
remote sensing  

Article

Uncertainty Assessment of the Vertically-Resolved Cloud
Amount for Joint CloudSat–CALIPSO
Radar–Lidar Observations

Andrzej Z. Kotarba 1,* and Mateusz Solecki 1,2

����������
�������

Citation: Kotarba, A.Z.; Solecki, M.

Uncertainty Assessment of the

Vertically-Resolved Cloud Amount

for Joint CloudSat–CALIPSO

Radar–Lidar Observations. Remote

Sens. 2021, 13, 807. https://doi.org/

10.3390/rs13040807

Academic Editor: Wei Gong

Received: 25 January 2021

Accepted: 19 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centrum Badań Kosmicznych Polaskiej Akademii Nauk (CBK PAN), 00-716 Warsaw, Poland;
mateusz.solecki@uw.edu.pl

2 Department of Climatology, University of Warsaw, 00-927 Warsaw, Poland
* Correspondence: akotarba@cbk.waw.pl

Abstract: The joint CloudSat–Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) climatology remains the only dataset that provides a global, vertically-resolved cloud
amount statistic. However, data are affected by uncertainty that is the result of a combination of
infrequent sampling, and a very narrow, pencil-like swath. This study provides the first global
assessment of these uncertainties, which are quantified using bootstrapped confidence intervals.
Rather than focusing on a purely theoretical discussion, we investigate empirical data that span
a five-year period between 2006 and 2011. We examine the 2B-Geometric Profiling (GEOPROF)-
LIDAR cloud product, at typical spatial resolutions found in global grids (1.0◦, 2.5◦, 5.0◦, and 10.0◦),
four confidence levels (0.85, 0.90, 0.95, and 0.99), and three time scales (annual, seasonal, and monthly).
Our results demonstrate that it is impossible to estimate, for every location, a five-year mean cloud
amount based on CloudSat–CALIPSO data, assuming an accuracy of 1% or 5%, a high confidence level
(>0.95), and a fine spatial resolution (1◦–2.5◦). In fact, the 1% requirement was only met by ~6.5% of
atmospheric volumes at 1◦ and 2.5◦, while the more tolerant criterion (5%) was met by 22.5% volumes
at 1◦, or 48.9% at 2.5◦ resolution. In order for at least 99% of volumes to meet an accuracy criterion,
the criterion itself would have to be lowered to ~20% for 1◦ data, or to ~8% for 2.5◦ data. Our study
also showed that the average confidence interval: decreased four times when the spatial resolution
increased from 1◦ to 10◦; doubled when the confidence level increased from 0.85 to 0.99; and tripled
when the number of data-months increased from one (monthly mean) to twelve (annual mean).
The cloud regime arguably had the most impact on the width of the confidence interval (mean cloud
amount and its standard deviation). Our findings suggest that existing uncertainties in the CloudSat–
CALIPSO five-year climatology are primarily the result of climate-specific factors, rather than the
sampling scheme. Results that are presented in the form of statistics or maps, as in this study,
can help the scientific community to improve accuracy assessments (which are frequently omitted),
when analyzing existing and future CloudSat–CALIPSO cloud climatologies.
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1. Introduction

Vertically-resolved cloud amount is essential for understanding Earth’s radiation bud-
get. Cloud radiative forcing varies from positive to negative, depending on cloud proper-
ties, and their location in the 3D troposphere [1]. Chepfer et al. [2] argue that as the climate
warms and clouds adjust to new conditions, the vertical cloud profile will provide a clearer
indication of the change than the column-integrated cloud amount. Early evidence of this
has already been noted by Norris et al. [3], who reported a statistically significant increase
in cloud top height globally.

The majority of methods that are used in cloud remote sensing exploit column-
integrated radiances. In such cases, information about clouds at various altitudes is
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inferred indirectly: by studying cloud top properties [4]. However, limitations inherent in
passive imaging and sounding techniques have led to disagreement in the global cloud
amount estimation. Depending on the considered dataset, mean cloud amount at low, mid,
and high levels varies from 26 to 62%, 12 to 55%, and 10 to 18%, respectively [5]. In practice,
the detection and accurate parametrization of multi-layered cloud remains a challenge for
even the most advanced imagers and sounders [6].

