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Abstract: Peatlands play an important role in the global carbon cycle as they contain a large soil
carbon stock. However, current climate change could potentially shift peatlands from being carbon
sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide
(CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study,
we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary
production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with
remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden
and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m
resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure
a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied
to derive footprint-weighted daily means of the vegetation indices. Average model parameters for
all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER
models gave high agreement with the EC-derived fluxes (R2 = 0.70 and 0.56, NRMSE = 14% and 15%,
respectively). The performance of the NEE model was weaker (average R2 = 0.36 and NRMSE = 13%).
Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method
for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to
investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.

Keywords: ecosystem respiration (ER); footprint analysis; gross primary production (GPP); net
ecosystem exchange (NEE); peatland; Sentinel-2; upscaling

1. Introduction

Peatlands are an important ecosystem for the global carbon cycle, as they cover only
3% of the terrestrial area but contain around 40% of global soil organic carbon [1]. The
waterlogged and anoxic conditions in peatlands inhibit the decomposition of plant material,
creating a long-term net sink of atmospheric carbon dioxide (CO2) and, consequently, an
effective storage of organic carbon [2]. Peatlands assimilate CO2 through photosynthesis
(gross primary productivity, GPP) and release it through autotrophic respiration (from
vegetation) and heterotrophic respiration (microbial decomposition). The sum of the
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autotrophic and heterotrophic respiration is the ecosystem respiration (ER). The difference
between ER and GPP is the net ecosystem exchange (NEE), which determines whether an
ecosystem is a carbon sink or source (excluding gains and losses of carbon through flowing
water, biomass removal, or methane fluxes). Pristine peatlands are considered to be net
carbon sinks [3], but changing environmental conditions due to global warming or land
use change may increase CO2 release and potentially shift peatlands from being carbon
sinks to sources [4,5]. For that reason, it is important to estimate peatland CO2 exchange
across time and space.

A common method to measure land–atmosphere CO2 exchange at the ecosystem level
is the eddy covariance (EC) technique [6]. The EC method provides direct measurements
of NEE and nighttime ER, which can be subsequently partitioned into GPP and daytime
ER. As the flux partitioning relies on modelling procedures, EC-derived GPP and ER are
not considered to be direct measurements but modelled estimates at the ecosystem level.

However, there is only a limited number of EC sites measuring peatland carbon
exchange. Peatlands are widespread across the northern latitudes, and to enable the
estimation of the CO2 flux from all of these peatlands, it is important to develop remote
sensing-based methods for upscaling their CO2 fluxes. The estimation of peatland carbon
fluxes with optical remote sensing presents a series of unique challenges due to several
characteristic features of peatlands, such as the high proportion of non-vascular plants,
high water content, and the effects of microtopographic variations [7]. As a result of
their heterogeneity, carbon fluxes may vary widely between peatlands [8,9] and within
peatlands [10,11].

Unlike CO2 concentration, CO2 fluxes are not directly detectable by satellites, and
hence remote-sensing-derived estimates rely on the relationship between the fluxes and
remotely sensed environmental variables. A widely used method to estimate GPP is the
light use efficiency (LUE) model by Monteith [12], where GPP is the product of the to-
tal photosynthetically active radiation (PAR) incident on the vegetation, the fraction of
photosynthetically active radiation absorbed by vegetation (fAPAR), and the conversion
efficiency of the absorbed energy (ε). Several studies have shown that fAPAR is linearly or
near-linearly correlated with spectral vegetation indices like the Normalized Difference
Vegetation Index (NDVI) or the Enhanced Vegetation Index (EVI), and therefore a vegeta-
tion index often provides a proxy for fAPAR. Although NDVI is widely used in remote
sensing-based ecosystem studies, EVI is less sensitive to perturbing factors like atmospheric
effects (water vapor and aerosols) and soil reflectance, and more sensitive to variations in
vegetation structure [13]. The two-band EVI (EVI2) has been developed to provide similar
information as EVI, but it only uses the red and the near infrared (NIR) bands, whereas
EVI also uses the blue band [14]. Despite the differences between the spectral indices, both
NDVI and EVI have been successfully used to estimate GPP in peatland ecosystems [15,16].

To obtain the full CO2 balance of an ecosystem, both GPP and ER need to be es-
timated, but as Lees et al. [7] highlight, remote sensing-derived peatland studies have
mainly focused on estimating GPP with less consideration of ER. The key challenges are to
estimate heterotrophic respiration with high accuracy using remote sensing data [17] and
to explain the variability in ER across ecosystems [18]. Despite the challenges, ER has been
successfully modelled using satellite land surface temperature (LST) [16,19], and some
studies have also included vegetation productivity and soil moisture to improve the ER
estimates [18,20–22].

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument mounted
on NASA’s Terra and Aqua satellites is widely used to monitor vegetation dynamics, land
cover changes, and LST at local and global scales, as it provides both optical and thermal
data at a high temporal resolution (1–2 days). However, the heterogeneous character
of peatland ecosystems presents a challenge for remote sensing using coarse-resolution
(250 m–1 km) sensors like MODIS [23,24]. The MODIS GPP/NPP (MOD17) product at
1 km spatial resolution provides GPP estimates in different biomes [25]. However, the
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MOD17 product lacks a peatland category in its land cover classification and an estimate
of surface moisture, which limits its applicability in peatlands.

The possibility to generate time-series data at high spatial (10–60 m) and temporal
resolution (2–3 days at mid-latitudes) using the new Sentinel-2A and 2B satellites with the
MultiSpectral Instrument (MSI) presents a new opportunity to map CO2 fluxes in these
landscapes. Nevertheless, even with the high frequency of data provided, the presence
of clouds and seasonal snow cover cause data gaps of varying length. The TIMESAT v.4
software package provides a flexible yet robust data processing method based on box
constrained double logistic functions combined with splines to gap-fill and smooth time
series data [26]. The availability of high spatial resolution satellite data also raises the
question of how to select a spatial sample of the data that is representative of the EC flux
footprint area. Accounting for the flux footprint may be particularly important in peatlands
due to their spatial heterogeneity, and can be achieved by using footprint models that can
help select the satellite pixels that fall within the EC footprint area [27–29].

