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Abstract: Target detection on the sea-surface has always been a high-profile problem, and the
detection of weak targets is one of the most difficult problems and the key issue under this problem.
Traditional techniques, such as imaging, cannot effectively detect these types of targets, so researchers
choose to start by mining the characteristics of the received echoes and other aspects for target
detection. This paper proposes a false alarm rate (FAR) controllable deep forest model based on
six-dimensional feature space for efficient and accurate detection of weak targets on the sea-surface.
This is the first attempt at the deep forest model in this field. The validity of the model was verified on
IPIX data, and the detection probability was compared with other proposed methods. Under the same
FAR condition, the average detection accuracy rate of the proposed method could reach over 99.19%,
which is 9.96% better than the results of the current most advanced method (K-NN FAR-controlled
Detector). Experimental results show that multi-feature fusion and the use of a suitable detection
framework have a positive effect on the detection of weak targets on the sea-surface.

Keywords: weak target detection; time–frequency analysis; deep forest; false-alarm-rate; IPIX date

1. Introduction

Radar is an important tool for humans to explore the complex ocean. It plays an
important role that cannot be ignored in ranging, detection, and surveillance and is of great
significance in both military and civilian use. For example, navigation radar is often used
to determine the position of other ships or floating objects on the sea-surface to ensure
the safety of ships and avoid obstacles on the sea, etc [1]. Therefore, target detection
is one of the important tasks of radar, and the detection technology of low observable
targets in a complex environment has become a key constraint factor affecting radar
performance [2,3]. Due to the low speed or small targets floating on the sea surface, such
as buoys, iceberg debris, boats, floating objects, etc., which have the characteristics of small
radar cross-section and low glancing angle, they have become the focus and difficulty in
the target detection work of sea surface surveillance radar and ocean radar [4,5]. Although
cooperative targets, such as large ships, are now equipped with an automatic identification
system (AIS), which reduces the collision risk of cooperative ships, there is no guarantee
that small ships and non-cooperative targets are equipped with AIS systems. Therefore,
improving the detection capabilities of sea-surface surveillance radars and navigational
radars on sea targets, especially low observable targets, is the key to ensuring the safe
navigation of ships [6–8].

Since the continuous emergence of new types of targets and the iterative update of
radar systems, radar detection technology on sea targets is a long-term topic and enduring.
However, in view of the low observability of low-observable target itself and the need
to quickly determine the existence of targets in the detection area, it is impossible to use
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common methods, such as imaging, for fast and effective target detection, so it is often nec-
essary to use the characteristic difference between target echo signal and clutter echo signal
to achieve efficient and accurate detection [9]. The characteristics of sea clutter are highly
dependent on the sea state and the configuration of radar parameters. When the detection
environment changes, the previously extracted features often lose robustness. Therefore,
extracting robust features that adapt to changing environments from radar echoes is the
key to target detection. In the early days, researchers focused on the amplitude or power
characteristics of the echo. For instance, non-coherent statistical detection methods using
the amplitude or power of radar echo and coherent processing detection algorithms based
on echo complex data containing phase information and amplitude information.

A typical representative of non-coherent statistical detection methods is the constant
false alarm rate (CFAR) proposed by Dugundji and John et al. This is a method that can
automatically control the detector threshold. It enables the radar system to distinguish
between the signal and noise output by the receiver while maintaining a constant false
alarm probability whether the target signal exists [10–12]. On this basis, Steenson proposed
a cell-average constant false alarm rate (CA-CFAR) detector. This is the optimal CFAR
processor in a uniform background when the reference unit contains independent identi-
cally distributed (IID) observations controlled by exponential distribution [13,14]. In order
to overcome the poor detection effect of CA-CFAR under the background of nonuniform
noise, Hansen proposed the greatest of CFAR (GO-CFAR), using the greatest of the sums in
the leading and lagging windows to estimate the noise power to adjust the clutter transition
regional false alarm rate (FAR) [15]. However, GO-CFAR cannot distinguish targets that
are closer. When an interfering target in the reference window has the same intensity as
the main target, the detection probability of the detector will be significantly reduced [16].
Therefore, Trunk proposed the smallest of CFAR (SO-CFAR), which uses the minimum
sum of the leading and lagging windows to estimate the noise power [17]. However, when
the interfering target is in both leading and lagging windows, the detection performance
of SO-CFAR will be greatly reduced, and SO-CFAR cannot keep the FAR a constant at
the edge of clutter. The ordered statistic CFAR (OS-CFAR) detector proposed by Rohling
alleviates these problems to a certain extent [16,18,19].

In essence, the core idea of the non-coherent detection method is the competition
between the target energy and the surrounding clutter energy level, so it is simple to
implement, and most of it is used in the early non-coherent system radar. With the advent
of coherent radar, the received echo signal is a complex signal containing phase information
and amplitude information so that people can coherently process the complex data. The
typical one is the adaptive detection algorithm, which refers to a series of optimal or
near-optimal coherent detectors developed based on a specific statistical model of sea
clutter. In the case of small grazing angles, as the radar resolution increases, sea clutter
can be modeled as a complex Gaussian distribution model. Based on this model, Kelly
and Edward proposed the generalized likelihood ratio test [20], Fuhrmann and Daniel
devised an adaptive matched filter (AMF) [21]. However, when the radar resolution is
high, and the grazing angle is low, the Gaussian model is no longer applicable, and the
sea clutter is modeled as a compound Gaussian model. Based on this model, Conte et al.
proposed a normalized matched filter (NMF) detector [22], Richmond et al. proposed an
adaptive normalized matched filter (ANMF) detector [23]. In view of the fact that the above
methods are based on the spherical invariant random vector model and are suitable for
short coherent accumulation time, they are often used for the detection of larger targets,
such as surface ships and freighters, but when the target is small, or its speed is low, the
target is often submerged in sea clutter, so the detection performance for low-observable
targets on the sea surface is not very ideal.

In addition to coherent and incoherent statistical detection methods, there are also
detection methods based on nonlinear modeling of sea clutter, such as sea surface fractal
features detector. The fractal theory is a theory proposed by Mandelbrot in the 1970s to
represent complex graphics and complex processes. Fractals can describe phenomena or
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substances with a certain degree of self-similarity at different scales from macro to micro
in nature. The ocean surface is a complex dynamic rough surface of large-scale swells
modulating small-scale capillary waves, which has certain fractal characteristics.

In 1993, T. Lo and others of McMaster University applied fractal theory to target
detection under the background of sea clutter. By studying the measured data of sea clutter
and according to the different fractal characteristics of the sea clutter and the target, a
new target detection method was proposed, which breaks the limitation of the traditional
energy-only detection method [24]. Subsequently, many scholars have deeply studied
the difference of the fractal characteristics between sea clutter and the target echo and
developed a series of related theoretical methods. In 2006, Hu Jing et al. introduced
the multifractal theory based on structure–function. Through the analysis of 392 pieces
of the sea clutter measured data, it was proposed that sea clutter data have multifractal
characteristics in the time range of 0.01 s to several seconds, which can effectively detect
low-observable targets on the sea surface [25]. Xu et al. used detrended fluctuation
analysis (DFA) to extract the joint fractal characteristics of sea clutter, which provided
valuable information for target detection [26]. Guan and Liu et al. derived the multifractal
correlation spectrum from the multifractal theory and classified the target detection as a
binary classification problem based on this feature. They used the support vector machine
(SVM) for target detection. The experiment proved that this method has good weak target
detection ability [27]. Fan and Luo used an autoregressive (AR) model to estimate the
power spectrum of sea clutter, and studied its multifractal characteristics, proposed a
local AR generalized Hurst exponent detection algorithm, and achieved good detection
performance [28]. Besides this, He You and Guan Jian from the Naval Aviation University
of China also introduced fractal theory into the frequency domain and fractional domain
and proposed a method of typing detection based on the transform domain, providing
new ideas for fractal detection [29,30].

When the state of the sea surface is unstable, the fractal dimension of the fractal feature
will be unstable for a long time and in a large range. Therefore, the fractal theory has
obvious limitations in detecting weak and small targets on the sea surface. Using only a
fixed value as the detection threshold will lead to false alarms and missed alarms. Second,
when the signal–clutter ratio (SCR) is at a low level, there is a little difference between sea
clutter and target echo characteristics, so it is difficult to effectively detect weak targets on
the sea-surface [4]. Modern radars often use linear frequency modulation (LFM) signals
to generate signals with large time-bandwidth products. The time–frequency analysis
method can better provide the joint information of the time domain and the frequency
domain, so domestic and foreign scholars employed the time–frequency analysis to detect
sea-surface targets.