Two satellites have been launched that improve our knowledge of cloud vertical
distribution: CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tion (CALIPSO). The former carries a Cloud Profiling Radar (CPR), operating at 94 GHz,
while the latter hosts the Cloud-Aerosol Lidar with an Orthogonal Polarization (CALIOP)
instrument, that profiles the atmosphere at 532 nm and 1064 nm wavelengths [7,8].

Both lidar and radar are active sensing instruments: they send a radiation pulse
towards the nadir, then receive the backscattered signal. The analysis of the echo can
directly detect the presence of cloud along the line of sight, and this operating principle
represents a considerable improvement over cloud imagers/sounders [9]. Importantly,
lidar and radar are complementary techniques. The CALIOP signal is fully attenuated
when cloud optical thickness exceeds five [10]. On the other hand, CloudSat “misses”
thin clouds, but successfully penetrates optically thick layers, as far down as Earth’s surface
(except for dense hydrometeors, e.g., some precipitating convective clouds).

Launched together in 2006, CloudSat and CALIPSO were placed on almost-identical
sun-synchronous orbits with an equatorial crossing time of 13:30 local solar time (ascend-
ing node). Between June 2006 and April 2011, the pair of satellites flew in close orbital
formation, sampling the same region of the atmosphere only 10–15 seconds apart. Joint pro-
cessing of lidar and radar backscattered signals resulted in a dataset of vertically-resolved
cloud amount that, to date, remains one-of-a-kind. In 2011, the CloudSat and CALIPSO
tandem was temporarily interrupted. Although the satellites were reunited a year later,
they never regained their initial operational functionality [11].

CloudSat and CALIPSO’s ability to penetrate cloud is a trade-off for their instru-
ments’ swath width—both sensors only collect data along their overlapping ground tracks
(~1 km wide). The track repeats every 16 days, meaning a location is sampled 22–23 times
per year, or never (if outside the ground track). This unusual configuration introduces a
significant source of uncertainty for any climate-related statistic derived from the CloudSat–
CALIPSO dataset.

Various dedicated, theoretical formalisms have been developed (e.g. [12–17]) to as-
sess an area’s cloud fraction from a finite sample (a transect line in the case of profiling
instruments). For instance, van de Poll et al. [14] used a Bayesian Inference Algorithm to
calculate the a posteriori probability distribution of clouds, based on a priori assumptions
of the size and organization of clouds and cloud gaps, as well as the assumed cloud fraction
at the time of observation.

However, these theoretical models have not been widely adopted in practice, and the
“conventional” definition of cloud amount remains the preferred approach: the ratio of
cloudy pixels to all pixels along a transect of predefined length. The resulting CloudSat
and/ or CALIPSO climatologies are usually limited to the mean cloud amount and neglect
statistical uncertainty assessments [14]. If it is considered, uncertainty is expressed in terms
of standard deviation (e.g. [18,19]), and only occasionally as a confidence interval [20–22].

The goal of this study, therefore, is to provide a quantitative assessment of uncertainties
related to the vertically-resolved mean cloud amount calculated from joint CloudSat–
CALIPSO lidar–radar cloud profiles (2006–2011). We follow the conventional (i.e., the most
widely used) definition of cloud amount, so that our results can be directly applied to
existing and future CloudSat–CALIPSO climatologies. We focus on an empirical dataset,
consisting of five years of observations, rather than purely theoretical considerations.

The obtained results allow us to answer the question of whether it is possible to obtain
a mean cloud amount from joint CloudSat–CALIPSO observations, at a known accuracy
(1% or 5%), with a high confidence level (>0.95), and at fine spatial resolution (1◦–2.5◦).
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The results of our calculations are reported here, to help the scientific community interpret
various lidar/radar cloud climatologies.

