuous values for the model, taking into account the subtle
variations of the leaf structure.

The variation ranges of all input parameters in the PROSPECT model were set ac-
cording to Féret et al. [32] and Sun et al. [39] (Table 1). To avoid unrealistic combinatorial
generations of leaf biochemical parameters, the covariance between leaf traits should be
considered when generating the simulated datasets. The combination of leaf biochemical
parameters was simulated using a Gaussian distribution while considering the correlation
matrix between the parameters [32]. Then, based on the PROSPECT forward model, two
simulated datasets containing 2000 leaf spectra in the 400–2500 nm spectral range with
1 nm bandwidth were generated using the generated combinations of leaf biochemical pa-
rameters, with one synthetic dataset simulating random errors with 2% random Gaussian
noise (n = 1000) [23] and another synthetic dataset simulating ideal state without noise
(n = 1000).

Table 1. Distribution characteristics of the leaf parameters for synthetic datasets.

N Chlorophyll (Cab)
(µg/cm2)

Carotenoid (Car)
(µg/cm2)

Equivalent Water
Thickness (EWT) (cm)

Dry Matter Content
(LMA) (g/cm2)

Mean value 1.6 32.81 8.51 0.0129 0.0077
Standard deviation 0.3 18.87 3.92 0.0073 0.0035

Minimum 1 0.30 0.04 0.00005 0.002
Maximum 3.5 110 30 0.07 0.04

2.1.2. In Situ Datasets

To avoid using synthetic datasets without the factors that emerged in field measure-
ments, we applied experimental datasets. As we wished to evaluate VIs for different types
of datasets, three experimental datasets were utilized. The first dataset was the ANGERS
Leaf Optical Properties dataset, which was built in Angers, France, in June 2003 by S.
Jacquemound et al. [23]. It measured a total of 276 leaf samples from 43 different plant
species. The second dataset was the Leaf Optical Properties Experiment (LOPEX) dataset,
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the first publicly available experiment dataset established by the Joint Research Center
of the European Commission in 1993 [40]. The dataset measured a total of 320 leaf sam-
ples from 45 different plant species, which were sampled multiple times throughout their
growth, and each sample consisted of five individual leaves. The last dataset is JR, which
was measured in Jasper Ridge, California [41]. This dataset contains only 30 leaf samples
after removing the spectral errors during the measurement. For JR dataset, reflectance
measurements were averaged over approximately ten leaf samples from a single plant.
Besides, different leaf samples were used for reflectance measurements and biochemical
analysis [42]. All these factors may affect the correlation between EWT and the reflectance
spectra with JR dataset and reduce its estimation accuracy. For the three datasets, the spec-
tral ranges of ANGERS, LOPEX, and JR are 400–2450 nm, 400–2500 nm, and 400–2498 nm,
respectively. The leaf spectral sampling interval for the ANGERS and LOPEX datasets
is 1 nm, and for the JR dataset is 2 nm (ANGERS and LOPEX datasets can be found at
http://opticleaf.ipgp.fr/index.php?page=database (accessed on 9 December 2020)).

2.2. Characteristic Wavelength Selection Algorithm

Characteristic wavelength selection is based on sensitivity analysis (SA) and corre-
lation analysis between different bands. In this study, SA was applied to calculate the
contributions of different leaf biochemical parameters in the PROSPECT5 model towards
the leaf reflectances. Sobol’s global SA was completed using a software tool (GSAT) of
MATLAB R2015b (MathWorks, Inc.) [43,44]. A ranking list of wavelengths in the range of
400–2500 nm was derived based on the sensitivity of each model parameter to different
wavelengths. In addition, the information redundancy between selected wavelengths
was reduced by correlation analysis to improve the information validity of the selected
wavelengths. The characteristic wavelength selection used the simulation dataset without
noise [39].

The workflow chart of the characteristic wavelengths selection algorithm is shown in
Figure 1 and the details are as follows.

Figure 1. The workflow chart of the characteristic wavelengths selection algorithm.