Wang et al. analyzed the Doppler characteristics of sea clutter and proposed two
target detectors; one was a Bayesian detector based on a joint Rayleigh distribution model,
another one used entropy feature extracted from signal’s Doppler spectrum to build the
detectors [31]. However, due to the changeable sea conditions, the Doppler spectrum of
sea clutter often overlaps with that of small, low-speed targets. This single feature-based
detector only uses limited return signal information, and its detection performance is easily
affected by the change of the detection environment. Therefore, many researchers have
proposed a feature fusion detection method that constructs a multidimensional feature
space to obtain and utilizes more information from the return signal. First came Xu
et al.’s two-dimensional convex hull detection algorithm based on sea clutter joint fractal
features [26], followed by the Shui team’s three-dimensional feature detector based on the
fast convex hull learning algorithm, they chose the three features of the relative average
amplitude of received vector, relative Doppler peak height and relative entropy of Doppler
amplitude spectrum to form the feature vector, and the measured data proved that this
method could obtain better detection performance in second-level observation time [32].

However, in the case of low FAR and low SCR, the performance of these methods is
restricted to varying degrees due to the resolution reduction of the time–frequency charac-
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teristics of the target echo. With the development of machine learning and deep learning,
the robustness of detectors using deep learning as the advanced detection framework
was further improved. Intelligent detection of low-observable targets on the sea surface
combined with deep learning and time–frequency analysis has become a current research
hotspot and research trend.

It is effective to select an appropriate deep learning method and use targeted features,
such as effective information entropy in the case of low SCR, to obtain a detector with good
detection performance and environmental robustness. The ability of such a constructed
detector is demonstrated by the proposed method, SVM-based FAR controlled-detector [33],
decision tree-based FAR controlled-detector [34], K-NN-based FAR controlled-detector [35].
Both the SVM-based and decision tree-based detectors use three features extracted from
the echo signal to form a feature vector and are constructed by optimizing the detection
framework with controllable FAR. The K-NN-based detector uses seven features extracted
from the echo signal and used optimized K-NN as the detector. These detectors achieve
exciting detection accuracy on the IPIX dataset, which is a significant improvement over
the approach without the use of a deep learning framework. Inspired by these excellent
methods, this article is dedicated to discovering more suitable feature spaces and model
frameworks with better processing effects for small datasets.

(1) The choice of feature space. High-resolution sea clutter time-series contains abun-
dant information on sea clutter and target. In this paper, six time–frequency features are
selected from the proposed methods and extracted from the echo signal to form feature
vectors, which are the relative mean amplitude (RMA) [32], the relative information entropy
in the time domain (RIET) [34], the relative value of Doppler peak height (RPH) [32], the
relative information entropy in Doppler domain (RIED) [32], the number of connected
regions (NCR) [36] and the maximum size of connected regions (MSC) [36]. Moreover,
optimized the selection method of RIET, NCR and MSC. They are the most representative
features in the time domain, frequency domain, and time–frequency domain. They ensure
the effectiveness of features under various conditions from multiple perspectives. The
amplitude characteristics of the time domain and frequency domain can distinguish targets
and clutter from the perspective of energy and spectrum differences. The information
entropy features are not affected by changes in SCR, and features are still valid even under
low SCR conditions. While the time–frequency domain feature uses the characteristic that
the energy of the nonlinear frequency modulation signal can be completely concentrated
on its instantaneous frequency curve to effectively distinguish the clutter from the target.

(2) The choice of detection framework. In the method proposed in this paper, gcFor-
est [37] is selected as the base detection framework. The gcForest is an algorithm of deep
forest. It is a novel ensemble model proposed by Zhou, a non-neural network (NN) style
deep learning network. The algorithm is inspired by the construction of a deep neural
network (DNN), extracts the idea of hierarchical data processing, and combines it with
the cascading tree model. The model has the feature of automatically determining the
number of training layers instead of a manual design before training so that the complexity
of the model can be determined by relying on data. This allows gcForest to work well
even on small-scale data and enables users to control training costs based on available
computing resources. Moreover, it is high robustness to hyperparameter settings [37,38].
Furthermore, the tree classifier-based ensemble algorithm has more advantages than the
NN class algorithm due to the natural class imbalance of the data. Based on the character-
istics above, gcForest is very suitable to be used to deal with the current situation where
there is fewer data available for training, and its parameter setting robustness also meets
the requirements of robust detection. In addition, FAR is introduced as a threshold into
the stop growth judgment condition of cascade level in gcForest. The stopping condition
changes from a few rounds without significant improvement in training accuracy to a stop
when the training result reaches the ideal FAR. If the expected conditions are not met, the
model needs to continue training.
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Based on this algorithm and combined with application scenarios, a FAR controllable
gcForest is constructed. It is the first time that the deep forest model has been applied to the
detection of weak targets on the sea surface. The introduction of multiple domain features
weakens the detector’s sensitivity to changing environments. The addition of gcForest
makes the detector fundamentally robust. The modification of gcForest improves the
training speed to a certain extent, and the obtained model is more flexible and controllable.
The detection accuracy of the method in this article and the proposed method are compared
under the same FAR condition. The proposed method for comparison is shown below.
A fractal-based detector [26] is a detector that uses the fractal and multifractal features
of sea clutter to detect sea targets. Tri-feature-based detector [32], this detector extracts
three features from the sea clutter and combines the fast convex hull learning algorithm
to distinguish between the target and the clutter. TF-tri-feature-based detector [36], a
detector that extracts three features from the time–frequency domain to construct the
feature space and uses the convex hull algorithm to detect the target. Feature-compression-
based detector [39], the detector extracts seven features from the echo to form a feature
space, compresses the 7-D feature vector to 3-D, and uses an optimized, fast convex hull
algorithm to detect the target cell. Moreover, the aforementioned detectors built using
signal features and simple machine-learning methods, decision tree-based detector [34]
and K-NN FAR-controlled detector [35]. The final comparison shows the method proposed
in this paper achieves a higher detection probability based on achieving the same FAR.

The article structure is arranged as follows: Section 2 introduces the measured dataset
used in the experiment, the features extracted from the data, and the structure of gcForest
with controllable false alarms. Section 3 concisely gives the experimental results under
different conditions. Section 4 discusses the network and the results obtained in the
previous section in detail. Finally, the conclusion and some existing limitations are given in
Section 5.

2. Materials and Methods
2.1. IPIX Dataset and Processing

The experiment uses IPIX measured data [40] for feature extraction. The IPIX radar is
a portable numerical control coherent dual-polarization X-band radar used to detect the
characteristics of sea clutter and the behavior of targets at different sea conditions. The
research team of Professor Haykin of McMaster University collected the database of high-
resolution radar measurements in November 1993. They used the radar called McMaster
Intelligent Pixel Processing X-band (IPIX), which located at Osborne Head Gunnery Range,
on the east coast of Canada, Dartmouth, Nova Scotia, facing the Atlantic Ocean, at the
top of a cliff 100 feet above mean sea level, and had an open ocean view of about 130◦.
The collected data are typical small grazing angle radar data of a shore-based platform.
The top view of the collection location and the radar picture are shown in Figure 1a,b [41].
The IPIX radar emits Horizontal polarization (H-polarization) and Vertical polarization
(V-polarization) electromagnetic waves and receives radar echo data of four polarizations:
two co-polarizations (HH polarization, VV polarization) and two cross polarizations (HV
polarization, VH polarization). The parameters of IPIX are shown in Table 1.

There is a cooperative target in the irradiation area; it is a spherical Styrofoam block
with a diameter of one meter, wrapped with wire mesh. The echo data consists of a time-
series of length 217 and 14 distance units. As the radar illuminates the target at a low
glancing angle, the target’s fluctuation and oscillation lead to the target’s energy diffusion,
and the distance oversampling is adopted in the data collection, so the adjacent units
around the target are affected by the target energy and are marked as affected units.



Remote Sens. 2021, 13, 812 6 of 33
Remote Sens. 2021, 13, 812 6 of 34 
 

 

  
(a) (b) 
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nates of the collection site are 44°36.72′N and 63°25.41′W, respectively; (b) IPIX radar picture. 
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Range resolution 30 m 

Data format (nsweep x ntxpol x nrange x nadc) ADC output 
nsweep 131,072 
ntxpol 2 
nrange 14 
nadc 4 
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Figure 1. The collection location and a picture of the Intelligent Pixel Processing X-band (IPIX) radar. (a) Topo map of IPIX
radar data collecting site in 1993, the latitude and longitude coordinates of the collection site are 44◦36.72′N and 63◦25.41′W,
respectively; (b) IPIX radar picture.

Table 1. Parameters of IPIX radar in 1993.