2. Materials and Methods
2.1. Satellite Data

In this study, we focus on a particular CloudSat–CALIPSO data product: the radar-
lidar geometrical profile “2B-GEOPROF-LIDAR” (version P2_R05), also occasionally code-
named “RL-GEOPROF” [10,23]. The product considers CloudSat and CALIPSO missions
as a single observing system and combines their data streams. In particular, the following
products are merged:

• CALIPSO’s “Vertical Feature Mask” (VFM). The lidar profiles the atmosphere every
1/3 km along the ground track, however such spatial detail is only available below
8.2 km. In the upper troposphere (8.2–20.2 km), samples are averaged to 1 km.
Similarly, the vertical resolution varies from 30 to 60 m, respectively. “Features” in
the atmosphere are detected using the Selective Interacted Boundary Locator (SYBIL)
algorithm [24], and the tropospheric domain considers two classes: “cloud” and
“aerosol” (sub-types are also provided);

• CloudSat’s “Geometrical Profiling” (2B-GEOPROF) product. The radar has a 1.4 × 1.7 km2

footprint, and samples the atmosphere every 1.1 km along the track with a vertical
resolution of 480 m (oversampled to 240 m). The measured return power is examined
to distinguish between hydrometeors and the noise of clear atmosphere. The resulting
cloud mask is provided as a probability, reflecting the confidence level (ranging from
0 to 40) that a particular atmospheric volume features a hydrometeor [25].

During the cloud mask merge, CloudSat’s coarse geometry serves as a reference for the
final product: the horizontal spacing of joint profiles is set to ~1.1 km, while the vertical res-
olution remains at 240 m. The 2B-GEOPROF-LIDAR product reports up to five cloud layers,
separated by no less than four “clear” CloudSat volumes (i.e., 960 m in altitude). Each layer
is characterized by two science data variables: “LayerBase” and “LayerTop”, indicating the
geometric altitude of the layer base and the layer top, respectively. Details of the merging
strategy can be found in Mace et al. [23], while further improvements are reported in Mace
and Zhang [10].

The availability of the 2B-GEOPROF-LIDAR product is constrained by CloudSat’s
performance. For the first five years after its launch, the satellite operated nominally,
sampling the atmosphere 10–15 seconds ahead of CALIPSO. In 2011, a battery problem re-
sulted in it losing synchronization with CALIPSO, and the joint mission temporarily ceased.
After a year-long recovery effort, CloudSat resumed observations with CALIPSO. How-
ever, technical issues required the adoption of a new mode of action: Daylight Only
Operations (DO-Op).

While it still follows CALIPSO, CloudSat is only able to sense the atmosphere during
the daylight portion of its orbit, i.e., for ~60 of the 99 minutes that make up a full or-
bit [11,26]. As a result, ~40% of scientific data are lost. The missing data relate to nighttime,
hence any cloud climatology developed with CloudSat data after 2012 features a significant
bias, especially over the oceans [27]. In its DO-Op configuration, CALIPSO data overlap
with degraded CloudSat data, due to fewer orbit adjustment maneuvers for the latter.
The temporal separation between the two spacecrafts has increased to ~100 seconds [28].

Considering the history of CloudSat–CALIPSO joint operations, and the quality of
the lidar–radar overlap post-2012, we decided to only evaluate the 2006–2011 part of
the 2B-GEOPROF-LIDAR product. Using the terminology provided by CloudSat’s sci-
entific team, the dataset spans the period Epoch 00 (starting 2 June 2006) and Epoch 04
(ending 17 April 2011). It comprises the longest homogenous lidar–radar cloud profile
record available for climate studies to date. Nonetheless, the approach used in this study
can be also successfully applied to DO-Op data, for applications that require/accept a
limited dataset.
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Our CloudSat–CALIPSO data were accessed from the CloudSat Data Processing Cen-
ter, operated by the Cooperative Institute for Research in the Atmosphere (CIRA), a research
institute at Colorado State University (http://www.cloudsat.cira.colostate.edu).

2.2. Cloud Amount

This study adopts the most widely-used definition of cloud amount (cloud fraction):
the ratio of cloudy observations to all valid observations. Whether a particular level of
a lidar–radar profile was “clear” or “cloudy”, was determined from “LayerBase” and
“LayerTop” variables given in the 2B-GEOPROF-LIDAR product. We only considered
those profiles for which the “Data_quality” flag was set to “0” (“data of good quality”).

Since we investigated vertically-resolved cloud amount, calculations were made with
respect to an atmospheric volume. This 3-dimensional space in the atmosphere is 480 m
high (i.e., the original CloudSat vertical resolution), and has a width determined by the
grid box size. For instance, a 1◦ grid resulted in 2,592,000 atmospheric volumes.