The potential of remote sensing-based models to predict peatland carbon fluxes has
been demonstrated by Schubert et al. [16]. We will expand on this work by using newly
available high spatial resolution (10–20 m) optical Sentinel-2 MSI data at five peatland
sites across Sweden and Finland, state-of-the-art time-series processing, and footprint
modeling to characterize the source area of the CO2 fluxes. Although other carbon fluxes,
such as methane (CH4) emissions or dissolved carbon exported by water, also play an
important role in peatlands, this study focuses on CO2 fluxes, as these are typically the
largest component of carbon exchange in peatlands at annual timescales [5,30].

The aim of this paper is to investigate the feasibility of developing a simple model
based on remote sensing data to estimate the CO2 balance (NEE) and its component fluxes
(GPP and ER) across different peatlands types at northern latitudes, which could be used for
upscaling CO2 fluxes across northern boreal peatlands. As part of this aim, we investigate
a) with what accuracy we can model the NEE flux and its components using a single
parameter set for our five sites, compared to using individual parameter sets for each site,
and b) with what accuracy directly modeled NEE differs from the sum of modelled GPP
and ER.

2. Materials and Methods
2.1. Study Sites

The study includes five Nordic peatland sites located in Sweden and Finland: Abisko-
Stordalen, Degerö, Mycklemossen, Siikaneva, and Lompolojänkkä (Figure 1, Table 1).
Mycklemossen is part of the SITES (Swedish Infrastructure for Ecosystem Science) in-
frastructure, whereas the other sites belong to the ICOS (Integrated Carbon Observation
System) infrastructure. The sites were selected to cover peatlands exposed to different
climatic conditions (hemi-boreal, boreal, and subarctic), at northern latitudes from 58◦N to
68◦N. Four of the sites are fens, and one, Abisko-Stordalen, is classified as a bog, although
it also contains areas of fen. The study period spanned between 2017 and 2019, though
data availability varied among the sites. Further information on each site can be found
in Table 1.



Remote Sens. 2021, 13, 818 4 of 23

Table 1. The study sites, their characteristics, and references for additional site descriptions. Temperature and annual precipitation values are 1981–2010 averages.

Site Name and
Infrastructure Location Peatland Type Vegetation Cover Annual Precipitation

and Air Temperature Data Years Reference

Abisko-Stordalen
(SE-Sto)

ICOS
68.356◦N, 19.045◦E Sub-arctic

ombrotrophic bog

Carex rostrata, Betula nana,
Eriophorium angustifolium, Sphanum
fuscum, Empetrum hermaphroditum

332 mm
–0.1 ◦C 2017–2019 web-

site 1

Lompolojänkkä
(FI-Lom)

ICOS
67.997◦N, 24.209◦E Boreal medium rich fen

Carex rostrata, Menyanthes trifoliata,
Betula nana, Salix lapponum,

Sphagnum angustifolium, S. riparium,
S. fallax

484 mm
–1.4 ◦C 2017–2018 [31,32]

Degerö
(SE-Deg)

ICOS
64.182◦N, 19.557◦E Boreal

oligotrophic fen

Sphagnum balticum, S. Lindbergii, S.
majus, Eriophorum vaginatum,

Vaccinium oxycoccos L., Andromeda
polifolia, Trichophorum caespitosum

613 mm
1.9 ◦C 2017–2019 [33]

Siikaneva
(FI-Sii)
ICOS

61.833◦N, 24.193◦E Boreal
oligotrophic fen

Carex chordorrhiza, C. Rostrata,
Sphagnum papillosum, S.

magellanicum, S. balticum, Salix
phylicifolia, Betula nana

703 mm
3.5 ◦C 2017–2019 [5,34]

Mycklemossen
(SE-Myc)

SITES
58.365◦N, 12.169◦E Hemi-boreal

oligotrophic fen

Sphagnum rubellum L., Sphagnum
fallax L., Sphagnum austinii L.,
Eriophorum vaginatum, Calluna

vulgaris, Erica tetralix, Pinus
sylvestris

803 mm
6.8 ◦C 2017–2018 website 2

1https://www.icos-sweden.se/abisko-stordalen, accessed on 24 August 2020. 2 https://www.fieldsites.se/en-GB/research-stations/skogaryd-32652394, accessed on 26 August 2020.

https://www.icos-sweden.se/abisko-stordalen
https://www.fieldsites.se/en-GB/research-stations/skogaryd-32652394
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Figure 1. Locations of the peatland EC flux measurement sites.

2.2. Eddy Covariance Flux Data

The eddy covariance (EC) measurement system at Lompolojänkkä included a USA-1
three-dimensional sonic anemometer (METEK GmbH, Elmshorn, Germany) and a closed-
path LI-7000 CO2/H2O infrared gas analyzer (LI-COR, Inc., Lincoln, NE, USA). At Si-
ikaneva and Mycklemossen a USA-1 anemometer was used with an LI-7200 (LI-COR
Inc., USA) gas analyzer. At Degerö, a 1012R3 Solent (Gill Instruments, Lymington, UK)
anemometer was used with an IRGA LI-6262 (LI-COR Inc., USA) gas analyzer and the
Abisko-Stordalen site used a uSonic-3 Class A (METEK GmbH, Germany) anemometer
with an LI-7200 gas analyzer.