Parameter Name Value

Radar carried frequency 9.39 GHz
Pulse length 200 nanoseconds

PRF 1000 Hz
Antenna beamwidth 0.9 degrees

Antenna gain 45.7 dB
Range cell (2574 2589 . . . nrange . . . 2769) meters

Azimuth angle (129.4958 129.4958 . . . nsweep . . . 129.5453) degrees
Elevation angle (359.5111 359.5111 . . . nsweep . . . 359.5111) degrees

Unambiguous velocity 7.892 m/s
Range resolution 30 m

Data format (nsweep × ntxpol × nrange × nadc) ADC output
nsweep 131,072
ntxpol 2
nrange 14
nadc 4

Working mode Resident mode

Since it contains cooperative targets and is equipped with an explicit description of
the target existence unit and data records, such as wind speed and ocean waves at roughly
the time of collection [42], many methods have used these data for experiments in recent
years. The data used in this article are shown in Table 2. Due to the long time required, the
description of the electromagnetic scattering characteristics of the cooperative target has
not been found, so some documents on the study of the scattering characteristics of similar
targets are supplemented for reference. The article [43] uses the reciprocity theorem to
study the light scattering of spherical particles on the surface of a micro-rough nonuniform
medium. The relationship between the surface roughness parameters and the position
and size of the spherulites is also discussed in detail. The literature [44] uses Kirchhoff to
approximate the backscattered field from the sea surface and analyzes the performance
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characteristics of the spherical target in the composite scattering field under different
sizes and positions and different incident angles. The paper [45] uses Finite-difference
time-domain (FDTD) to study the composite electromagnetic scattering characteristics of
three-dimensional buoys and spherical targets above the sea surface. The changing law of
scattering coefficient under the conditions of different incident angles, different sea surface
wind speeds, drafts of pontoons and spheres is discussed in detail.

Table 2. Description of IPIX radar data acquired in 1993.

Number Data Name Target Cell
(Primary)

Target Cell
(Secondary) Wave Height (m) 1 Wind Speed

(km/h)

1 19931107_135603_starea 9 8–11 2.01 9
2 19931107_141630_starea 9 8–11 2.01 9
3 19931107_145028_starea 8 7–9 2.01 13
4 19931108_213827_starea 7 6–8 0.98 9
5 19931108_220902_starea 7 6–8 1.10 9
6 19931109_191449_starea 7 6–8 0.89 19
7 19931109_202217_starea 7 6–9 0.89 19
8 19931110_001635_starea 7 5–8 1.01 9
9 19931111_163625_starea 8 7–10 0.63 20

10 19931118_023604_stareC0000 8 7–10 1.69 10
11 19931118_035737_stareC0000 10 8–12 1.69 7
12 19931118_162155_stareC0000 7 6–9 0.91 33
13 19931118_162658_stareC0000 7 6–9 0.91 33
14 19931118_174259_stareC0000 7 6–9 0.91 28
1 Since the recording time of wave height data are scattered and not fixed, the wave height data in the table is the wave height at the time
point closest to the data collection time.

The SCR is the ratio of the signal power to the clutter power received by the radar.
The target echo SCR can be estimated by the power of the range cell where the target is
located. First, the average power pc of the sea clutter is estimated from the pure clutter unit
in the echo. Assuming that the radar echo and sea clutter are independent, the average
SCR can be estimated and solved using the following formulas:

Ave-SCR = 10lg(
A
pc
), (1)

A =
1
N

N

∑
n=1
|x(n)|, (2)

where the x(n) represents the echo sequence of the unit where the target is located and N
is the sequence length.

The fluctuation of the SCR is related to the difference in sea conditions, radar irradia-
tion direction, target type, and polarization scattering characteristics. Lincoln Laboratory
research shows that at low glancing angles, the sea clutter echo in the VV polarization mode
is stronger than that in the HH polarization mode. The intensity ratio of the sea clutter
between the VV polarization channel and the HH polarization channel increases with the
increase of wavelength and decreases with the increase of sea conditions [46,47]. Figure 2
shows the target average SCR of the 14 sets of original data used in the experiment. It is not
difficult to see that the difference between the Ave-SCR of the four polarizations is great. In
most cases, the HH and VV have higher Ave-SCR than that of the other two cross-polarized
Ave-SCRs, and due to the increase of sea conditions, the Ave-SCR of VV polarization and
HH polarization is reduced, which is consistent with the previous research results.

As the target undulates and floats with the sea surface, when the glancing angles are
low, there is a certain change in the target area radiated by the radar. The target is even
blocked by the waves and cannot be reached by radar. Therefore, the actual SCR fluctuates
and fluctuates to a certain extent near the average SCR.
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The experiment in this paper selects the primary cell of targets and the clutter-only
cell of the above 14 echo data as target signals and sea clutter signals, extracts six most
representative features in the time–domain, frequency–domain and time–frequency domain
to construct the feature vector. The validity of these features has been proven from multiple
angles in published papers [32–36]. At the same time, it should be clear that no feature
can guarantee its effectiveness under any circumstances. Therefore, this paper selected a
variety of features to ensure the validity of the feature vectors under different conditions.

2.2. Features in Experiments

Since weak targets are easily affected by ocean waves, their motion characteristics are
difficult to estimate. At this time, both the target signal and the sea clutter are non-stationary
signals, and neither time-domain nor frequency-domain analysis alone can fully present the
characteristics of both [48]. In addition, different features are sensitive to different levels of
data, so detectors based on a single feature will not be suitable for every situation. In order
to obtain better and more robust detection results, this paper extracts six representative
features in time, frequency, and time–frequency domains based on the data collected by IPIX
radar constructs a comprehensive and effective feature vector. First, select the amplitude
feature in the time domain and frequency domain to provide a way to distinguish the target
and clutter from the energy point of view. Second, the information entropy feature that is
still valid under low SCR is selected to deal with the problem of extreme conditions. Finally,
the signal and clutter exhibit completely different characteristics in the time–frequency
domain, which can be used to assist in distinguishing them.

These six features are time-domain features: (1) relative mean amplitude (RMA), (2)
relative information entropy in time-domain (RIET), (3) Doppler features (relative Doppler
peak with high (RPH), (4)relative information entropy in Doppler-domain (RIED)), (5)
time–frequency characteristics (the number of connected regions (NCR)) and (6) maximum
size of the connected regions (MSC) extracted from the important time–frequency points
(ITFP). The target detection problem is transformed into a binary classification problem by
constructing a six-dimensional eigenvector composed of the above features.

Target detection in the background of sea clutter usually uses the following binary
hypothesis test [49,50]: {

H0 : x(n) = c(n)
H1 : x(n) = s(n) + c(n)

, (3)

where x(n) is the radar echo, s(n) is target echo, c(n) is sea clutter echo, n = 1, 2, . . . , N
is the number of radar transmitting pulses. In order to get more features, the echoes
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are divided into m segments with length d, the signal fragment is expressed as xsub =
x(w ∗ (m− 1)+ 1 : w ∗ (m− 1)+ d), w is an arbitrary integer so that there are some overlaps
between sub-signals. The following feature analysis selects the HV polarization mode of
the first data 19931107_135603_starea.

2.2.1. Relative Mean Amplitude

The relative magnitude of echo intensity is the main basis of traditional radar target
detection. The relative mean amplitude (RMA) is the ratio of the average echo intensity of
the main target cell to the average echo intensity of all pure clutter cells.

Suppose the length of echo time-series x is N, then the definition of the mean amplitude
of echo is as follows,

A(x) =
1
N

N

∑
n=1
|x(n)|, (4)

A(x) is the mean value of the aim unit’s echo intensity, A(xl) is the mean value of the l-th
clutter-only unit’s echo intensity, the calculation method of RMA is shown below

RMA(x) =
A(x)

1
L

L
∑

l=1
A(xl)

, (5)

for sea clutter with a non-stationary distance, averaging the clutter cell can make the RMA
feature have a certain constant false alarm characteristic.

As can be seen from Figure 3a, it is impossible to distinguish the target and the clutter
cell directly from the amplitude of the echo. Since the target fluctuates with the waves, its
scattering characteristics vary greatly; the RMA of the target in Figure 3b is more dispersed
than that of the clutter. Although there are some differences between the RMA distribution
characteristics of clutter and targets, it is still impossible to detect the targets through a
single RMA performance.
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Figure 3. Relative mean amplitude (RMA) feature of the first dataset. (a) The amplitude of primary cell where target
exists and the average amplitude of clutter-only cell; (b) The histogram of RMA at the primary cell where target exists and
randomly selected clutter-only cell.

2.2.2. Relative Information Entropy in Time Domain

Information entropy can describe the uncertainty of random signals. In this paper,
the concept of information entropy in information theory is introduced to describe the
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uncertainty of time-domain echo signals. Combined with the definition of information
entropy, the information entropy of time-domain signal can be expressed as:

Hs(x) = −
K

∑
k=1

p(ni)log2 p(ni), (6)

and regulates 0log2(0) = 0. p(ni) is the probability that the signal falls in the amplitude
interval of a range cell after dividing the amplitude into K equal parts:

p(ni) =
ni
N , i = 1, 2, . . . , K, (7)

using L clutter cells as reference units, take the ratio of the information entropy between
the target cell and the clutter-only cell, the relative information entropy in the time domain
(RIET) is defined as:

RITE(x) =
Hs(x)

1
L

L
∑

l=1
Hs(xl)

. (8)

Figure 4a is RIET histogram; it is not difficult to find that due to the wave undulations,
the cross-sectional radar area of the target also changes greatly, the echo signal has greater
uncertainty; therefore, the RIET distribution of target echo is more divergent than that of
the clutter-only cell. Figure 4b is a single-channel RIET of 11 echo cells (10 clutter-only cells
and 1 target cell). It can be seen that the cell average RIET of target echo is larger than that
of clutter-only echo. It is consistent with the theoretical analysis.
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Figure 4. Relative information entropy in the time domain (RIET) feature of the first dataset. (a) the histogram of RIET at
the primary cell where target exists and randomly selected clutter-only cell; (b) the average RIET of radar echo in each
range cell.