During a single CloudSat–CALIPSO overpass, a volume was sampled along a transect.
The exact number of lidar–radar profiles constituting the transect varied, depending on the
grid box size, and the transect orientation with respect to the center. The total number of
transects per volume, for the whole 2006–2011 timeframe, depended on the spatial resolu-
tion. For example, values ranged from ~300 close to the equator, increasing poleward up to
~4500 when 1◦ data were considered (Table 1).

Table 1. Statistics regarding the atmospheric volumes sampled by CloudSat–CALIPSO, and analyzed in this study.
Data show: (1) the fraction of volumes that were not sampled due to either the orbit inclination, or a lack of groundtrack
coverage; “excl. polar” is the fraction for latitudes between 81.2◦N/S; (2) ninimum, mean, and maximum number of
observations (transects) per volume; (3) The fraction of volumes for which cloud amount was monotonic, i.e., always equal
to 0%.

Spatial Resolution Volumes Not Sampled (%) Number of Observations/Transects Monotonic
(% of Obs.)Globally Excl. Polar Min Mean Max

1.0◦ 9.33 0.49 0 243 3166 3.49
2.5◦ 8.33 0.00 314 648 4549 1.12
5.0◦ 5.56 0.00 610 1267 4713 0.29

10.0◦ 0.00 0.00 1342 2428 5167 0.00

Since the grid resolution used for the spatiotemporal aggregation of profiles could
have an impact on the final statistics, all calculations were performed simultaneously at
four spatial scales: 1.0◦, 2.5◦, 5.0◦, and 10.0◦. The influence of temporal averaging was ac-
knowledged by considering three domains: the annual mean, the seasonal (autumn) mean,
and the monthly mean (September). Although the choice of season and month was some-
what arbitrary, results for other seasons/ months showed the same patterns.

Only atmospheric volumes located below 19.2 km (the troposphere) were analyzed.
Statistics are reported for the whole tropospheric profile, and the common cloud levels (low,
mid, high) defined by the World Meteorological Organization (WMO; Figure 1). The WMO
divides clouds into three levels, based on the altitude range where the genera occur most
frequently. The upper and lower bounds of a level vary with latitude, as the cloud regime
changes towards the poles (at the tropopause the height decreases). For instance, mid-level
clouds occur between 2 and 8 km in the tropics, at 2–7 km in mid latitudes, and 2–4 km
in polar regions. Clouds below 2 km are always classified as low level, regardless of the
latitude [29]. Since CALIPSO reports clouds with respect to sea level, our definition of
cloud levels also refers to sea level (Figure 1).

http://www.cloudsat.cira.colostate.edu
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Figure 1. Zone-averaged cloud amount based on CloudSat-CALIPSO data (2006–2011), showing the region of the tropo-
sphere considered in this study. White lines represent the upper boundary of cloud levels (low, mid, high), and reflect actual
change in tropopause height (rather than the less-realistic fixed altitude).

Mean cloud amount was the point estimate under evaluation in this study. Our goal
was to assign a confidence level to the mean, taking into account the specific sampling
scheme of the CloudSat-CALIPSO joint mission, and the empirical data. Uncertainty in
mean cloud amount was evaluated in terms of the confidence interval (CI). Upper and lower
bounds were identified using a non-parametric bootstrap approach [30–32]. The procedure
was as follows.

First, a cloud amount was calculated for each of n CloudSat–CALIPSO transects
within a volume. The resulting n-element sample was then randomly re-sampled (with
replacement) 10,000 times, to compute a mean cloud amount. The 10,000 bootstrap means
were normally distributed, with standard error SE*, and mean t*. The latter represents the
final (bootstrapped) estimate of the mean cloud amount for an atmospheric volume.

The CI for the mean was derived from the bootstrapped distribution, and accounted for
bias (b), i.e., the difference between the sample mean (t0), and the bootstrapped mean (t*):

t0 − b ± zα·SE*, (1)

where:

t0—mean cloud amount in the original sample;
b—bias in the mean estimate, b = t* − t0;
t*—bootstrapped estimate of mean cloud amount;
zα—1 − α/2 quantile of the standard normal distribution;
SE*—standard error of the bootstrapped estimate.