From the high frequency (10 Hz) EC data, 30-min CO2 fluxes were derived taking
into account the corrections following [35]. At the ICOS Sweden sites, the open source
EddyPro® Eddy Covariance Processing Software, version 6.0 (LI-COR Biosciences, Lincoln,
NE, USA), was used following the ICOS protocol for data processing [36,37]. The processing
procedures at Lompolojänkkä and Siikaneva have been presented in Aurela et al. [31] and
Korrensalo et al. [10], respectively. More details on the data processing at Mycklemossen
are given in the Supplementary Materials. The processed EC fluxes were partitioned into
GPP and ER and gap-filled using standard methods with an exponential temperature
response for respiration [38] and a saturating light response for GPP [39].

Daily averages of the fluxes were calculated from the gap-filled 30-min CO2 flux
data acquired from the sites and the time series were smoothed using a spline function in
TIMESAT (see Table S1 for the spline parameters). We applied the same spline parameters
as used for the LST data (see Section 2.3) to reduce the high-frequency (daily) variations
in the flux data that could not be captured by the remote-sensing data due to its coarser
temporal resolution. The smoothing of the CO2 flux data did not have a substantial effect
on the seasonal shape of the fluxes or the annual NEE balance (see Section 3.3).
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2.3. Remote Sensing Data

The models to estimate GPP, ER, and NEE were driven by vegetation indices based on
Sentinel-2-retrieved data along with LST data from MODIS.

Sentinel-2 MSI images covering an area of 100 by 100 km at each site from 2017–2019
were downloaded from the European Space Agency (ESA) Copernicus Sentinels Scientific
Data Hub. The Sen2Cor processor (version 2.8.0) was used to perform atmospheric cor-
rections and obtain land surface reflectance and scene classification [40]. The vegetation
index EVI2 [14], with a spatial resolution of 10 m, was calculated using red (RED) and
near-infrared (NIR) reflectances:

EVI2 = 2.5
NIR − RED

NIR + 2.4RED + 1
. (1)

A vegetation index related to water content, the Normalized Difference Water Index
(NDWI) [41], was calculated using 20 m resolution NIR and short-wave infrared (SWIR) bands:

NDWI =
NIR − SWIR
NIR + SWIR

. (2)

Both data sets were gap-filled and smoothed pixel-wise using a spline function in
TIMESAT to produce daily values (Table S1).

In order to select the NDWI and EVI2 pixels that fell within the flux source area,
the EC flux footprint was estimated at each site with the Flux Footprint Prediction (FFP)
model [28]. The model was driven by 30-min micrometeorological data (collected as part
of the EC measurements, see Section 2.2) to produce daily footprint climatologies. The
footprint climatologies were used to calculate weighted daily means of the EVI2 and NDWI
within 80% of the footprint area. Furthermore, the time-series of the mean daily EVI2 and
NDWI were both scaled so that the index value was 0 when GPP was 0. This procedure
enabled the combination and comparison of data from all the study sites, as the base values
of the indices were usually not equal to zero and varied from site to site.

As NDWI expresses the effect of soil hydrology on the vegetation, NDWI was used to
calculate a water scalar (Ws), following Xiao et al. [42]. The Ws represented the variations
of moisture conditions interannually and between the sites. Other scalars that were tested
are presented in Table S2. A simple version of the water scalar by Xiao et al. [43] was
selected for the further analysis:

Ws = 1 + NDWImax, (3)

where NDWImax is the 99th percentile of NDWI during the growing season. During the
dormant season, Ws was set to 1. The growing season was defined for each site and year
based on when the daily mean air temperature (Tair) exceeded +5 ◦C for seven consecutive
days [9].

The LST data was acquired from the MODIS instruments mounted on the Terra
and Aqua satellites. The MODIS LST products (MOD11A1, MYD11A1) include daily
daytime and nighttime LST at 1 km spatial resolution, providing a maximum of four LST
measurements per day. LST data were smoothed and gap-filled in the same way as the flux
data and spectral indices using TIMESAT (Table S1). Due to the coarse resolution of the
MODIS data, the footprint model was not used with these data, but we extracted data from
one pixel where the EC tower and the peak of the flux footprint was located at each site.
Daytime LST was used in the rest of the analysis due to the higher number of high quality
images and a better fit with ground LST measurements that were available from some of
the sites (R2 = 0.85, RMSE = 5.3 ◦C for Degerö 2017–2019 and R2 = 0.75, RMSE = 6.1 ◦C for
Abisko-Stordalen 2017–2019).
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2.4. Empirical Regression Models for GPP, ER, and NEE

The GPP model structure was based on previous work by Schubert et al. (2010), where
EVI, LST, and photosynthetic photon flux density (PPFD) were used as regression model
inputs. In this study, we investigated how satellite-derived EVI2, LST, and Ws along with
site-measured environmental variables (Tair, PPFD, water table depth (WTD) and annual
precipitation) were related with GPP time-series data. Based on the goodness-of-fit of the
regressions, EVI2, Ws, and daytime LST were chosen as input variables into the GPP model.
The derived linear regression model for estimating GPP at all the sites simultaneously can
be described as:

GPP = a × EVI2 × Ws × LST. (4)

Because of the abovementioned scaling of EVI2 and NDWI, it was possible to force
the regression line through the origin, which is a physically reasonable way to estimate
GPP. Equation (4) can be regarded as an empirical variation of the LUE model, where the
parameter a, Ws, and LST jointly function as a proxy for PAR and the light use efficiency
coefficient. Since photosynthesis does not take place in cold temperatures, only data when
LST was above 0 ◦C were used to determine the model parameter a.