2.2.3. Relative Value of Doppler Peak Height

Due to the time-varying sea conditions, the sea surface under radar irradiation has
different scattering structures, which leads to the wide Doppler bandwidth of sea clutter,
while the Doppler peak of the weak target on the sea surface is easily submerged by
the main clutter due to the small radial velocity. Figure 5 also confirms this problem.
Therefore, it is difficult to separate the two by using absolute Doppler amplitude alone, so
the influence of clutter Doppler bandwidth is eliminated by calculating the relative value
of Doppler peak height (RPH) of target and clutter-only cell.
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The calculation process of RPH is introduced below. First, find the Doppler peak
height of the echo signal and its corresponding frequency point. Tr = 0.001 is the pulse
repetition frequency of IPIX radar,

Peak(x) = max
fd∈[−1/2Tr ,1/2Tr ]

(X( fd)), (9)

fd max(x) = arg max
fd∈[−1/2Tr ,1/2Tr ]

(X( fd)), (10)

Next, the frequency domain reference cell σ is selected to calculate the one-dimension
RPH, where δ1 and δ2 are the outer boundary and the inner boundary needed to calculate
it, respectively. The role of these boundaries is to minimize the interference by excluding
the bandwidth occupied by the target from the Doppler frequency domain, where the
relative peak height is calculated. As shown in Formula (12), η(x) is the definition of RPH
in a range cell, where N(σ) is the reference cell length,

σ = [ fd max − δ1, fd max − δ2] ∪ [ fd max + δ2, fd max + δ1], (11)

η(x) =
Peak(x)

1/N(σ) ∑
fd∈σ

X( fd)
, (12)

According to experience, take δ1 = 50 Hz, δ2 = 5 Hz, using the cells to be estimated
and L clutter reference cells, the RPH in the two-dimensional range, the Doppler plane is
defined as follows:

RPH(x) =
η(x)

1
L

L
∑

l=1
η(xl)

, (13)

From the histogram of RPH in Figure 6a, it can be seen that the RPH value and
distribution range of the target echo are bigger than that of the clutter-only echo. Figure 6b
is the RPH of each echo cell; it is obvious that the average RPH of the target cell is much
larger than that of each clutter-only cell, which also confirms the previous statement.
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2.2.4. Relative Information Entropy in Doppler Domain

In Section 2.2.2, the time-domain amplitude characteristics of the echo signal are
obtained by using information entropy. This part uses the information entropy to obtain
the frequency-domain amplitude characteristics of the echo signal, and the presence of
targets is detected by using the different energy distribution of the Doppler amplitude
spectrum of the pure clutter cell and the target cell. With the foreshadowing, the relative
information entropy of the Doppler domain (RIED) is defined as follows:

Hsd(x) = −∑
fd

X̂( fd)log2X̂( fd), (14)

X̂( fd) is the normalized Doppler amplitude spectrum

X̂( fd) =
X( fd)

∑ fd
X( fd)

, (15)

using L clutter cells as reference units, RIED is defined as

RIED(x) =
Hsd(x)

1
L

L
∑

l=1
Hsd(xl)

, (16)

It can be seen from the histogram in Figure 7a that in the Doppler domain, the RIED
distribution of clutter is more compact, but the overall value of the distribution is higher,
while that of the target is more dispersed and most of the values are smaller than the clutter.
Figure 7b is the single-channel RIED of 11 echo cells. The average RIED values of the
clutter-only cells are relatively close, and they are greater than that of the target cell. The
results show that the echo containing target appears completely different characteristics
in the time-domain and Doppler-domain, and the Doppler spectrum of sea clutter is
more chaotic.
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2.2.5. The Number of Connected Regions and Maximum Size of Connected Regions

When analyzing the acquired signal, time–frequency analysis can obtain the signal’s
time-varying frequency spectrum characteristics, which is a non-negligible feature and
is called the micro-Doppler feature. For multicomponent signals in a high noise environ-
ment, scholars have proposed many methods to analyze time–frequency characteristics,
such as using instantaneous frequency (IF) to obtain time–frequency information of the
signals, using short-time Fourier transform, wavelet transforms, and so on to estimate the
instantaneous frequency of the signals by using the linear time–frequency transform of
short-time signals. Choi–Williams distribution (CWD) uses different kernel functions to
suppress the cross term [51]. By designing a suitable kernel function, it can achieve greater
attenuation of the cross term and satisfy time–frequency edge characteristics. The limited
support loss in the time–frequency domain is better than other time–frequency analysis
methods. Therefore, this paper calculates the normalized CWD to get the characteristics
of its normalized time–frequency distribution: the number of connected regions and the
maximum size of connected regions in the important time–frequency feature.

The CWD definition of the echo signal x(t) is as follows:

CWDx(t, f ) =
x

ϕ(τ, ν)Ax(τ, ν)exp(j2π(tν− f τ))dτdν, (17)

ϕ(τ, ν) is the kernel function of time–frequency distribution of Cohen class, which is
defined as Formula (19), Ax(τ, ν) is the fuzzy function:

ϕ(τ, ν) =
e−τ2ν2

σ
, (18)

Ax(τ, ν) =
∫ +∞

−∞
x(t +

τ

2
)x∗(t− τ

2
)exp(−j2πtν)dt, (19)

When dealing with signals with large amplitude and frequency variation, the ker-
nel function takes the larger σ(σ > 1); otherwise, take the smaller σ(σ ≤ 1). When
0.1 ≤ σ ≤ 10, Choi–Williams distribution can obtain a higher time–frequency resolution
and can suppress more cross-terms [41]. In order to further eliminate the interference of the
cross term, the time domain and frequency domain smoothing window is added in the CWD
calculation. Therefore, the CWD of the complex time-series x = [x(1), x(2), . . . , x(N)]T can
be expressed as:

CWDx(t, f |x ) =
∫ +∞

−∞
g(ν− τ)

[∫ +∞

−∞
h(τ)ϕ(τ, ν)Ax(τ, ν)exp(j2π(tν− f τ))dτ

]
dν, (20)
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Among them, g(·) and h(·) are time and frequency smoothing windows, respectively,
the length of the time smoothing window g(·) is consistent with the max sampling interval
of the target Doppler frequency, the selection of the frequency smoothing window h(·)
is consistent with the signal division length of the chirp signal. The length of these two
windows is related to the instantaneous frequency characteristics of the target and the sea
condition. For IPIX radar data, the Doppler frequency of the cooperative target exhibits
a pseudo-periodical behavior of about a few seconds. The target returns length to keep
constant Doppler bias is about tens of milliseconds, and the length for target returns to
keep constant Doppler rate of change is about a fraction of a second [37]. In addition,
the Hamming window is good at reducing the nearest side lobe width; hence, in this
paper, Hamming windows with time-domain length 125 and frequency domain length
255 are used. On the two-dimensional time–frequency plane, the CWD is normalized by
using the mean function and standard deviation function of sea clutter to eliminate the
non-stationarity of sea clutter time series in time and space.

Ñ-CWDx(t, f |x ) = CWDx(t, f |x )− µ̂(t, f )
σ̂(t, f )

, (21)

where µ̂(t, f ) and σ̂(t, f ) are the mean and variance of clutter-only, respectively, and the
calculation process is as follows:

µ̂(t, f ) =
1
L

L

∑
l=1

CWDx(t, f |x ), (22)

σ̂(t, f ) =

√√√√ 1
L− 1

L

∑
l=1

(CWDx(t, f |xl )− µ̂(t, f ))2 (23)

Figure 8a,b is the CWD of target echo and sea clutter. In the time–frequency plane, the
energy of target echo is concentrated in a narrow band area, while the energy of clutter
is concentrated in a band area. The brightness and width of the band area change with
time and the frequency range is roughly from −100 Hz to 10 Hz. Figure 8c,d shows the
Normalized-CWD (N-CWD) of the normalized target and sea clutter. After normalization,
the echo energy of the target becomes more concentrated and becomes bright outside the
clutter area, while the energy of sea clutter decreases significantly after normalization.

Next, time–frequency characteristics are extracted from N-CWD, and the maximum
pixel values of the first K of the target echo and sea clutter in the time–frequency plane
are marked as 1, and the remaining points are all set to zero to generate a binary image
composed of the first K important time–frequency points (ITFP):

ITFPk =

{
1 (t, maxk( f )) in Ñ-CWDx(t, f |x )
0 others

, (24)

It can be seen from the image that the ITFP containing the target is highly clustered,
while the ITPF image containing the pure clutter is scattered.
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(NCR) and maximum size of connected regions (MSC), are extracted from the image by 
using the principle of binary morphology. Mathematical morphology is applied to binary 
images, and the image is regarded as a set. To obtain these two features, it is necessary to 
find all the regions in the graph that meet the 4-connected or 8-connected conditions in 
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echo; (b) CWD of sea clutter; (c) N-CWD(Normalized–CWD) of target echo; (d) N–CWD of sea clutter.