The estimation of the CI required a confidence level (CL) to be set prior to the calcu-
lation. The choice of the CL impacts the width of the CI: higher CLs produce wider CIs.
In order to gain a deeper insight into how the choice of CL determines uncertainty in
cloud amount estimates, we simultaneously investigated four possibilities: CL = 0.85,
CL = 0.90, CL = 0.95, and CL = 0.99. All calculations used the “bootstrap” package of the
R statistical environment.
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For some volumes, the CI could not be calculated due to a monotonic variable: cloud
amount for all of n observations was 0% (Table 1). This mostly occurred in the cloud-
free upper atmosphere, especially the tropics. For these volumes, CI = 0% was assigned.
For some volumes the CI formula resulted in upper/ lower bound estimates above/ below
the possible range of cloud amount (0–100%). This was corrected by assigning 0% to
negative values, and 100% to overestimates.

3. Results

The average width of the CI for the CloudSat–CALIPSO-based estimation of mean
cloud amount was 8.27%. This figure refers to the annual mean, calculated using data
gridded at 1◦ spatial resolution, and assuming a CL of 0.95. The statistic varied as a function
of grid size, and CL (Table 2).

Table 2. Average width of the Confidence Interval (CI) for assumed Confidence Levels (CL), and grid
box sizes.

Confidence
Level (CL)

Width of Confidence Interval (%)
0.85 0.90 0.95 0.99

Annual mean
1.0◦ 6.10 6.96 8.27 10.81
2.5◦ 3.42 3.91 4.66 6.12
5.0◦ 2.19 2.50 2.98 3.91

10.0◦ 1.38 1.58 1.88 2.47
Seasonal mean (autumn)

1.0◦ 10.71 12.19 14.44 18.67
2.5◦ 6.20 7.08 8.43 11.04
5.0◦ 3.98 4.55 5.42 7.12

10.0◦ 2.53 2.89 3.45 4.53
Monthly mean (September)

1.0◦ 16.48 18.66 21.87 27.59
2.5◦ 10.14 11.56 13.72 17.83
5.0◦ 6.61 7.55 8.98 11.75

10.0◦ 4.26 4.86 5.79 7.60

Mean CI across all considered scenarios was relatively high: 26.21%. We observed the
broadest CI (27.59%) when mean monthly cloud amount was investigated at 1◦ resolution
and CL = 0.99. On the other hand, lidar–radar data processed with a 10◦ grid box and
CL = 0.85 resulted in the narrowest interval: 1.38%. At the same time, we noted three
distinct patterns that influenced CI widths.

Considering the change in the spatial scale of a grid box, we observed that CI width
increased approximately four times, as the spatial resolution increased from 1◦ to 10◦.
The pattern was identical regardless of the CL. For instance, if the CL was limited to 0.95,
the CI width was 1.88% at the coarsest spatial resolution, and 8.27% at the finest resolution.

Changing the CL over the range CL = 0.85 to CL = 0.99 almost doubled the CI width.
With data gridded at 1◦ resolution, the absolute CI width was 6.10% at CL = 0.85 and
increased to 10.81% at the higher CL (0.99). Here again, the same regularity was observed
among all considered resolutions (Table 2).

We also investigated the magnitude of the change in CI width as a consequence of
extending the timeframe. Statistics revealed that it nearly tripled when the number of data-
months used in the calculation increased from one (monthly mean) to twelve (annual mean).
For example, values increased from 8.27% to 21.87% for 1◦ data, and CL = 0.95.

Seasonal and monthly statistics featured the same regularities as annual data: a four-
fold widening of the CI with increasing spatial resolution, and a narrowing of the CI,
by half, as the CL fell. Table 2 reports data for September, and the autumn period (Septem-
ber to November). As results for other months and seasons did not differ from those
presented by more than ±1% of cloud amount, they are intentionally omitted.
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A single, global average CI width does not tell us much about the variability of actual
CI values for individual locations in the atmosphere (i.e., individual 3D volumes for which
CloudSat–CALIPSO estimates the cloud amount). This detailed information can be found
when histograms of CI width are considered (Figure 2).
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strategy. Note the variation in CI widths for annual (0–30%; (A,D,G,J)), seasonal (0–50%; (B,E,H,K)), and monthly (0–70%;
(C,F,I,L)) values.