Ecosystem respiration (ER) was also modelled using an empirical model. Three existing
models were tested: Lloyd and Taylor [44] (Equation (5)), Heskel et al. [45] (Equation (6)), and
Gao et al. [46] (Equation (7)), who added the dependence on GPP to Lloyd and Taylor’s model:

ER = Rre f e
E0(

1
Tre f −T0

− 1
T+273.15−T0

)
, (5)

lnER = a + bT + cT2, (6)

ER = a × GPP + Rre f × e
E0(

1
Tre f −T0

− 1
T+273.15−T0

)
, (7)

where Tref = reference temperature (set to 10 ◦C); T = daytime LST; T0 = –46.02 ◦C (value taken
from Lloyd and Taylor [44]); GPP = modelled GPP; and Rref, E0, a, b, and c are parameters to be
estimated. To model ER, we started by testing the three models (Equations (5)–(7)) at each of the
sites separately, for all available years, in order to find the best model (see results in Table S3).
We also tested multiplying each model by an EVI2 scalar (formulated in the same way as Ws) or
the Ws scalar (Table S3). The Gao et al. [46] model (Equation (7)) provided the best fit. Including
vegetation productivity in the ER model improved the fit, because it helped better capture the
magnitude and timing of the peak growing season ER. We tested modelling ER separately
during the growing and dormant seasons, but it yielded no or only minor improvements in the
goodness-of-fit.

Since Equation (7) is sensitive to possible errors in the modelled GPP as an input, EVI2
was used as a proxy for modelled GPP to reduce the uncertainties in the modelled ER
(Equation (8)). Equation (8) was the ER model used in the rest of the analysis:

ER = a × EVI2 + Rre f × e
E0(

1
Tre f −T0

− 1
T+273.15−T0

)
. (8)

We compared two methods for modelling NEE, where NEE = ER - GPP. We followed
the sign convention that NEE is negative when the ecosystem is a carbon sink (GPP > ER)
and NEE is positive when the ecosystem is a carbon source (ER > GPP). NEE was estimated
1) by subtracting the modelled GPP (Equation (4)) from the modelled ER (Equations (2)
and (8)) by fitting a non-linear regression model that included the GPP and ER components
(Equation (9)) to the EC NEE measurements:

NEE = b1 × EVI2 + Rre f × e
E0(

1
Tre f −T0

− 1
T+273.15−T0

)
− b2 × EVI2 × Ws × LST. (9)

In addition to these two NEE models, we also tested a third, purely empirical, NEE
model based on multiple linear regression. EVI2, NDWI, LST, PPFD, WTD, and Ws were
fitted as predictor variables against EC NEE measurements. However, this approach was
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not selected for further analysis, because PPFD and WTD were not available at all sites and
years, and it did not provide a consistent improvement compared to the non-linear NEE
model (Equation (9)). See Supplementary Materials for more details.

In the first stage of the analysis, the free parameters for the GPP, ER, and NEE models
were estimated separately for each site using all the available years of flux data (Table S4), and
in the second stage, the parameters were estimated for all the sites together (Tables S5–S7). To
obtain one parameter set for all the sites, leave-one-out cross-validation (LOOCV) was used, i.e.,
the models were fitted using data from all the sites except for one site-year, which was used to
validate the fitted models. After all the LOOCV runs, the mean model parameter values were
applied to all the sites.

3. Results
3.1. Relationships between GPP, ER and Remote Sensing Variables

Daily mean EVI2 from Sentinel-2 showed a clear relationship with flux tower derived
GPP, R2 = 0.61 for all sites and years together (Figure 2a). Stronger relationships were found
when studying each site and year separately, and differences in the relationship between
GPP and EVI2 during the spring and autumn were also clearer at some sites (Figure S1a).
These results indicate that it would be possible to use different regression models for the
spring green-up and the autumn senescence, as the relationships seemed to be logarithmic
and exponential, respectively, instead of linear. However, since it was not possible to
define general functional relationships that could be used across all sites, we used linear
relationships between EVI2 and GPP. In addition to EVI2, we used LST and Ws as proxies
for the environmental variables controlling GPP, reducing the tendency to underestimate
high GPP and increasing the strength of the relationship (R2 = 0.72, Figure 2b).
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Figure 2. (a) Linear regression for EC-derived mean daily GPP against daily EVI2; (b) linear regression for EC-derived
mean daily GPP against the product of EVI2, moisture scalar Ws, and daytime LST. All the sites and available years
were included.

There was also a strong exponential relationship between ER and LST, R2 = 0.63 at all
sites, and years together (Figure 3). Similarly to the relationship between EVI2 and GPP,
some sites showed clear seasonal variation in the ER–LST relationship between the spring
and autumn (Figure S1b).
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Figure 3. Exponential regression between MODIS daytime LST and EC-derived ER at all the sites
and years.

3.2. GPP and ER Models

For GPP, the LOOCV parameterized linear regression model (Equation (4)), with the
average coefficient a = 0.70 (Table S5), resulted in high agreement between modelled and EC-
derived GPP at all the sites (R2 = 0.54–0.78, RMSE = 0.42–0.98 µmol m−2 s−1, Table 2). Based on
the normalized root mean square error (NRMSE), the best fit was found at Abisko-Stordalen,
where the error was 10% of the range of the EC-derived GPP, whereas the worst fit was found
at Mycklemossen (NRMSE = 20%).

Table 2. Goodness-of-fit statistics for the predicted GPP, ER, and NEE, using the LOOCV parameter-
ized models, for all available site years. NRMSE is RMSE normalized using the range (maximum–
minimum) of the EC-derived flux.

Site Flux R2 RMSE (µmol m−2 s−1) NRMSE (%)

SE-Sto

GPP 0.76 0.42 10
ER 0.23 0.41 19

NEE (Equation (9)) 0.59 0.26 10
NEE (ER–GPP) 0.16 0.37 15

FI-Lom

GPP 0.78 0.98 12
ER 0.68 0.62 14

NEE (Equation (9)) 0.57 0.79 12
NEE (ER–GPP) 0.59 0.77 12

SE-Deg

GPP 0.68 0.48 13
ER 0.56 0.41 16

NEE (Equation (9)) 0.34 0.31 11
NEE (ER–GPP) 0 0.50 18
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Table 2. Cont.