Based on the characteristics that the connected area of the target image is large, and
the number of connected areas is small, the connected area of the clutter image is small,
but the number of connected areas is large, two features, the number of connected regions
(NCR) and maximum size of connected regions (MSC), are extracted from the image by
using the principle of binary morphology. Mathematical morphology is applied to binary
images, and the image is regarded as a set. To obtain these two features, it is necessary to
find all the regions in the graph that meet the 4-connected or 8-connected conditions in this
set. The number of pixel points contained in the region is the size of the connected region.
If the connected region in a binary image is, then these two features are defined as follows:{

NCR = S
MSC = max

k=1,2,...,S
{CR1, CR2, . . . , CRk} , (25)

In Figure 9a, the STFP image of sea clutter contains a total of 3750 connected regions,
of which the maximum area size is 317. In Figure 9b, the ITFP image of the target echo
contains only 1212 connected regions, whose maximum area size is 3248. The ITFP images
of sea clutter and target echo have obvious differences in these two features, so they can be
used as features for target detection.
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2.2.6. Summary

Let RMA be mi,1, RIET be mi,2, RPH be mi,3, RIED be mi,4, NCR be mi,5, MSC be
mi,6, store the extracted features into the feature vector Mi and get the 6-D feature vector
Mi = [mi,1, mi,2, mi,3, mi,4, mi,5, mi,6]. The eigenvector label corresponding to the target echo
is 1, and the eigenvector label corresponding to the clutter is 0. Since NCR and MSC are
obviously distinguishable, the feature separability analysis of NCR and MSC is not done
here. Now draw the distribution of features in one-dimensional, two-dimensional, and
three-dimensional space, as shown in Figures 10–12. It can be clearly seen that in the
one-dimensional and two-dimensional space of the feature, the feature between the target
and the clutter cannot be effectively distinguished with a higher dimension of feature space,
the feature of separability enhancement. In the three-dimensional space of the feature,
the target and clutter can be roughly distinguished, but there are still a small number of
features that are aliasing together and cannot be distinguished. Therefore, the dimension
of the feature space needs to be further improved. The target and clutter can be better
distinguished in the six-dimensional feature space.

After confirming the separability between the features, Pearson’s correlation coefficient
matrix is used to measure the correlation between the six standardized features and further
determine whether there is a problem of feature redundancy. According to the correlation
heat map Figure 13, it can be seen that there is no obvious multicollinearity problem
between the features, so the six features selected are not redundant and can be used.

2.3. False-Alarm Rate Controllable Deep Forest Method

In this part, we propose a false-alarm rate (FAR) controllable detector to make the ut-
most use of the aforementioned features that constitute the feature space. Due to the clutter
in the data set accounts for a relatively large proportion, while the target echo accounts for
a relatively small proportion, so there is a problem of unbalanced categories. Algorithms,
such as logistic regression and neural networks, use backpropagation to optimize param-
eters. The type with a small number will have less influence when backpropagating the
gradient. They naturally focus more on the fit of most classes. After all, the classification
of most classes is correct or not, which will affect the final overall loss. Therefore, these
models are more sensitive to the uneven distribution of samples. The update strategy
adopted by the tree model is completely different. Its optimization goal is to maximize
the information gain after the fork. In order to do this, the tree model naturally expects
the sample at each node to be purer after the fork, thus increasing the gain. In this case,
even if the sample is biased, the model will pay enough attention to this category so that
the impact of sample bias is greatly reduced. The tree classifier-based model, such as deep
forest, is more advantageous for this kind of problem. Therefore, this paper proposes a
FAR controllable detector based on deep forest [37], which is a new type of non-NN deep
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learning method. The structure of the deep forest model used in this article is shown in
Figure 14.
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Suppose that the previous processing divides the signal into d sub-signals the 6-
dimensional features extracted from these sub-signals are combined to form a feature matrix
that is imported into the multi-grained scanning layer in gcForest. The one-dimensional
sliding pane with length m is used to re-extract the feature with step size 1, get p × n
first-stage characteristics of m-dimensional. Input these first-stage characteristics into
estimator A and estimator B. After training, p× n m-dimensional second-stage features can
be obtained, and the q× n m-dimensional final-stage features can be acquired through a
pooling layer containing a one-dimensional pooling pane of length a. Finally, the decision
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results can be obtained by bringing the final stage features into cascade for classification. A
detailed explanation of the deep forest can be found in these two articles [37,38].
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After the target detection is converted into a binary classification problem that distin-
guishes clutter and target, the confusion matrix can be used to measure the performance of
the model applied to the binary classification problem. As shown in Table 3, the combina-
tion of results can be divided into the following four cases according to their true categories
and the prediction categories of gcForest: true target (TT), false clutter (FC), false target (FT),
and true clutter (TC). TT, FC, FT, and TC represent the number of samples corresponding
to the cases, respectively, and the total number of samples is TT + FC + FT + TC.

Table 3. Confusion matrix of sea-surface weak target detection.

Predicted Class Summary
Target Clutter

Actual Class
Target True target (TT) False clutter (FC) Actual Target

(TT + FC)

Clutter False target (FT) True clutter (TC) Actual Clutter
(FT + TC)

Summary Predicted target
(TT + FT)

Predicted clutter
(FC + TC) TT + FT + FC + TC

In the radar system, signal detection is carried out in the interference background.
There is not only system noise but also the echo reflected by the waves for the detection
of weak targets on the sea surface. The interference of these noises will cause changes in
decision probability. In the target signal detection of the system, the most concerned is the
probability of the wrong decision, that is, the change of FAR. In model training, the preset
training stop conditions are changed, and the step control of gcForest depth is added so as
to obtain the optimal FAR with the minimum training time consumption. FAR how much
of the clutter is misidentified as a target, its calculation formula Pf can be obtained from
Table 3. The ideal FAR is set as PE- f a, and the error threshold between the ideal FAR and
training result is set as ξ. The pseudo-code is shown in the following Table 4.



Remote Sens. 2021, 13, 812 20 of 33

Table 4. Pseudo-code of false alarm rate (FAR)-controllable deep forest model.

Algorithm: FAR-Controllable Deep Forest Model.

Input:
Dataset: eigenvector matrix M = {Mi}W

i=1, Mi is 6-dim eigenvector
Mi =

[
mi,1, mi,2, mi,3, mi,4, mi,5, mi,6

]
;

Label set: L = {Li}W
i=1;

Expected FAR: PE- f a;
Error threshold: ξ;
Preset depth of gcForest: H;
Step length of depth: ∆h;
Maximum depth of gcForest: Hmax
Parameters of gcForest.

Process:
1: Set the parameters and feed the features into the gcForest for training.
2: Calculate the minimum achievable FAR,

Pf =
FT

FT+TC × 100%.
3: if Pf ≤ PE- f a or Pf − PE- f a ≤ ξ then
4: save all Pf that satisfies the condition in tmp
5: else
6: while Pf − PE- f a > ξ do
7: if h < H then
8: continue training the cascade layer of gcForest
9: calculate the new outputs’ Pf of the cascade layer
10: else
11: set H = H + ∆h
12: if H > Hmax then
13: break
14: continue training the cascade layer of gcForest
15: calculate the new outputs’ Pf of cascade layer
16: save all the Pf in tmpless
17: end if
18: end while
19: end if
20: return FAR = max (tmp ∪ tmpless).

Output:
The ideal FAR model and its prediction results of the training set.

3. Results

In this section, IPIX datasets introduced in 2.1 are used to evaluate the effect of the
model and features, the experimental results of the proposed detector are also reported.
In this paper, the hardware environment is a computer equipping an Intel Core I7-10700T
CPU of 2.00 GHz with a 64-bit operating system and 32 GB of internal storage.

As mentioned at the beginning of 2.2, in order to obtain more features from the echo,
the signals are divided into M segments of equal length d xsub = x(w ∗ (m − 1) + 1 :
w ∗ (m − 1) + d), where m = 1, 2, . . . , M and w is the overlap constant. The signal is
divided into sub-segments of different lengths for feature and model evaluation. Different
d corresponds to different observation times; the value of d is 512, 1024, 2048 and 4096, and
the value of overlap constant w is 64. Therefore, the echo signal of each range cell can be
separated into 2040, 2032, 2016, and 1984 sub-segments. In the experiment, the training set
and test set are randomly selected at a ratio of 2:1 from the obtained slice data. The optimal
parameters of the detection framework and the results of experiments are stated in this
section, and the performance discussions are in Section 4.

3.1. Performance Analysis of Detection Framework

After a series of experiments, analyze the performance of each module and its param-
eters on the data, the optimal gcForest model parameters are shown in Table 5.
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Table 5. The final parameter of gcForest.

gcForest Models Parameter Setting

Multi-Grained Scanning

Number of classifiers 6

Types of classifiers
ExtraTreesClassifier

RandomForestClassifier
LogisticRegression

Size of sliding panes 4, 5, 6

Cascade

Number of classifiers 5

Types of classifiers

RandomForestClassifier
ExtraTreesClassifier

XGBClassifier
SGDClassifier

LogisticRegression
Preset depth of gcForest 6
Step length of gcForest 2

Maximum depth of gcForest 14

It should be noted that, according to the performance of the classifier in the multi-
grained scanning layer, the sizes of the sliding panes used by different classifiers are not
the same. Among them, the sliding pane sizes used by ExtraTreesClassifier are 5 and 6, the
size used by RandomForestClassifier are 4, 5, and 6, the size used by LogisticRegression
is 5.