These plots confirm that shifts in CI width are consistent with a change in CL,
grid box size, and the number of months used for the calculation. However, we ob-
served that the same parameters also influenced the shape of the CI distribution: it became
broader with an increase in grid box size and/ or CL, and with a decrease in the number
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of months considered. Consequently, CI width variability spanned over ~60% for the
monthly mean, ~40% for the seasonal mean, and ~20% for the annual mean (1◦ data,
CL = 0.95; Figure 2A–C). At 2.5◦ resolution these ranges were noticeably smaller: ~30%,
~20%, and ~10%, respectively (Figure 2D–F).

The distribution of CI widths revealed two maxima. The first corresponded to the aver-
age, while the second was located close to 0%. The latter maximum reflected the frequency
of monotonic observations, i.e., cases where cloud amount was constant or nearly con-
stant throughout a year/season/month. For the annual statistic, the maximum at 0% was
secondary, but became primary for seasonal and, especially, monthly calculations.

The bi-modal distribution was particularly noticeable at the finest spatial scale (grid
box of 1◦). A decrease in spatial resolution produced fewer monotonic observations;
therefore, the magnitude of the 0% maximum fell sharply. It was not observed at all
with 10◦ data, regardless of the CL, or the number of months included in the calculation
(Figure 2J–L). For intermediate resolutions, the maximum only appeared at seasonal and
monthly scales (Figure 2D–I).

Our results showed that the width of the mean cloud amount CI varied with geo-
graphic location. We observed a possible impact of both the number of CloudSat–CALIPSO
observations, and cloud regime. Figure 3 shows the spatial variability of the column-
averaged CI width at 2.5◦ spatial resolution and CL = 0.95. Patterns observed for other
grid box sizes and CLs were similar.

Mid-latitude CI were broadest (5%), especially close to ~50◦N/S. Poleward, as the
density of satellite passes per grid cell increases, the CI width becomes narrower, and even-
tually reaches 1% at ~85◦N/S. On the other hand, the CI narrows towards lower latitudes,
compared to values observed at mid-latitudes. However, in this case, the decrease is less
significant (down to 3%) and is followed by an increase in CI width over locations along
the Intertropical Convergence Zone (ITCZ).

Variation in CI widths within 30◦N/S partially resembled the spatial distribution of
low clouds (e.g., marine stratocumulus). Therefore, we recalculated the column-averaged
CI width, but considering each cloud level—low, middle, high—separately.

The pattern we observed for the lower troposphere (Figure 3B) differed noticeably
from those obtained for mid- and high-levels (Figure 3C,D). First, we noted no increase
in CI width due to the ITCZ. Second, locations associated with tropical marine stratocu-
mulus featured higher CI widths in the lower troposphere (~5%), than in middle or upper
parts (~2–3%).

When considering only high-level clouds (Figure 3D), CI widths were greatest (>5%)
along the ITCZ. The tropical upper atmosphere was also the region in which variability in
CI width was largest: between 0% and 8% (for 2.5◦ data, CL = 0.95). Given that the middle
and upper atmosphere constitutes the majority of the atmospheric volume, patterns noted
for these highest levels dominated column-averaged statistics (Figure 3A).
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Figure 3. Column-averaged CI widths for mean annual cloud amount at all levels (A), low (B),
mid (C), and high level (D), along with corresponding change with latitude (boxplots on the right;
the bold red line is the mean cloud amount, the thick red line is standard deviation of cloud amount).
Statistics for data analyzed at 2.5◦ spatial resolution, and CL = 0.95. Low/ mid/ high cloud levels are
defined in Figure 1.
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4. Discussion

In this study, we investigated uncertainties associated with mean cloud amount
calculated from joint CloudSat–CALIPSO mission data. Rather than taking a purely
theoretical approach (e.g., van de Poll et al. 2006), we evaluated actual uncertainties as
they exist in the empirical dataset. The magnitude of uncertainty, expressed by the width
of the CI, varied with grid box size, CL, and the number of observations. Whether these
uncertainties are significant for climate studies depends on the application.

The Global Climate Observing System (GCOS) and the US National Institute of
Standards and Technology (NIST) have proposed some general requirements for satellite-
based data products. In particular, the NIST recommends 1% accuracy for global mean
cloud cover [33], while the GCOS has adopted a wider range of target accuracies: 1% to 5%.
The higher value refers to optically thin clouds, the lower value to optically thick clouds [34].
The GCOS also calls for cloud data to be available globally, every three hours, at a spatial
resolution of 50 km (0.5◦ at the equator). Neither the NIST nor the GCOS give requirements
for vertically resolved mean cloud amount, solely focusing on column-integrated values.