FI-Sii

GPP 0.73 0.59 15
ER 0.85 0.31 10

NEE (Equation (9)) 0.33 0.39 15
NEE (ER–GPP) 0 0.54 20

SE-Myc

GPP 0.54 0.93 20
ER 0.51 0.98 18

NEE (Equation (9)) 0 0.41 15
NEE (ER–GPP) 0 0.51 19

GPP 0.70 0.68 14
Average ER 0.56 0.54 15

NEE (Equation (9)) 0.34 0.43 13
NEE (ER–GPP) 0 0.54 17

For ER, the agreement between the LOOCV parameterized model fit (Equation (8), see
Table S6 for parameters) and the EC-derived ER differed between the sites more than the GPP
model fit: R2 varied between 0.23–0.85, and RMSE was between 0.31–0.98 µmol m−2 s−1 (Table 2).
The NRMSE of the ER model fit was similar to that of the GPP model, varying from 10% to
20%. The ER model performed best at Siikaneva, whereas the weakest relationships were found
at Abisko-Stordalen and Mycklemossen. Using site-specific parameters (Table S4), the model
NRMSE was reduced to between 7–12% of the flux range for both the GPP and ER estim-
ates (Table 3).

Table 3. Goodness-of-fit statistics for the site-specific GPP, ER and NEE models, for all available site
years. NRMSE is RMSE normalized using the range (maximum–minimum) of the EC-derived flux.

Site Flux R2 RMSE (µmol m−2 s−1) NRMSE (%)

SE-Sto

GPP 0.85 0.33 8
ER 0.86 0.17 8

NEE (Equation (9)) 0.70 0.22 9
NEE (ER–GPP) 0.55 0.27 11

FI-Lom

GPP 0.89 0.69 8
ER 0.93 0.30 7

NEE (Equation (9)) 0.75 0.60 9
NEE (ER–GPP) 0.64 0.73 11

SE-Deg

GPP 0.69 0.47 12
ER 0.80 0.27 11

NEE (Equation (9)) 0.42 0.29 11
NEE (ER–GPP) 0.06 0.38 14

FI-Sii

GPP 0.88 0.39 10
ER 0.91 0.24 7

NEE (Equation (9)) 0.56 0.32 12
NEE (ER–GPP) 0.24 0.42 16

SE-Myc

GPP 0.82 0.58 12
ER 0.81 0.61 11

NEE (Equation (9)) 0.03 0.39 15
NEE (ER–GPP) 0 0.62 23

GPP 0.83 0.49 10
Average ER 0.86 0.32 9

NEE (Equation (9)) 0.49 0.37 11
NEE (ER–GPP) 0.01 0.48 15

The time-series of the modelled and EC-derived fluxes (Figure 4 for GPP, Figure 5 for
ER) show that the LOOCV parameterized models are able to capture the seasonal variation
of the fluxes. However, some noticeable under- and overestimations of GPP and ER occur
during the peak of the growing season. The LOOCV parameterized ER model also tended
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to underestimate the wintertime ER fluxes, especially at Lompolojänkkä and Mycklemossen
(Figure 5c,i). Using the models with site-specific parameters helped better capture the peak
of the fluxes, with less improvement in the general seasonal shape. The time-series of the
LOOCV parameterized modelled GPP for Mycklemossen and Lompolojänkkä show a delayed
start of the growing season compared to the EC-derived GPP (Figure 4c,i). Similar effects can
be observed at Abisko-Stordalen in 2019 and Degerö in 2017 (Figure 4a,e). As noted above,
the LOOCV parameterized GPP and ER models performed poorly at Mycklemossen, and
Figures 4i and 5i show that both fluxes were significantly underestimated at this site. Several
environmental variables related to GPP and ER were tested in order to find a scaling factor that
could help to improve the ability of the models to capture the growing season peak of the fluxes
(Table S2), but no strong correlations were found. The NDWI-based water scalar (Ws) was
selected for GPP modelling, as it improved the agreement between modelled and EC-derived
GPP at Lompolojänkkä and Mycklemossen. The influence of this variable was small at the
other sites, and it did not improve the accuracy of modelled ER (Table S3).
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EC-derived GPP versus modelled remote sensing GPP. Black solid line is the 1:1 line, black dashed
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3.3. NEE Models 
Out of the two NEE models, the non-linear regression model (Equation (9)) generally 

performed better than calculating the difference of modelled GPP (Equation (4)) and mod-
elled ER (Equation (8)) when compared against EC-measured NEE (see Table 2 for 
LOOCV parameterized model prediction estimates and Table 3 for site-specific estimates). 
The site-specific model parameters (Table S4) gave higher agreement than the average 
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the non-linear regression NEE model with site-specific parameters gave similar agree-
ment to that of GPP and ER, R2 > 0.70, and NRMSE around 9% of the range of measured 
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Figure 5. (a,c,e,g,i) Daily time series of EC-derived ER (EC), modelled ER using the LOOCV
parametrization (RS joint) and modelled ER with the site-specific parameters (RS site); (b,d,f,h,j)
EC-derived ER versus modelled remote sensing ER. Black solid line is the 1:1 line, black dashed lines
are the 1:2 and 2:1 lines.