3.2. Average Detection Probability of Different Conditions

The experiment uses the detection probability as the criterion of the result. The
calculation method of the detection probability is shown in Equation (26), which represents
FAR from another perspective.

Pd =
TT

TT + FT
× 100%. (26)

Table 6 shows the average Pd of different observation times and different polarization
modes. It can be seen that the dataset composed of long observation time can obtain
higher detection probability, and cross-polarization mode data are more conducive to
target detection. In the copolarization data, the detection result of HH polarization is better
than VV polarization.

Table 6. Average detection probability of different polarization modes and observation time.

Different Polarization Mode

Polarization Mode HH HV VH VV

Average Pd 99.24% 99.33% 99.31% 98.86%

Different Observation Time

Observation Time (s) 0.512 1.024 2.048 4.096

Average Pd 98.65% 99.10% 99.38% 99.62%

4. Discussion

This chapter uses the IPIX data [40] described in Section 2.1 to discuss the influence
of detector parameter selection and data characteristics on the final detection results. In
addition, the detection results of this detector are compared with the existing detectors in
these documents [26,32–36,39].
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4.1. Performance Analysis of Detection Framework

The feature vectors describe in Section 2.2 are extracted from the sub-signal and sent
to the detector for training. The main parameters involved in the detector are listed in the
following table. Next, the influence of parameter selection on the experimental results will
be analyzed. The data used in the analysis in this part are HV polarization mode with a
sub-signal length of 4096. Table 7 shows the key parameters in the model.

Table 7. Main parameters used in the detector.

Layers of gcForest Parameter

Multi-Grained Scanning
Number of classifiers

Types of classifiers
Size of sliding panes

Cascade

Number of classifiers
Types of classifiers

Preset depth of gcForest
Step length of gcForest

Maximum depth of gcForest

GcForest is an ensemble model. In principle, the based estimator used in it can be
any type of classifier. First, according to the error-ambiguity decomposition [52], the
principle of individual classifier selection in the ensemble-learning model is that the more
accurate the individual classifier is, the more kinds of classifiers are, the better performance
of the ensemble model will be [37]. Therefore, in order to obtain better training results
in gcForest, in addition to improving the training accuracy of individual classifiers, it
is also necessary to enhance its diversity. In practice, randomness is often added in the
training process by sampling input data, using different parameters for different individual
learners and other methods to enhance diversity [37]. Therefore, in the multi-grained
scanning stage, three estimators with better performance are selected, ExtraTreesClassifier,
RandomForestClassifier and LogisticRegression. Among them, ExtraTreesClassifier is a
completely random tree model, RandomForestClassifier is a random tree model, which
satisfies the basic structure of the deep forest, and LogisticRegression is the choice after
comprehensive consideration of increasing model diversity and training results. In the
cascade stage, two estimators XGBClassifier and SGDClassifier, are added to the selection
of the previous stage, further improving the diversity of classifier selection and choosing
different parameters for different models, adding changes from parameters.

4.1.1. Multi-Grained Scanning Layer

It can be found from [37] that the accuracy and the estimator number in the multi-
grained scanning stage have a direct impact on the training accuracy of the subsequent
cascade layer.

First, analyze the impact of the sliding pane on the accuracy of this layer. The different
size panes correspond to the number of features simultaneously input to the classifier, that
is, the feature diversity in the network. The experiment tests the effect of different sliding
pane sizes on the results of three estimators, ExtraTreesClassifier, RandomForestClassifier
and LogisticRegression, in the multi-grained scanning stage. Table 8 shows the influence of
the sliding panes’ size. As the length of the sliding pane increases, the classification effect
of this layer is significantly improved. Due to the characteristics of the random forest itself,
it has good noise immunity, so its performance is significantly better than the other two
classifiers, even if the size of the sliding panes is small.
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Table 8. Influence of the sliding pane on the accuracy of different classifiers.

Size of Sliding
Panes

ExtraTreesClassifier RandomForestClassifier LogisticRegression

Train Avg. Test Avg. Train Avg. Test Avg. Train Avg. Test Avg.

1 91.11% 91.03% 91.62% 91.52% 91.11% 91.03%
2 91.47% 91.03% 98.22% 98.20% 91.11% 91.03%
3 91.11% 91.03% 99.03% 99.03% 91.11% 91.03%
4 98.30% 98.37% 99.23% 99.24% 93.97% 93.98%
5 99.02% 99.01% 99.40% 99.37% 94.51% 94.50%
6 99.25% 99.23% 99.50% 99.46% 97.09% 97.07%

Next, analyze the impact of the different number of classifier combinations using
different sliding panes on the result in the cascade layer. The sliding pane sizes with
good results in the previous experiment are selected to match with the estimators, and the
performance in the cascade layer after obtaining multi-grained features and time cost in
the multi-grained scanning stage are tested. Figure 15 shows the results with a composite
chart composed of a histogram representing accuracy and a line chart representing time
consumption. When only one classifier, RandomForestClassifier, exists at this stage, al-
though the three-parameter values of the classifier with the best results were selected, its
performance is still the worst compared to the other two combinations. The combination
with the largest number of classifiers and the largest types of parameters obtained the best
results, with an accuracy rate of 99.63% for the training set and 99.66% for the test set. Its
time-consuming is also the shortest, only 655 s. It is not difficult to see that considering the
training efficiency, increasing the number and types of classifiers used within a reasonable
range will have a positive effect on the results. This is also in line with the law of the
influence of the accuracy and diversity of the individual classifiers of ensemble-learning on
the results of the ensemble model.

Remote Sens. 2021, 13, 812 24 of 34 
 

 

multi-grained scanning stage are tested. Figure 15 shows the results with a composite 
chart composed of a histogram representing accuracy and a line chart representing time 
consumption. When only one classifier, RandomForestClassifier, exists at this stage, alt-
hough the three-parameter values of the classifier with the best results were selected, its 
performance is still the worst compared to the other two combinations. The combination 
with the largest number of classifiers and the largest types of parameters obtained the best 
results, with an accuracy rate of 99.63% for the training set and 99.66% for the test set. Its 
time-consuming is also the shortest, only 655 s. It is not difficult to see that considering 
the training efficiency, increasing the number and types of classifiers used within a rea-
sonable range will have a positive effect on the results. This is also in line with the law of 
the influence of the accuracy and diversity of the individual classifiers of ensemble-learn-
ing on the results of the ensemble model. 

 
Figure 15. Cascade layer and time cost in the multi-grained scanning layer. 

After a series of experiments and analysis, it is finally decided to use the multi-
grained scanning layer with two ExtraTreesClassifiers with pane size 5 and 6, three Ran-
domForestClassifiers with pane size 4, 5, and 6, one LogisticRegression with pane size 6 
for the preliminary training of features. 

4.1.2. Cascade Layer 
In the cascade layer, one of the keys to ensuring training accuracy is to keep the di-

versity of classifiers. Therefore, this paper chooses five classifiers RandomForestClassifier, 
ExtraTreesClassifier, XGBClassifier, SGDClassifier, LogisticRegression, as the classifiers 
in the cascade stage. From the experiment, it is found that the depth of gcForest affects the 
change of detection probability. It can be seen from Figure 16 that detection probability 
increases first and then decreases with the growth of training depth in most cases. 

Figure 15. Cascade layer and time cost in the multi-grained scanning layer.

After a series of experiments and analysis, it is finally decided to use the multi-grained
scanning layer with two ExtraTreesClassifiers with pane size 5 and 6, three RandomForest-
Classifiers with pane size 4, 5, and 6, one LogisticRegression with pane size 6 for the
preliminary training of features.
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4.1.2. Cascade Layer

In the cascade layer, one of the keys to ensuring training accuracy is to keep the
diversity of classifiers. Therefore, this paper chooses five classifiers RandomForestClassifier,
ExtraTreesClassifier, XGBClassifier, SGDClassifier, LogisticRegression, as the classifiers in
the cascade stage. From the experiment, it is found that the depth of gcForest affects the
change of detection probability. It can be seen from Figure 16 that detection probability
increases first and then decreases with the growth of training depth in most cases.
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In order to obtain the optimal accuracy and highest training efficiency, a false alarm
controllable detector is designed by controlling the depth of the cascade layer in gcForest.
Combined with the pre-analysis of the data, the initial depth is set as six, and the step length
is set as 2. When PE- f a has reached the expected value within the allowable range of error
threshold before the preset depth, the corresponding optimal detection probability is taken
as the output result, and the model at this time is saved. If PE- f a it fails to reach the expected
value before the maximum depth, the best detection probability during the training is
output, and the corresponding training model is saved. The expected FAR PE- f a is set as
0.01, and the error threshold ξ is set as 0.001 in these experiments. Table 9 is the average
FAR of the detector with different observation times and different polarization modes.
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Table 9. Average FAR of different conditions.