The requirements given in the NIST and GCOS guidelines are parameter-oriented,
meaning that they do not provide instructions on how to (technically) design an observing
system as such. Any configuration is allowed, as long as the requirements are met. As pa-
rameters are investigated globally, it is unlikely that a single sensor (or a single observatory)
could produce a dataset that fulfils all of the spatial and temporal requirements. As we
will demonstrate, that is also true for the CloudSat–CALIPSO joint mission. Therefore,
we used the NIST/GCOS requirements as a general benchmark for characterizing the
performance of a lidar–radar mission with a 16-day revisit period.

CloudSat and CALIPSO circle Earth on Sun-synchronous orbits, hence they always
sample the atmosphere at the same local solar time. The configuration makes it impossible
to capture a diurnal cycle of the cloud amount and does not meet the GCOS temporal
requirements of eight observations per day. The diurnal cycle of cloud profiles can be
resolved with a single lidar mission, but only when the orbit is not Sun-synchronous.
This was the case for the Cloud-Aerosol Transport System (CATS) lidar that operated
onboard the International Space Station [27]. CATS data made it possible to compute
the cloud amount at a given time of the day, but only as a multi-annual mean (a mean
diurnal cycle). Three-hour data were not available every day—unlike data provided by
the International Satellite Cloud Climatology Project (ISCCP) [35]. Such high temporal
frequency sampling is beyond the capacity of any existing or planned lidar/ radar profiling
mission. On the other hand, although ground-based lidar/ radar systems are capable of
providing atmospheric profiles at very high temporal and vertical resolution, this is only
possible for a limited number of fixed locations.

The footprint of the CloudSat–CALIPSO product is ~1 km, therefore the GCOS require-
ment of 50 km spatial resolution is, theoretically, met. Unfortunately, the narrow swath
of both the lidar and the radar only allow sampling of locations along the ground track.
The distance between adjacent paths leads to large data gaps. This can be mitigated by
increasing the size of the grid box used for data integration. Nevertheless, a gap-free map
would require a resolution below 1◦ (~100 km at the equator), as demonstrated in this
study. For this reason, global CloudSat and/ or CALIPSO products are released at coarse
resolution. For instance, the “CALIPSO-GOCCP GCM Oriented Cloud CALIPSO Prod-
uct”, designed to evaluate cloudiness in Global Circulation Models is delivered at 2◦

resolution [36].
Our findings only allow us to assess cloud amount accuracy requirements in the

context of the CloudSat–CALIPSO joint mission. Here, we assume that “accuracy” can be
approximated by the width of the CI, since the absolute (“true”) value of cloud amount
is never known. We were able to calculate how many CloudSat–CALIPSO atmospheric
volumes featured an estimated mean cloud amount with a CI ≤ 1%, 5%, and 10%. Statistics
were calculated based on data that assumed a CL = 0.95.
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Our results show (Figure 4) that the requirement of 1% accuracy (CI = 1%) is met by
~6.5% of CloudSat–CALIPSO volumes in the troposphere, regardless of whether a 1◦ or
2.5◦ grid is used. Lowering the expected accuracy to 5% allowed more volumes to meet
the requirement: 22.5% of volumes at 1◦ resolution, or 48.9% at 2.5◦ resolution. On the
other hand, if the requirement is to have at least 99% of volumes meet the accuracy criterion,
the criterion itself would have to be 20% for 1◦ data, or 8% for 2.5◦ data.
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Figure 4. Percentage of atmospheric volumes that meet the cloud amount accuracy criterion (approximated by the width of
the 95% CI) at annual (A), seasonal (B), and monthly (C) time scale.

The extent to which the accuracy requirement can be met varies spatially (Figure 5).
Fewer than half of volumes in the atmospheric column met the 5% requirement at mid-
latitudes and in the ITCZ (Figure 5B,E). On the other hand, almost all volumes (>80%) met
the 5% requirement in polar regions and in the tropics. At high latitudes, this was due to
frequent sampling by the lidar and radar, while the tropics featured an almost-constantly
cloud-free atmosphere (except for shallow convection in the lower troposphere).
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Figure 5. Column fraction of atmospheric volumes meeting the cloud amount accuracy requirement of 1% (A,D), 5% (B,E),
and 10% (C,F), with respect to the spatial resolution: 2.5 degree (A–C), and 1.0 degree (D–F). Accuracy is approximated by
the width of the 95% CI. Five-year mean annual cloud amount is considered.