3.3. NEE Models

Out of the two NEE models, the non-linear regression model (Equation (9)) generally
performed better than calculating the difference of modelled GPP (Equation (4)) and
modelled ER (Equation (8)) when compared against EC-measured NEE (see Table 2 for
LOOCV parameterized model prediction estimates and Table 3 for site-specific estimates).
The site-specific model parameters (Table S4) gave higher agreement than the average
parameters from the LOOCV (Table S7). Overall, the performance of the NEE models was
weaker than the GPP and ER models, although at Abisko-Stordalen and Lompolojänkkä
the non-linear regression NEE model with site-specific parameters gave similar agreement
to that of GPP and ER, R2 > 0.70, and NRMSE around 9% of the range of measured
NEE (Table 3).
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The time-series of modelled and measured NEE show that modelled NEE corresponds
fairly well to measured NEE, and the seasonal shape of NEE was captured at most of the
sites and years (Figure 6). However, the models have difficulties capturing the growing
season peak, as seen for instance at Abisko-Stordalen in 2017 (Figure 6a), and the periods of
positive NEE (when ER is higher than GPP) at the start and end of the growing season. The
latter can be seen clearly at Lompolojänkkä in both years (Figure 6c). The poor performance
of the GPP and ER models at Mycklemossen are also shown in the NEE time-series, where
the modelled NEE corresponds weakly to the measured NEE (Figure 6i).
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Stordalen in 2017 underestimated the NEE growing season peak equally (Figure 6a), but 
result in very different annual accumulation of CO2. The model with the site-specific pa-
rameters suggests that the site is a CO2 sink, whilst the model with the average parameters 
suggests that the CO2 budget is close to zero (Figure 7). Table S8 shows that the modelled 
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the measured NEE) at Abisko-Stordalen 2017 (site-specific estimate), Abisko-Stordalen 
2018 (predicted with joint parameters), and Siikaneva 2017 (site-specific estimate). The 
linear regression model with site-specific parameters performed slightly better than the 
model with jointly estimated parameters at eight out of 13 site-years. 

Figure 6. (a,c,e,g,i) Daily time series of EC-derived NEE (EC), modelled NEE using the LOOCV
parametrization (RS joint) and modelled NEE with the site-specific parameters (RS site); (b,d,f,h,j)
EC-derived NEE versus modelled remote sensing NEE. Black solid line is the 1:1 line, black dashed
lines are the 1:2 and 2:1 lines.

The comparison of the annual cumulative modelled NEE and measured NEE (Figure 7)
emphasizes the importance of accurate flux modelling, as small over- or underestimations, not
only during the peak growing season, but during the whole year, can result in a significant
difference in the annual CO2 budget. For example, the NEE models at Abisko-Stordalen in 2017
underestimated the NEE growing season peak equally (Figure 6a), but result in very different
annual accumulation of CO2. The model with the site-specific parameters suggests that the site
is a CO2 sink, whilst the model with the average parameters suggests that the CO2 budget is
close to zero (Figure 7). Table S8 shows that the modelled annual NEE differed largely from the
measured annual NEE at most of the sites and years. The model was able to estimate the annual
NEE accurately (maximum 3% difference to the measured NEE) at Abisko-Stordalen 2017 (site-
specific estimate), Abisko-Stordalen 2018 (predicted with joint parameters), and Siikaneva 2017
(site-specific estimate). The linear regression model with site-specific parameters performed
slightly better than the model with jointly estimated parameters at eight out of 13 site-years.
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3.4. Upscaling GPP to the Peatland Scale  
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olution satellite data for upscaling, we applied the GPP model (Section 3.2, Equation (4)) 
with the average parameters from the LOOCV (Table S5) to Sentinel-2 data for the Lom-
polojänkkä site (Figure 8). We selected Sentinel-2 pixels for upscaling based on the wet-
land land cover classification in Finland (SYKE, 2018), so that only pixels in the class “open 
peatbog” were used. Figure 8 shows the estimated average GPP during the growing sea-
son in 2017 and 2018. GPP varies from 1 up to 5 µmol m-2 s-1 within the flux footprint area, 
and similar spatial variation can be seen also beyond the flux footprints in both years. 

 
Figure 8. Mean growing season GPP modelled using Equation (4) with LOOCV-parameterization 
and Sentinel-2 data as input during the growing season in 2017 (top left) and 2018 (top right) at the 

Figure 7. Time series of cumulative NEE for Abisko-Stordalen in 2017, 2018, and 2019 for the original
EC measured NEE (EC orig), the TIMESAT smoothed NEE (EC smooth), the non-linear regression
model of NEE with joint parameters (RS joint), and the non-linear regression model of NEE with
site-specific parameters (RS site). There is nearly complete correspondence between the original and
the spline-smoothed EC data.

3.4. Upscaling GPP to the Peatland Scale

In order to demonstrate the applicability of the simple regression model with high reso-
lution satellite data for upscaling, we applied the GPP model (Section 3.2, Equation (4)) with
the average parameters from the LOOCV (Table S5) to Sentinel-2 data for the Lompolojänkkä
site (Figure 8). We selected Sentinel-2 pixels for upscaling based on the wetland land cover
classification in Finland (SYKE, 2018), so that only pixels in the class “open peatbog” were used.
Figure 8 shows the estimated average GPP during the growing season in 2017 and 2018. GPP
varies from 1 up to 5 µmol m-2 s-1 within the flux footprint area, and similar spatial variation
can be seen also beyond the flux footprints in both years.
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Figure 8. Mean growing season GPP modelled using Equation (4) with LOOCV-parameterization
and Sentinel-2 data as input during the growing season in 2017 (top left) and 2018 (top right) at the
Lompolojänkkä site. The black lines show 80% of the annual EC flux footprint climatologies. The
background image is an aerial photograph recorded in 2018 by the National Land Survey of Finland.
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4. Discussion

The results of this study showed that purely remote sensing (RS) derived data can
be used in regression models to estimate seasonal CO2 uptake and release from northern
peatlands. The product of EVI2, LST, and an NDWI-based water scalar (Ws) explained
a large proportion of the variability in GPP at all the sites. In addition, ER was strongly
related to daytime LST, and based on these findings, NEE could be estimated from LST
in combination with EVI2 and Ws. However, the accuracy of the estimated fluxes was
inconsistent across the sites and years. It should be noted that the EC-derived fluxes vary
at a high frequency that satellite remote sensing data cannot reproduce. Smoothing the
time-series of EC-derived NEE, ER and GPP made them more comparable to the remote
sensing data. Nevertheless, the RS models rely on LST to capture the daily variations in the
fluxes, because LST is the only remote sensing dataset that varies significantly at a daily
scale, whereas EVI2 and NDWI vary more slowly over the growing season. This means
that short-term variability can only be captured at a coarse spatial scale.