Step (1) A ranking list of contribution rates/sensitivities (S) of PROSPECT5 input
parameters (N, Cab, Car, EWT, and LMA) to leaf reflectance over the 400–2500 nm spectral
range was obtained by SA, and a correlation coefficient matrix (C) between bands over the
400–2500 nm spectral range was obtained by correlation analysis (Figure S1).

http://opticleaf.ipgp.fr/index.php?page=database
http://opticleaf.ipgp.fr/index.php?page=database
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Step (2) Select the wavelength with the highest sensitivity as the initial wavelength for
each model parameter (W1). The first n wavelengths in the ranked list of the sensitivity
of each parameter were taken as the candidate wavelength set (Wc). The n value was set
according to the sensitivity of each parameter to leaf reflectance (N: n = 400; Cab: n = 100;
Car: n = 50; EWT: n = 300; LMA: n = 50).

Step (3) The wavelength with the smallest correlation coefficient between the candidate
wavelength set and the initial wavelength was then selected (W2).

2.3. VIs Correlation Analysis and Robustness Analysis

Many VIs have been proposed and utilized to monitor leaf biochemical parameters
in previous literature [45–47]. In this study, the new ratio VI (nRVI) was constructed by
selecting the two characteristic wavelengths that are suitable for EWT estimation based on
the characteristic wavelength selection algorithm. To compare the performance of nRVI for
EWT estimation, four optimal published VIs were selected based on different datasets by
using the statistical model with the highest coefficient of determination (R2) (Table 2). To
evaluate the correlation between the selected published VIs, nRVI, and EWT, correlation
analysis was performed using the five datasets.

Table 2. Selected four published Vegetation Indices (VIs) (WBI, MSI, SR, and NDII) with the highest R2 for the different
datasets.

Datasets
Synthetic
Spectrum

without Noise

Synthetic
Spectrum with 2%

Random
Gaussian Noise

ANGERS LOPEX JR

Vegetation indices WBI MSI SR NDII SR

Formula (R900/R970) (R1600/R820) (R1300/R1450)
(R820-

R1600)/(R820 +
R1600)

(R1300/R1450)

R2 0.952 0.681 0.909 0.828 0.701
References [9] [40] [41] [42] [41]

To construct a suitable VI for EWT estimation requires not only achievable correlation
with the target parameter EWT but also robustness to other disturbances [48,49]. To assess
the robustness of VIs to interfering factors, the effects of wide range variations of N, LMA,
and spectral noise on the estimated EWT of VIs were simulated separately using the
PROSPECT model.

2.4. Gaussian Process Regression

Different machine learning regression algorithms (MLRAs) are applied for the RTM
estimation, for instance, artificial neural network (ANN), support vector regression (SVR),
random forest (RF), and Gaussian process regression (GPR) [50–53]. Several studies have
shown that GPR is more accurate among these MLRAs [50,54,55]. GPR is a non-parametric
model that prioritizes Gaussian processes and assumes that the training sample is a sample
of Gaussian processes for data regression analysis. GPR is essentially a model that uses
Bayesian inference for solving, and the kernel function closely influences the model esti-
mates. Indeed, the kernel function in the GPR model describes the covariance function of
the correlation between training samples. In this study, the squared exponential kernel func-
tion was used. For further details about GPR, see Verrelst et al. and Camps-Valls [50,56,57].

2.5. Statistical Analysis

In this paper, the synthetic datasets were randomly divided into two parts: 70% for
training and 30% for validation. Due to the small sample number, in situ datasets were
utilized through three-fold cross-validation. Considering the prediction values of GPR
mostly based on the training samples, the process of GPR was repeated 100 times for all
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datasets to ensure stable results. To evaluate the predictive capability of nRVI and selected
published VIs for EWT estimation, the R2, root mean square error (RMSE), and normalized
RMSE (NRMSE) were used.

3. Results
3.1. Selection of Characteristic Wavelengths and nRVI Construction

The characteristic wavelengths of different leaf components were obtained based on the
synthetic dataset without noise (n = 1000). Table 3 lists the selected characteristics wavelengths.

Table 3. Selected characteristic wavelengths of leaf biochemical parameters.

N Cab Car EWT LMA

Characteristic
wavelengths

1089 nm,
746 nm

675 nm,
595 nm

520 nm,
400 nm

1906 nm,
1398 nm

2286 nm,
2311 nm

This study focused on the estimation of EWT by using constructed nRVI based on
selected characteristic wavelengths. Thus, how to effectively determine the wavelength of
VI according to the selected characteristic wavelengths of different biochemical parameters
is the first problem that needs to be solved. Then, the effect of combined characteris-
tic wavelengths of different biochemical parameters and EWT on the accuracy of EWT
estimation were analyzed.