Observation Time (s)
Polarization Mode

Average FAR of Different Observation Time
HH HV VH VV

0.512 0.0097 0.0094 0.0093 0.0109 0.0098
1.024 0.0075 0.0059 0.0059 0.0105 0.0075
2.048 0.0045 0.0041 0.0051 0.0082 0.0055
4.096 0.0031 0.0029 0.0027 0.0047 0.0034

Average FAR of Different Polarization Mode 0.0062 0.0056 0.0057 0.0086

In addition, the effect of parameter settings and complexity on the performance of
the cascade stage is also discussed. The experiment separately discusses the five models
used in the cascade stage and adjusts the different parameters involved to explore the
impact of their parameters and complexity on performance. The parameters adjusted in
the experiment are shown in the following Table 10.

Table 10. Parameters adjusted in each estimator.

Estimator RandomForest
Classifier

ExtraTrees
Classifier XGBClassifer LogisticRegression SGDClassifier

Parameters
setting

n_estimators = 100,
max_depth = 20 n_estimators = 100

penalty = l1

loss = log
penalty = l1

n_estimators = 250,
max_depth = 50 n_estimators = 250 loss = modified_huber

penalty = l1
n_estimators = 500,
max_depth = 100 n_estimators = 500

n_estimators = 600,
max_depth = 120 n_estimators = 600 penalty = l2

loss = log
penalty = l2

n_estimators = 750,
max_depth = 150 n_estimators = 750 loss = modified_huber

penalty = l2

Among them, for ExtraTreesClassifier, RandomForestClassifier, and XGBClassifier, the
parameters named n_estimators and max_depth affect the amount of calculation in the train-
ing process so they have a greater impact on the time cost. Using n_estimators = 500 and
max_depth = 100 as benchmarks, zoom in or zoom out the values of these two parameters
proportionally and observe their impact on accuracy and training time. For LogisticRe-
gression and SGDClassifier, the commonly used parameter penalty represents the choice of
regularization term, and the parameter loss in SGDClassifier represents the choice of the
loss function.

The combined Figure 17a–e respectively represents the impact on the performance
of the parameters in the several above classifiers according to Table 10. Figure 17f shows
the effect of changing the values of n_estimators and max_depth in ExtraTreesClassifier and
RandomForestClassifier after combining several classifiers and the value of n_estimators in
XGBClassifier on the final model. At this time, LogisticRegression and SGDClassifier use
the parameters that can achieve the best results in the previous experiments. In Figure 17,
the histogram represents the accuracy of the detector for the training set and test set, and
the line graph represents the average training time of each layer.
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It can be seen from this that Figure 17a–c illustrates that the number of estimators in
the classifiers and the classifiers’ max depth grows within a certain range. Although the
training time is raising, the accuracy of the model has been improved. However, when the
number and depth increase to a certain level, the accuracy of the model decreases slightly,
but the training time increases significantly. Figure 17d,e illustrates that the appropriate
selection of loss function and regularization term will improve the accuracy of training and
greatly shorten the training time of each layer. Figure 17f shows that ensemble-learning can
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improve training accuracy to a certain extent, and the selection of appropriate parameters
will bring higher accuracy and more cost-effective time consumption.

4.2. Performance Analysis of Data

This part will analyze from two perspectives of data characteristics and the feature
selects in this experiment. IPIX dataset is radar echo data with four polarization modes. In
order to obtain more information from the limited data, the original data are decomposed
into different lengths in the experiment, corresponding to different observation times.
Therefore, signals with different polarization and different lengths are trained to analyze
their influence on target detection, and the influence of individual features on detection is
discussed in the second part.

4.2.1. Influence of Polarization and Observation Length

Table 11 shows the details of the average detection probability in different observation
times and different polarization modes. As the observation time accumulates, the detector’s
ability to distinguish the target becomes stronger. Observation time increased by eight
times, and the average detection probability decreases 0.97%. Due to the copolarization is
extremely sensitive to changes in sea clutter, and changes in sea conditions will have a great
impact on the SCR. Therefore, its noise immunity is not as good as cross-polarization, so the
probability of using cross-polarization to detect targets is higher. In different polarization
modes, the average detection probability of HV polarization is 0.47% lower than that of
VV polarization.

Table 11. Average detection probability of different conditions.

Observation Time (s)
Polarization Mode

Average Pd of Different Observation Time
HH HV VH VV

0.512 98.76% 98.85% 98.84% 98.13% 98.65%
1.024 99.09% 99.29% 99.30% 98.72% 99.10%
2.048 99.45% 99.53% 99.43% 99.10% 99.38%
4.096 99.64% 99.66% 99.67% 99.49% 99.62%

Average Pd of Different Polarization Mode 99.24% 99.33% 99.31% 98.86%

4.2.2. Feature Importance

A feature is randomly removed to determine the impact of the test feature on the
detection performance. Table 12 lists the performance loss of different features by using
the data with a sub-signal length of 4096 in training and testing different polarization data.
The rest of the information about the data is the same as before. It can be found that VV
polarization is sensitive to characteristic changes. RPH, RIED, and MSC have a greater
impact on the detection results, and any removal of a feature will have a negative impact
on the detection results, which can indicate that each feature contributes to the detection
results, so it is necessary and effective to construct a joint feature space.

4.3. The Comparision of Results of Different Methods

In this subsection, the validity of the model is verified from different angles. First,
several deep learning and ensemble-learning models are selected to verify the effectiveness
of the proposed method’s model selection and feature vector construction. Then, the
detection results of the proposed model are compared with that of the published detectors.
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Table 12. Performance loss of removing different features.

Removed Feature RMA RIET RPH RIED NCR MSC

Train

HH 0.15% 0.12% 0.40% 0.32% 0.14% 0.45%
HV 2.69% 0.10% 0.41% 0.33% 0.14% 0.48%
VH 0.19% 0.14% 0.45% 0.37% 0.18% 0.71%
VV 0.19% 0.15% 0.55% 0.56% 0.22% 0.64%

Average Loss 0.80% 0.13% 0.45% 0.39% 0.17% 0.57%

Test

HH 0.16% 0.12% 0.39% 0.31% 0.16% 0.49%
HV 2.69% 0.13% 0.46% 0.35% 0.20% 0.51%
VH 0.19% 0.14% 0.50% 0.37% 0.18% 0.69%
VV 0.21% 0.14% 0.55% 0.61% 0.22% 0.64%

Average Loss 0.81% 0.13% 0.48% 0.41% 0.19% 0.58%

4.3.1. Model Validity Check

In order to verify the effectiveness of the model and the construction of feature vectors,
this paper selects representative methods in the deep learning model and the ensemble-
learning model, respectively and inputs the feature vectors constructed in this paper
into the network for classification. These comparison methods are multilayer perceptron
classifier, SVM (linear classifier), logistic regression, k-nearest neighbors, Gaussian naïve
Bayes and Xgboost. The selection of the SVM kernel function is briefly explained here. The
kernel function used in SVM can be divided into Linear kernel and Gaussian kernel, which
is what we often call linear kernel and RBF kernel. The choice of the two will be different
due to the different problems they deal with, the number of features and samples. The
sample data in this experiment is large, and the number of features is small. The calculation
uses the libSVM library developed by National Taiwan University. The library’s guidance
document states that when the sample size is greater than 10,000, RBF will bring huge time
consumption, so Linear kernel support vector machines are more suitable for this situation.

In the experiments, take the polarization model as HV, d = 4096 and the observation
time for one decision is 4.096 s. The classification results are shown in Table 13.

Table 13. Average FAR of different conditions.

Model Average Train Accuracy Average Test Accuracy

gcForest 99.63% 99.66%
Multi-layer Perceptron Classifier 91.11% 91.02%

SVM (Linear Classifier) 96.91% 96.96%
Logistic Regression 98.25% 98.21%

K-Nearest Neighbors 98.50% 98.24%
Gaussian Naive Bayes 97.52% 97.44%

Xgboost 99.18% 99.07%

It can be seen from the experiment results that, first, the selection of features is suitable
for the classification of targets and clutter, and second, the performance of the proposed
detector is the best among all models.

4.3.2. Comparison of Detection Performance

Next, on the 14 IPIX datasets, the six-feature fusion deep forest-based detector pro-
posed in this paper is compared with the three-feature detector using SVM-based [33]
and Decision Tree-based [34] as the detection framework. Figure 18 shows the accuracy
performance of the three classifiers for the target and clutter classification under the four
polarization modes of 14 data. The observation time of the data selection is 4.096 s. It
can be seen from the results that in the four polarization modes, the performance of the
SVM-based detector is slightly inferior to the other two methods. Its average detection
accuracy rate is 88.87%, average FAR is 0.0319. From Figure 17, the performance of the
SVM-based detector is not very stable, and there will be large fluctuations in different
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data, indicating that the changes in sea clutter and target echo caused by changes in sea
conditions have a greater impact on the detector. Another problem with this model is that
the classification accuracy of the target is extremely low in some data, but the classification
of clutter is fully accurate. The main reason for this is that clutter data accounts for a
large proportion, and even though SVM is a more suitable model for dealing with class
imbalance problems, it does not perform very well in handling this problem. The average
detection accuracy rate of a decision tree-based detector is 96.26%, the average FAR is
0.0190, the test results are maintained at a relatively good level. Experiments show that the
anti-interference of the tree model is more robust.