Some sites showed clear variations in the ER-LST and the GPP-EVI2 relationships
between the spring green-up phase and the senescence phase, suggesting that each phase
should be modelled separately. However, during initial testing, we found that separating
the CO2 fluxes between different seasonal stages was not straightforward. A simple split of
a flux time series between the green up phase and the senescence phase can cause problems
with modelling the peak season accurately, and therefore we decided to model the whole
year at once. Further analyses may reveal solutions to this challenge.

The linear regression model for GPP that we developed is an empirical variation of
the formal LUE model by Monteith [12]. LUE models usually include PAR. In this study,
PAR was not included in the GPP model, as it showed very weak relationships with daily
GPP at all the sites. Instead, the regression parameter, the water scalar Ws, and LST jointly
provided a proxy for PAR and the LUE term, but these factors might not be sufficient
to explain all spatial and temporal variations of the photosynthetic efficiency within a
peatland ecosystem. Alternative ways to estimate the LUE coefficient using remote sensing
methods, such as the photochemical reflectance index (PRI) [47], may solve this issue [48].
Unfortunately, the wavelength bands to calculate PRI are not available from Sentinel-2.
Another remote sensing-derived variable that can be used to estimate GPP is solar induced
fluorescence (SIF) [49], which will be operational at the ecosystem scale in future from the
forthcoming Fluorescence Explorer (FLEX) satellite mission by ESA.

LST explained ER well at all sites. Including productivity in the ER model (using EVI2
or modelled GPP) improved the model fit compared to the original Lloyd and Taylor [44]
model. Gao et al. [46] argue that the Lloyd and Taylor equation represents heterotrophic
respiration, and including GPP is a way of including information related to autotrophic
respiration in the estimate. It has been shown that ER is tightly linked to vegetation
productivity [50–52], and a productivity or greenness index has also been used in remote
sensing models of ER before [18]. Our results demonstrate that using EVI2 instead of
modelled GPP (as proposed by Gao et al. [46]) gives similar model accuracy whilst also
making the model simpler and more robust. However, the LST and EVI2 based model
might be less suitable to estimate ER in winter, since low soil surface temperatures and
vegetation productivity predict low fluxes, while higher temperatures in deeper layers of
peat enable decomposition to continue [53]. Wintertime ER can be an important part of
the annual CO2 balance in northern peatlands that is possibly underestimated by surface
temperature driven models [54]. Separate ER model fits for the whole dormant season did
not improve ER estimates, but future work could investigate this using separate model fits
specifically during periods with snow cover (similar to Jägermeyr et al. [18]) or using LST
as input to model peat temperature during the winter.

Of the two types of NEE models tested, the non-linear regression model performed
generally better than the model that was calculated by subtracting GPP from ER. This
might be due to error propagation [16]. It is challenging to model NEE directly, as it is the
difference between two large fluxes driven by separate processes with different seasonal
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dynamics. Although the largest under- or overestimations were found during the peak
growing season, our results indicate that small differences during the whole year greatly
influence the annual NEE as well.

The modelling results showed that site-specific parameterization usually gave higher
agreement with the EC fluxes than the average parameters from the LOOCV runs. However,
for upscaling purposes, an average parameter set is more applicable than parameters that
are strictly associated with one site. To reduce the importance of the regression parameters,
other variables, that are able to explain the differences between the years within a site and
also between the sites, could be included in the models. We tested several variables to scale
GPP and ER in order to capture differences in the growing season fluxes between the sites,
but none of them were strongly related to peak GPP or ER.

The NDWI-based water scalar was selected for GPP modelling, as in general, WTD is
one of the most important variables regulating the function of peatland ecosystems [55].
Measures of soil moisture availability or precipitation have also been used previously to
model ER [21], but our initial tests found that including the NDWI or Ws in the ER model
did not improve the fit. NDWI is a spectral index expressing the influence of soil moisture
on the vegetation rather than an actual soil moisture index, and it does not fully capture the
seasonal variations in water table depth within a site (see Figure S2) or differences between
sites (Table S2). Further work is needed to find remote sensing variables better able to
capture variations in water table depth or soil moisture at peatland sites; for this purpose,
hyperspectral and synthetic aperture radar data have shown promising results [56,57].
Alternatively, the CO2 flux modelling could be combined with hydrological modelling to
further investigate how, for example, water table depth changes or snow melt timing affect
the fluxes. For instance, Huang et al. [58] assimilated regional soil moisture network data,
remote sensing data, and high-resolution land surface parameters to develop an empirical
soil moisture model.

Our modelling approach investigated to what extent a single set of parameters is
sufficient to upscale the CO2 fluxes from a variety of northern peatlands. Future work
could examine which improvements may be gained by modelling the fluxes of different
peatland types (i.e., bogs and fens) separately. For example, our ER model with average
parameters performed worst at Abisko-Stordalen, the only ombrotrophic bog in our study.
Similarly, Kross et al. [15] found differences in the relationships between remote sensing
vegetation indices and peatland CO2 fluxes depending on the presence of trees and peatland
type. Bogs and fens have also been shown to respond differently to changes in water table
and air temperature [59,60] due to their contrasting vegetation assemblages.