Table 4 presents the effect of combined characteristic wavelengths of different biochem-
ical parameters and EWT on the accuracy of EWT estimation by using the five datasets.
The results showed that the combination with the characteristic wavelengths of EWT and
N is optimal for EWT estimation with higher R2 values and lower RMSE and NRMSE
values than other combinations. However, two characteristic wavelengths of EWT, which
does not contain enough information, were selected to estimate EWT. The accuracy of
EWT estimation by adding the characteristic wavelengths of N was improved further than
by adding the characteristic wavelengths of other biochemical parameters (Cab, Car, and
LMA). Thus, the characteristic wavelengths of EWT + N (746, 1089, 1398, and 1906 nm)
were extracted and used for further analysis.

Table 4. Performance of combined different characteristic wavelengths for EWT estimation by using Gaussian process
regression (GPR).

Characteristic
Wavelengths-

EWT

Characteristic
Wavelengths-EWT

+ N

Characteristic
Wavelengths-
EWT + Cab

Characteristic
Wavelengths-

EWT + Car

Characteristic
Wavelengths-EWT

+ LMA

Synthetic spectrum
without noise

R2 0.9686 0.9989 0.9719 0.9729 0.9629
Root mean square

error (RMSE) 0.0012 0.0002 0.0011 0.0011 0.0011

Normalized
RMSE (NRMSE) 8.2270 1.4115 7.8654 7.7230 7.8063

Synthetic spectrum
with 2% random
Gaussian noise

R2 0.6728 0.8567 0.6842 0.6910 0.6766
RMSE 0.0038 0.0025 0.0037 0.0037 0.0038

NRMSE 26.8854 17.8595 26.3449 26.1832 26.9376

ANGERS
R2 0.7536 0.9243 0.7821 0.7166 0.7892

RMSE 0.0024 0.0013 0.0023 0.0026 0.0022
NRMSE 20.7514 11.4918 19.4984 22.4114 19.1916

LOPEX
R2 0.6975 0.9199 0.6912 0.6907 0.7090

RMSE 0.0038 0.0019 0.0039 0.0038 0.0037
NRMSE 32.9737 16.8742 33.6663 33.5077 32.2661

JR
R2 0.3543 0.7871 0.4885 0.5829 0.3312

RMSE 0.0052 0.0030 0.0048 0.0042 0.0053
NRMSE 32.3883 18.5350 30.1157 26.5135 33.1941
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Two feature bands are selected for each biochemical parameter and whether it will
influence the precision of EWT estimation. Then, the effect of the number of wavelengths
on EWT reversion is discussed, and the results are listed in Table 5.

Table 5. Performance of different numbers of wavelengths for EWT estimation by using GPR.

Full-
Wavelengths

(400–2500 nm)

Full-
Characteristic

Wavelengths (10)

Characteristic
Wavelengths-EWT +

N (4)

Characteristic
Wavelengths-EWT

(2)

Synthetic spectrum
without noise

R2 0.9979 0.9999 0.9989 0.9686
RMSE 0.0001 0.0003 0.0002 0.0012

NRMSE 0.9712 0.2407 1.4115 8.2270
Synthetic spectrum
with 2% random
Gaussian noise