Remote Sens. 2021, 13, 812 30 of 34 
 

 

detection accuracy in each data or its achieved FAR. The results show that a combination 
of six-dimensional features and the deep forest-based detector has strong anti-interference 
performance in changing environments. The classification accuracy of the detector for 
clutter and target is extremely high. Therefore, the effect of the ensemble-learning method 
in category imbalance samples is also verified. 

  
(a) (b) 

  
(c) (d) 

Figure 18. The influence of gcForest on detection probability of different polarization, red points in charts are the points 
with the highest detection probability. (a) HH polarization; (b) HV polarization; (c) VH polarization; (d) VV polarization. 

Table 14 shows the evaluation of the performance between the proposed detector in 
this article with the other six methods under varying detection situations. They are fractal-
based detector [26], tri-feature-based detector [32], TF-tri-feature-based detector [36], fea-
ture-compression-based detector [39], decision tree-based detector [34] and K-NN FAR-
controlled Detector [35]. Due to the different number and types of features used and dif-
ferent detection frameworks, the performance of the final constituent detectors are also 
different. 

From the results that the fractal-based detector obtains a lower detection accuracy 
rate because it only uses a fractal feature. The tri-feature-based detector, TF-tri-feature-
based detector and decision tree-based detector use three types of features to form 3-D 
feature vectors. Both tri-feature-based detectors, TF-tri-feature-based detectors use a de-
tector based on the improved convex-hull learning algorithm to detect the target and the 
decision tree-based detector chooses an improved decision tree as the detection frame-

Figure 18. The influence of gcForest on detection probability of different polarization, red points in charts are the points
with the highest detection probability. (a) HH polarization; (b) HV polarization; (c) VH polarization; (d) VV polarization.

Deep forest-based detector’s average detection accuracy rate is 98.76%; the average
FAR is 0.0080. The performance of this model is the best in terms of the stability of its
detection accuracy in each data or its achieved FAR. The results show that a combination
of six-dimensional features and the deep forest-based detector has strong anti-interference
performance in changing environments. The classification accuracy of the detector for
clutter and target is extremely high. Therefore, the effect of the ensemble-learning method
in category imbalance samples is also verified.

Table 14 shows the evaluation of the performance between the proposed detector
in this article with the other six methods under varying detection situations. They are
fractal-based detector [26], tri-feature-based detector [32], TF-tri-feature-based detector [36],
feature-compression-based detector [39], decision tree-based detector [34] and K-NN FAR-
controlled Detector [35]. Due to the different number and types of features used and
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different detection frameworks, the performance of the final constituent detectors are
also different.

Table 14. Detection probability comparison in different methods.

Observation Time (s)
Polarization Mode

HH HV VH VV

Proposed detector

0.512 98.76% 98.85% 98.84% 98.13%
1.024 99.09% 99.29% 99.30% 98.72%
2.048 99.45% 99.53% 99.43% 99.10%
4.096 99.64% 99.66% 99.67% 99.49%

Fractal-based detector [26]

0.512 58.50% 68.80% 69.20% 58.10%
1.024 61.00% 71.50% 71.00% 58.00%
2.048 68.90% 81.20% 81.20% 65.40%
4.096 – – – –

Tri-feature-based detector [32]

0.512 71.40% 72.60% 72.70% 64.50%
1.024 75.00% 76.40% 76.60% 72.50%
2.048 82.00% 82.60% 82.30% 72.50%
4.096 – – – –

TF-tri-feature-based detector [36]

0.512 74.70% 82.60% 84.20% 70.60%
1.024 82.10% 88.20% 87.80% 78.90%
2.048 – – – –
4.096 – – – –

Feature-compression-based detector
[39]

0.512 80.70% 88.00% 88.80% 78.80%
1.024 84.10% 92.00% 91.40% 83.90%
2.048 – – – –
4.096 – – – –

Decision tree-based detector [34]

0.512 85.00% – – –
1.024 86.00% – – –
2.048 87.00% – – –
4.096 89.00% – – –

K-NN FAR-controlled detector [35]

0.512 82.10% 88.70% 89.50% 80.00%
1.024 86.80% 92.20% 92.10% 85.80%
2.048 – – – –
4.096 – – – –

From the results that the fractal-based detector obtains a lower detection accuracy rate
because it only uses a fractal feature. The tri-feature-based detector, TF-tri-feature-based
detector and decision tree-based detector use three types of features to form 3-D feature
vectors. Both tri-feature-based detectors, TF-tri-feature-based detectors use a detector
based on the improved convex-hull learning algorithm to detect the target and the decision
tree-based detector chooses an improved decision tree as the detection framework. The
results show that the tri-feature-based detector and TF-tri-feature-based detector have
higher detection accuracy than fractal-based detector, which uses only one feature. The
addition of features helps to improve the target detection accuracy.

While decision tree-based detector, which also uses 3-D features, has a stronger detec-
tion ability than the tri-feature-based detector and TF-tri-feature-based detector, indicating
that an appropriate framework can effectively improve the detection ability of weak targets.
Feature-compression-based detector and K-NN FAR-controlled detector use the same fea-
tures to form the 7-D feature vectors. The difference is that the feature-compression-based
detector compaction the 7-D feature vectors to 3-D and uses the optimized convex-hull
learning algorithm to identify the target and clutter, while K-NN FAR-controlled detector
directly takes the extracted 7-D feature vectors as input and uses the improved KNN
algorithm for detection. The comparison of the two results shows that using the same
features; the machine learning framework can bring better learning results and higher
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detection accuracy. It can be found by the comparison; the proposed detector can provide
the best detection results under the four polarization modes and different observation time
length conditions.

The proposed method is compared with the optimal K-NN FAR-control detector,
when FAR = 0.01 and the observation time is 0.512 s, and 1.024 s, the average detection
accuracy of K-NN FAR-controlled detector is 85.00% and 89.23%, and that of the proposed
method is 98.65% and 99.10%, respectively 13.65% and 9.87% higher. This fully proves
that the constructed feature vector has better robustness and anti-interference, and the
proposed detector is more effective.

Aiming at the current problem of weak target detection on the sea surface, one can
start to solve this problem from multiple perspectives, such as exploring effective features
to construct robust feature vectors and constructing a reasonable detection framework to
maximize the utilization of feature vectors.

5. Conclusions

The detection of floating small targets under the background of sea clutter is a recog-
nized problem and has attracted extensive attention. With the stealth and miniaturization
of sea targets, improving the detection ability to float small targets is of great significance
for sea target detection. This paper proposes a high-dimensional feature space detection
method based on deep learning methods and obtains satisfactory results. The specific
contributions made are summarized as follows:

• Six features are selected from three domains to construct feature vectors for detection.
Ocean conditions are complex and constantly changing; a single feature cannot effec-
tively detect weak targets on the sea surface. In order to obtain efficient and accurate
detection results, this paper extracts six features that can distinguish weak targets and
clutter from the time domain, frequency domain, and time–frequency domain, namely
RMA, RIET, RPH, RIED, NCR and MSC;

• The deep forest model is used as the weak target detection framework for the first time,
and the main algorithm used is gcForest. The model is improved by introducing the
expected FAR value into the stop growth judgment condition of the gcForest cascade
level to construct a FAR controllable model.

The target detection is transformed into a binary classification problem of clutter and
target. Experiments verify the effectiveness of the model and compare the results with the
proposed method’s results; the model performance reaches the state of the art.

At the end of this paper, the limitation and development of weak target detection at
sea level are briefly explained. The lack of publicly marked measurement data for weak
targets at the sea surface is the biggest limitation of the current problem. In addition to IPIX
data, there is a CSIR dataset jointly owned by ARMSCOR and SAAF, but unfortunately,
this dataset is no longer available to the public. Although the data provided by the Naval
Aviation University of China [53] is publicly downloaded, it is not very suitable for the
training of weak target detection due to the lack of information on cooperative targets.
There are many other datasets, but they are not public. A large amount of measured data
are helpful to construct a data set with a balance of positive and negative samples, which is
also helpful to further reduce FAR and improve detection rate. Therefore, constructing a
complete annotated dataset is a long-term task.

The existing detectors still have plenty of room for development. To further improve
the performance of the detector, the future development direction of feature-based detectors
can mine more representative features from different domains and improve the detection
performance of the detection framework in a shorter observation time. At the same time,
with the target constantly updating iteration, the detection of targets with smaller size
and stealth materials is also worthy of attention. Combining the intelligence of emerging
disciplines with feature-based detection methods can more effectively detect targets and
improve the detection performance of slow, floating small targets under the background of
sea clutter.
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