Improving the GPP and ER estimations separately would also improve the NEE
model estimation. An alternative approach to estimate NEE could be a multivariate
linear regression model including all remote sensing and environmental variables that are
available at a site. This method lacks the more mechanistic scheme that our NEE model
(Equation (9)) has, but the advantage is the high number of free parameters that makes
the model adjustable. This method could be used to estimate NEE at an individual site
that differs from other sites in its characteristics, e.g., at Mycklemossen, which is more
light-dominated than the other sites in our study (Figure S3).

During the summer of 2018, northwestern Europe experienced a severe drought,
which increased air temperatures, lowered WTD, and thus reduced the CO2 uptake at
several northern peatlands [61]. Rinne et al. [61] found that the 2018 drought did not affect
all peatlands equally, as local hydrological features can make a peatland less sensitive to
climatic variations, as was the case at Lompolojänkkä. Similarly, compared to 2017 and/or
2019, the EC-derived NEE we present was lower in 2018 at Abisko-Stordalen, Degerö and
Siikaneva, but not at Lompolojänkkä. The decrease in NEE at these sites mainly originated
from reduced GPP, although increased ER in 2018 was observed at Siikaneva. Lower GPP
and ER were found at Degerö in 2019, which was also a dry year at that site. However, the
dry conditions in 2019 did not influence the spectral properties of the vegetation, as the
EVI2 in 2019 is at the same level as in 2017, which causes the mismatch between modelled
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and measured GPP. It is also possible the 2018 drought has a legacy effect in 2019, i.e., the
vegetation did not fully recover from the drought in the previous year, and therefore both
GPP and ER were lowin 2019 at Degerö. Mycklemossen experienced droughts both in 2017
and 2018 [61], and was also the southern-most (i.e., warmest and most light-dominated)
site in the study, which may partly explain why our models with the average parameters
performed poorest here. Overall, with only two or three years of data, it is difficult to
draw strong conclusions about the temporal variations of the fluxes, especially if a severe
drought has been experienced at a site.

Despite the limitations discussed above, our findings suggest that using satellite data
in regression models is a simple yet powerful tool for modelling and upscaling GPP and ER.
Due to its high spatial resolution, Sentinel-2 data has great potential to upscale GPP from
the flux footprint to larger areas. The main input of the ER model, MODIS LST, has a coarse
spatial resolution (1 km), which makes it less feasible to study heterogeneous ecosystems
like peatlands. However, in this study, the MODIS LST was chosen over the 30 m resolution
thermal Landsat data because of the higher temporal resolution and because it is a readily
available LST product. To improve the spatial resolution of MODIS data, an appropriate
downscaling procedure from MODIS reflectance to the Landsat 30 m resolution could be
used [62]. Preserving the high temporal resolution while increasing the spatial resolution
would enable the mapping of the spatial variation of LST within a peatland and within the
flux tower footprint and may lead to improved ER and GPP models.

5. Conclusions

In this study, we demonstrated that regression models driven by remote sensing-
derived data can be used to estimate CO2 fluxes in northern peatlands (Abisko-Stordalen,
68◦N; Lompolojänkkä, 68◦N; Degerö, 64◦N; Siikaneva, 62◦N; Mycklemossen, 58◦N) at
relatively high accuracy. A strong relationship was found between GPP and the product of
Sentinel-2 EVI2, Sentinel-2-derived water scalar (Ws), and daytime LST from MODIS. ER
was strongly related to MODIS LST, and including EVI2 as a proxy for GPP improved the
agreement with eddy covariance-derived ER. NEE was successfully explained by MODIS
LST in combination with Sentinel-2 EVI2 and Ws at Abisko-Stordalen and Lompolojänkkä.
At other sites, however, the relationship between modelled NEE and EC-measured NEE
was weak. The regression models performed better when the model parameters were
estimated separately for each site in comparison to the average parameters acquired with a
Leave-One-Out-Cross-Validation (LOOCV) procedure, but the LOOCV parameterization is
more appropriate for upscaling the CO2 fluxes to a regional scale.

We conclude that there is great potential to upscale GPP and ER from a site to the
regional level using solely remote sensing-derived data. With high-resolution Sentinel-2
data, we were able to take advantage of a flux footprint model that maps the flux source
area and thus minimize the uncertainty from mismatches in the scale of the EC and remote
sensing data. It also enabled us to map the spatial variability of GPP within a peatland. In
addition, there is an opportunity to develop high spatial and temporal resolution models of
ER by downscaling coarse MODIS data to finer resolution or using the forthcoming Landsat
Collection 2 LST product. Overall, modelling peatland NEE at regional scale still poses
a challenge, and in order to fully utilize the potential of remote sensing data to upscale
peatland CO2 fluxes, further studies would be needed to examine the yet unexplained
spatial and temporal variation of these fluxes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/4/818/s1: Section S1: Eddy covariance flux data processing, Section S2: The multivariate
linear regression model for NEE, Table S1: TIMESAT spline parameters, Table S2: Coefficient of
determination between the EC-derived GPP and ER, environmental data, and remote sensing-derived
indices, Table S3: R2 and NRMSE of ER models at each site, Table S4: Site-specific model parameters,
Table S5: The prediction performance of the GPP model during the leave-one-out-cross-validation
runs, Table S6: The prediction performance of the ER model during the leave-one-out-cross-validation
runs, Table S7: The prediction performance of the NEE model during the leave-one-out-cross-
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validation runs, Figure S1: Example of the relationship between EVI2 and observed GPP and LST
and observed ER, Table S8: Annual cumulative NEE, Figure S2: Example of NDWI (Normalized
Difference Water Index) and water table depth time series at Degerö, Figure S3: Example of the linear
regression model for NEE at Mycklemossen.
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