R2 0.1205 0.8951 0.8567 0.6728
RMSE 0.0156 0.0022 0.0025 0.0038

NRMSE 110.4656 15.3237 17.8595 26.8854

ANGERS
R2 0.5170 0.9265 0.9243 0.7536

RMSE 0.0036 0.0013 0.0013 0.0024
NRMSE 30.8190 11.3459 11.4918 20.7514

LOPEX
R2 0.8682 0.9012 0.9199 0.6975

RMSE 0.0025 0.0021 0.0019 0.0038
NRMSE 21.7422 18.7645 16.8742 32.9737

JR
R2 0.4162 0.7695 0.7871 0.3543

RMSE 0.0065 0.0031 0.0030 0.0052
NRMSE 40.3687 19.5815 18.5350 32.3883

Table 5 shows that the accuracy of EWT estimation based on GPR is not directly pro-
portional to the number of bands. The estimation results of full-wavelength (400–2500 nm)
are obviously inferior to that of full-characteristics wavelengths (10), and characteristic
wavelength EWT + N (4). For the full-wavelength (400–2500 nm), the reflectance informa-
tion between adjacent bands has a great correlation and collinearity. Thus, it can influence
the convergence and efficiency of regression algorithms using full-band variables that serve
as input parameters to train the statistical model [58]. However, the difference between
the performance of full-characteristic wavelengths (10) and characteristic wavelength EWT
+ N (4) for EWT estimation does not clearly exclude the data synthetic spectrum with
2% random Gaussian noise. For the synthetic data with 2% random Gaussian noise, the
possible interpretation is that the Gaussian noise differs from the actual measurement
error, and such a difference will influence the analysis results. In addition, the superior
capacity of the four characteristic wavelengths of EWT + N compared with that of the two
characteristic wavelengths of EWT for EWT estimation based on the five datasets. Thus, the
spectral information is adequate for EWT estimation based on the selected characteristic
wavelengths of EWT + N (4).

Tables 4 and 5 demonstrate that the characteristic wavelengths of N exhibited the
greatest influence on EWT estimation among these biochemical parameters. Therefore, two
characteristic wavelengths from N and EWT were selected, then constructed the new ratio
VI (nRVI) for EWT estimation. Two optimal wavelengths were selected based on the SA of
the spectrum by using the PROSPECT model and the correlation between the reflectance
spectra of characteristic wavelengths of N + EWT and EWT parameter. The position of four
characteristic wavelengths of N and EWT was listed in the SA of biochemical parameters
(Figure 2). The correlation between the reflectance spectra of characteristic wavelengths of
N + EWT and EWT parameter is shown in Figure 3.
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Figure 2. Position of selected wavelengths of N and EWT in the sensitivity analysis for PROSPECT model for reflectance
(N: structure index, Cab: chlorophyll, Car: carotenoid, EWT: equivalent water thickness, LMA: dry matter per area,
Interactions: joint global sensitivity for different combinations of parameters).

Figure 3. Correlation between the spectral information of the characteristic wavelengths of N + EWT
and EWT parameter by using the synthetic dataset without noise.

Figure 2 demonstrates that the region of EWT characteristic wavelengths was influ-
enced by other biochemical parameters. Thus, the influence of other parameters needs to
be eliminated to improve the accuracy of EWT monitoring. The characteristic wavelength
at 746 nm is located at the range of the red-edge band, which belongs to a transition band.
The reflectance spectrum at 746 nm was affected by Cab and LMA. However, the spectrum
at 1089 nm was less affected by other pigments than the characteristic wavelength at
746 nm. Thus, the characteristic wavelength of N at 1089 nm was selected as a band for
constructing nRVI.

For the characteristic wavelength of EWT, the major influencing factors include N,
EWT, and their interaction. The contribution ratio of interaction at 1096 nm is higher
than that at 1398 nm based on SA. In addition, the correlation between the spectrum
information at 1398 nm and the EWT parameter is higher than that at 1906 nm (Figure 3).
The characteristic wavelengths of N at 746 and 1089 nm exhibited low correlations with
EWT parameter. Hence, the characteristic wavelength at 1398 nm was selected as another
band to construct nRVI. Therefore, two characteristics wavelengths (1089 and 1398 nm)
were selected to build the nRVI (nRVI = R1089/R1398) in this study.
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3.2. Correlation Analysis Between the nRVI, Selected Published VIs, and EWT

The correlations between the four selected published VIs and EWT for five corre-
sponding datasets are provided in Figure 4. The correlations between the nRVI and EWT
for all five datasets are shown in Figure 5.

Figure 4. Correlations between EWT and selected published vegetation indices (VIs) for different datasets: (a) synthetic
spectrum without noise, (b) synthetic spectrum with 2% random Gaussian noise, (c) ANGERS, (d) LOPEX, and (e) JR.
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Figure 5. Correlations between EWT and nRVI for the different datasets: (a) synthetic spectrum without noise, (b) synthetic
spectrum with 2% random Gaussian noise, (c) ANGERS, (d) LOPEX, and (e) JR.

Figure 5 shows that nRVI formed a significant positive relationship with EWT for
all five datasets. The correlation between nRVI and EWT was stronger than the selected
VIs for synthetic spectrum with 2% random Gaussian noise, ANGERS, LOPEX and JR
datasets. For synthetic spectrum with 2% random Gaussian noise, LOPEX and JR datasets,
the correlations (R2 = 0.782, 0.907, and 0.813; RMSE = 0.311%, 0.209%, and 0.27%) between
nRVI and EWT (Figure 5b,d,e) were better than the correlations (R2 = 0.681, 0.828, and
0.701; RMSE = 0.376%, 0.284%, and 0.34%) among WBI, NDII, SR, and EWT (Figure 4b,d,e).
For the synthetic dataset without noise, the unremarkable differences were observed in the
correlations (R2 = 0.952, RMSE = 0.147%) between WBI and EWT (Figure 4a) and between
nRVI and EWT (R2= 0.948, RMSE = 0.152%, Figure 5a). These results suggested that the
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built nRVI based on the selected characteristic wavelengths using a physical model can be
applied in estimating EWT in this study.

3.3. Robustness Analysis

The results of Section 3.2 show that the nRVI was more likely to achieve high precision
EWT estimation than other VIs. However, the robustness of nRVI to interference factors,
for instance, N, LMA, and spectral noise, should be explored in depth for EWT estimation.
The results of the robust analysis are as follows.

3.3.1. Robustness to the Change of N

The influences of N on nRVI and the other VIs are shown in Figure 6. For the five VIs,
the value of N affected the relationships between the VIs and EWT, especially at high EWT
contents. Among them, the influences of N on SR were relatively large in the case of the
lowest value of N (N = 1) and the high EWT values (0.045–0.07 cm). Compared to SR, the
other VIs revealed less variability and more stability in the change of N.

Figure 6. Robustness of nRVI, WBI, MSI, SR, and NDII to variations in N across various EWT values.
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Figure 7 indicates the performance of the five VIs for EWT estimation across various
N values based on the synthetic dataset with 2% Gaussian noise. WBI performed worst
for the whole range of N in Figure 7. While Figure 6 showed that the effect of N on WBI
was small, the worst performance of WBI may be caused by the artificial noise of synthetic
dataset. SR had the worst R2 for EWT estimation only at a low N value (N = 1) that was
consistent with Figure 6. The performance of MSI and NDII for EWT estimation was almost
the same. Hence, the robustness of VIs to N changes was only related to the associated
bands and independent of the form of indices. Compared to the other VIs, nRVI had the
highest accuracy and the best stability for EWT estimation across various N values.

Figure 7. Accuracy of nRVI, WBI, MSI, SR, and NDII for EWT estimation across various N values
based on the synthetic dataset with 2% Gaussian noise.

3.3.2. Robustness to the Change of LMA

The influence of LMA on nRVI and the published VIs are shown in Figure 8. For nRVI,
WBI, and SR, the effect of LMA content on the relationship between EWT and VIs was less
than that of MSI and NDII, especially at low EWT values (0.005–0.035 cm). nRVI, SR, and
WBI all showed lower variability and higher resistance to the changing LMA content at
low EWT values (0.005–0.035 cm). For MSI and NDII, LMA (0.005–0.03 g/cm2) effects were
greater throughout the range of EWT variation (0.005–0.07 cm).

Figure 9 indicates the performance of the five VIs for EWT estimation across various
LMA contents based on the synthetic dataset with 2% Gaussian noise. WBI still performed
worst for the whole range of LMA values that are similar to N changes, according to Figures
7 and 9, and the possible reason was the adding artificial noise in the synthetic dataset. The
precision of MSI and NDII was also almost the same. When LMA = 0.005 g/cm2, the R2 of
MSI, NDII, and SR were 0.6816, 0.6816, and 0.6932, while when LMA = 0.03 g/cm2, the
R2 of MSI, NDII, and SR decreased to 0.3375, 0.3350, and 0.5439. This indicated that the
accuracy of MSI, NDII, and SR for EWT estimation decreased obviously with the increase
of LMA content. The nRVI still performed best no matter how the LMA content changed.
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Figure 8. Robustness of nRVI, WBI, MSI, SR, and NDII to variations in LMA across various EWT values.

Figure 9. Accuracy of nRVI, WBI, MSI, SR, and NDII for EWT estimation across various LMA
contents based on the synthetic dataset with 2% Gaussian noise.
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3.3.3. Robustness to the Change of Spectral Noise

Figure 10 indicates the performance of nRVI, WBI, MSI, SR, and NDII for EWT estima-
tion based on synthetic datasets with various random Gaussian noise. According to the
results, all VIs performed the best accuracy without added noise. For the effects of adding
noise, the higher the level of added noise, the greater the impact on VIs, but the five VIs
were affected to varying degrees. WBI had no resistance to spectral noise regardless of
the level of added noise, which was consistent with its performance in Figures 7 and 9.
The worst performance of WBI in Figures 7 and 9 was due to the use of synthetic datasets
with added artificial noise. SR had poor accuracy and great instability when the level of
added noise was high (>2%). Therefore, the WBI and SR are maybe not appropriate indices
for EWT estimation due to the sensitivity to the spectral noise. The accuracy of MSI and
NDII for EWT estimation decreased sharply with the increase of noise level. However,
nRVI had the best performance for EWT estimation in spectral noise resistance compared
with the other VIs. Therefore, nRVI had the highest robustness to interference factors for
EWT estimation.

Figure 10. Accuracy of nRVI, WBI, MSI, SR, and NDII for EWT estimation across various spectral
noise based on synthetic datasets with various random Gaussian noise.

3.4. Validation of the Performance of nRVI and Selected VIs for EWT Estimation

The performances of nRVI and four selected VIs (WBI, MSI, SR, and NDII) for EWT
estimation are analyzed based on the GPR model using two synthetic and three public
experimental datasets. The reversion results are shown in Table 6.

Table 6. Evaluation of VIs for EWT estimation with different datasets by using GPR.

Datasets
Vegetation Indices

nRVI WBI MSI SR NDII

Synthetic spectrum
without noise

R2 0.9544 0.9518 0.9233 0.9423 0.9219
RMSE 0.0014 0.0015 0.0019 0.0016 0.0019

NRMSE 10.0359 10.3498 13.0451 11.2950 13.1296

Synthetic spectrum with
2% random

Gaussian noise

R2 0.8188 0.0320 0.6931 0.7554 0.6904
RMSE 0.0028 0.0066 0.0037 0.0033 0.0037

NRMSE 20.2391 47.0444 26.2381 23.3033 26.5343

ANGERS
R2 0.9284 0.8280 0.8982 0.9097 0.8948

RMSE 0.0013 0.0020 0.0015 0.0015 0.0016
NRMSE 11.1337 17.3393 13.3377 12.5704 13.5613

LOPEX
R2 0.8938 0.7363 0.9023 0.7304 0.9023

RMSE 0.0022 0.0035 0.0021 0.0036 0.0021
NRMSE 19.5856 30.7482 18.7015 31.2757 18.7120

JR
R2 0.7766 0.5331 0.4950 0.6602 0.4991

RMSE 0.0030 0.0043 0.0044 0.0036 0.0044
NRMSE 18.4784 27.0536 27.7635 22.7170 27.6439
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The capabilities of nRVI and selected VIs for EWT monitoring based on the GPR
model by using different datasets are validated (Table 6). All indices exhibited the best
performance for the synthetic dataset without noise, followed by ANGERS, and with
the poorest performance observed in JR. Possibly, the synthesized dataset without noise
was ideal, whereas the ANGERS, LOPEX, and JR datasets contained different species and
measurement errors, especially for the JR dataset, which included too few samples. For
the synthetic data with noise, the addition of noise significantly reduced the accuracy of
EWT estimation for the five VIs compared to the synthesized dataset without noise, but
the noise had the least effect on the nRVI.

Among these VIs, nRVI exhibited better performance in EWT estimation compared
with the other VIs with the five different datasets. Due to the sensitivity to spectral noise,
WBI performed worst on EWT estimation in the synthetic data with noise. MSI and NDII
still showed similar results on EWT estimation in all datasets as in robustness analysis.
They were just superior to the WBI and SR and almost consistent with nRVI for EWT
estimation using the LOPEX dataset. But for the other datasets, MSI and NDII cannot
perform as well as nRVI all the time. nRVI possesses a better capability to estimate EWT
than other VIs and provides satisfactory accuracy in EWT estimation for different datasets.

The results presented in Table 6 suggest that the nRVI performed well in EWT es-
timation for synthetic and in situ datasets. Thus, nRVI, which was built based on the
selected characteristic wavelengths by using the physical model, exhibited better universal-
ity and stability in the evaluation of EWT than the four selected optimal VIs based on the
statistical model.

4. Discussion

In this study, nRVI was built for EWT estimation based on two selected optimal
characteristic wavelengths (1089 and 1398 nm) by using a physical model. Then, the
correlation between the nRVI and EWT and that between the published four VIs and EWT
were analyzed. Results showed that the nRVI features a remarkably positive correlation
with EWT (Figure 5). Additionally, the nRVI and four other optimal published VIs were
evaluated in the sensitivity of EWT and the insensitivity of the interference (e.g., N, LMA,
and spectral noise). Last, the performance of nRVI and published VIs for EWT estimation
based on the GPR model was analyzed and compared using five datasets (one synthetic
dataset without noise, one synthetic dataset with 2% random Gaussian noise, and ANGERS,
LOPEX, and JR datasets).

In previous studies, numerous researchers have investigated the selection of sensitive
wavelength for leaf biochemical parameter estimation based on the PROSPECT model.
Zarco-Tejada et al. [59] indicated that in the inversion of coupling of the canopy model to
PROSPECT, utilizing red-edge spectral index (e.g., 750 and 710 nm) in function minimiza-
tion outperformed that utilizing all single spectral reflectance bands from hyperspectral
images. Song et al. [60] used multivariate analysis and correlation between adjacent bands
methods to obtain major wavelengths; then, four selected narrow bands (552, 675, 705, and
776 nm) were subsequently used to monitor nitrogen stress in paddy rice, and wavelengths
of 1158, 1378, and 1965 nm were selected and applied to estimate irrigation stress. He
et al. [61] proposed an angular insensitivity vegetation index (AIVI) based on green, blue,
and red-edge bands; AIVI exhibited the highest association with leaf nitrogen concentration
compared with traditional VIs. Sun et al. [39] proposed a method of wavelength selection
by the PROSPECT model and established band combinations to evaluate leaf Cab and
EWT. These studies showed the feasibility of wavelength selection for leaf trait estimation.
According to Table 5, the precision of EWT estimation using characteristic wavelengths
was superior to the performance of full-wavelengths for EWT estimation based on GPR.
Compared with full-wavelength, the characteristic wavelengths can be efficient and time-
saving in the estimation of leaf biochemical parameters. However, previous studies rarely
focused on the application of characteristic wavelengths for the biochemical parameter
estimation based on a physical model.
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Furthermore, most of the published VIs were established based on water absorption
wavelengths selected by the statistical model, for instance, 970 nm for WBI [9], 1450 nm
for SR [46], and 1600 nm for NDII and MSI [11,62]. The published VIs for EWT estimation
is limited by certain datasets or plant species. Moreover, the selection of wavelengths
for the construction of VIs is based on the statistical model for specific vegetation species
and lacks a certain physical mechanism and universality. Considering the restriction of
wavelength selection and published VIs for leaf biochemical parameter estimation based
on a statistical model, characteristic wavelengths were selected by using the physical
model PROSPECT based on the SA. Then, two optimal characteristic wavelengths (1089
and 1398 nm) were selected to build the nRVI (nRVI = R1089/R1398) for EWT estimation.
Additionally, the robustness of nRVI and the four published VIs in N, LMA, and spectral
noise was analyzed, and the anti-interference ability of the published four VIs was weak.
But nRVI exhibited better anti-interference ability and sensitivity to target parameters.
Meanwhile, based on the results shown in Table 6, the nRVI method exhibited better
accuracy and robustness in EWT estimation than the four selected optimal VIs based on the
statistical model. Furthermore, nRVI can partly decouple the influence of N and LMA on
EWT estimation. Hence, the built nRVI based on the selected characteristic wavelengths by
using the physical model exhibited better universality and stability in the EWT estimation
than the published VIs, which can guide agricultural water management.

The results in Sections 3.3 and 3.4 indicated that the MSI and NDII performed signifi-
cant similarity in robustness analysis and EWT estimation based on GPR. MSI and NDII
involved the same wavelengths but only in a different form of the indices. This maybe
illustrates that the selected wavelengths of VIs are more critical than the selection form of
indices in EWT estimation or other biochemical parameters.

Different methods were used for the estimation of leaf biochemical parameters.
Colombo et al. [18] used inverse ordinary least squares (OLS) and reduced major axis
(RMA) regression methods to estimate EWT by different spectral indices, and RMA ob-
tained the best regression results by spectral indices related to the continuous removal area
at 1200 nm with 61% explained variance and 6.6% prediction error. Feret et al. [32] used
two regression methods, spectral indices, and partial least squares (PLS) for the retrieval
of leaf biochemical parameters, and the RMSEs of the two methods in EWT estimation of
experimental data were 0.0037 cm and 0.0025 cm, respectively. Sun et al. [39] performed
the inversion of Cab and EWT by the PROSPECT model using selected characteristic wave-
lengths; the RMSE of EWT estimation for ANGERS, LOPEX, and JR datasets was 0.0023 cm,
0.0029 cm, and 0.0059 cm. Verrelst et al. [37] estimated Cab form hyperspectral reflectance
data using GPR, and the GPR regression model was well validated for measured data. This
study used the constructed new ratio VI (nRVI) to perform well in the EWT estimation
of simulated and in situ datasets through the GRP model. Compared with the traditional
methods for estimating leaf biochemical parameters, machine learning methods are more
robust and stable, and their application in leaf and canopy scale parameter retrieval is
becoming more widespread.

Although significant discoveries were revealed in this study, the limitations require
further discussion. First, to determine the optimal wavelength of VIs, two characteristic
wavelengths were selected for each leaf biochemical parameter through the PROSPECT-5
model. The effect of the number of characteristic wavelengths on the performance of built
nRVI for EWT estimation should be discussed in the following researches. In addition, the
optimal characteristic wavelengths of nRVI were determined through a physical model,
and universality was verified by using large quantities of synthetic and experimental
datasets. However, the discussion about the effect of plant species and different growth
stages on EWT estimation remains lacking. Hence, more vegetation species and measured
field datasets should be included in future work. Although nRVI has performed well in
different datasets at the leaf scale, there has been no further study at canopy or aerial,
or even spaceborne scale. Canopy water concentration is an important variable for the
evaluation of plant water status. The effect of leaf area index (LAI) on nRVI performance
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needs to be considered at the canopy scale, as changes in LAI can lead to confusion of
spectral features with water, which can reduce the accuracy of canopy water concentration
estimation [63]. In addition to LAI, canopy water content estimation using nRVI also needs
to consider the effects of soil background, leaf inclination, and canopy structure. These
factors affect not only the nRVI to canopy scale, but also all leaf scale biochemical parameter
retrieval methods up to canopy scale [61]. For the scale issue, a model retrieval method
for estimating leaf reflectance spectra using canopy remote sensing canopy spectra data
was proposed [64,65]. Using the top-down inversion model, leaf reflectance spectra can
be obtained from remote sensing data, thus allowing nRVI to be used for canopy water
content estimation.

5. Conclusions

This study extracted the characteristic wavelengths of leaf biochemical parameters
(N, Cab, Car, EWT, and LMA) by using the proposed characteristic wavelengths selection
algorithm based on the PROSPECT model. The effect of combined characteristic wave-
lengths of EWT and different biochemical parameters on the accuracy of EWT estimation
was analyzed. Results demonstrated that the characteristic wavelengths of N exhibited the
greatest effect on EWT estimation, and two characteristics wavelengths (1089 and 1398 nm)
were selected to build nRVI (nRVI = R1089/R1398) for EWT estimation. The robustness
of nRVI and the four published VIs in N, LMA, and spectral noise was analyzed, and
nRVI exhibited better anti-interference ability and sensitivity to target parameter than other
parameters. Furthermore, the performance of nRVI for EWT estimation was validated by
using two simulation datasets (without and with 2% random Gaussian noise) and three
in situ datasets (ANGERS, LOPEX, and JR) based on the GPR model. The nRVI exhibited
higher accuracy and robustness in EWT estimation for different types of datasets than pub-
lished VIs. The characteristic wavelengths of nRVI were selected based on a physical model
and could be applied for monitoring crop water deficiency stress accurately, which can
provide the guidance for agricultural water management. Besides, the proposed method
features the promising potential for application in different environments for various kinds
of plants water deficiency stress.
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