Our statistics clearly suggest that 1% accuracy (i.e., CI = 1%) for annual mean cloud
amount is not achievable with a mission that uses the CloudSat–CALIPSO configuration,
even with a five-year time series. In order to have >99% of mean cloud amount estimations
in the troposphere, with CI = 1%, the spatial resolution of the cloud climatology would
have to be below 10◦. However, 5% accuracy is achievable for almost all regions of the
troposphere at 5◦ resolution. Meeting the requirements at seasonal (Figure 4B) and monthly
(Figure 4C) scales is more challenging.

An alternative approach to evaluating the degree of uncertainty is to test whether
uncertainties are smaller than the climate change signal predicted by cloud amount trends.
Chepfer et al. [2] used climate models to produce lidar-like cloud profiles for the present-
day climate, and for a future, warmer atmosphere (i.e., a +4 K increase in global air temper-
ature). The latter authors only used lidar data, distinguishing between optically thick and
thin clouds. This was a slightly different configuration to the one evaluated in this study
(joint CloudSat–CALIPSO profiles, all clouds).
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Nevertheless, we applied our CLs to the differences between the present and the
warmer climates reported by Chepfer et al. [2]. Specifically, we compared the vertical
change in CI width from our research with the vertical change in cloud amount anomaly
reported in Figure 3 in Chepfer et al. [2]. The “anomaly” was defined as the difference
between the future and the present CALIPSO-like cloud amount profile (the authors
considered two models: the CanAM4 model, and the HadGEM2 model). Whenever the
cloud amount anomaly at a given altitude was greater than the CI width for that altitude,
we concluded that the climate signal exceeded the uncertainty (noise) level.

We found that the magnitude of uncertainty in the CloudSat–CALIPSO 5-year clima-
tology makes it impossible to detect statistically significant changes in cloud amount at
most atmospheric levels. Considering thin clouds, the only detectable changes are in the
upper troposphere (>10 km), regardless of the latitude. For thick clouds, a statistically
significant change may be expected at altitudes of between 8 km and 12 km in the tropics,
and below 5 km in polar regions. Again, it should be emphasized that we investigated
joint lidar–radar profiles, while Chepfer et al. [2] only evaluated lidar-like observations.

We evaluated the width of the CL for mean cloud amount. Various factors that
influence this width were investigated: the cloud regime (average cloudiness, its vari-
ability), geography (longitude, latitude, altitude), and technical/ statistical aspects (CL,
the number of observations, grid size). An interesting question was which of these factors
(or group of factors) had the largest influence on CI width. To find this out, we used a
multivariate regression model, followed by a decomposition of the resulting coefficient of
determination (R2).

Although regression models require regressors to be independent, we intentionally
decided to not exclude any variable (Table 3). This was because our goal was not to develop
a typical, predictive model, but rather to gain a general insight into the contribution
of different variables to CI widths. The contribution was calculated using the relative
importance (‘realimpo’) package developed by Grömping [37] and implemented in the
‘R’ statistical environment. First, we constructed a linear multivariate regression model,
then each individual regressor’s contribution to the model’s R2 was calculated following
the method given in Lindeman et al. [38].

Table 3. Partial contribution of variables to the model’s determination coefficient (R2). Partial
coefficients are not scaled, i.e., they sum up to the overall value of R2. Results refer to cloud amount
analyzed in the annual timeframe.

Partial Contribution to R2
Grid size: 1◦ 2.5◦ 5◦ 10◦

Model’s overall R2: 65.3 87.6 89.8 91.1
Cloud regime

mean cloud amount 14.7 20.2 21.0 21.4
std. dev. of cloud amount 30.9 37.5 37.5 36.4

Geography
latitude <0.1 <0.1 <0.1 <0.1

longitude 0.1 0.1 0.1 0.1
altitude 1.9 2.6 2.0 2.3

Statistical
no. of observations 6.6 8.8 10.5 9.5
Confidence Level 11.1 18.4 18.7 21.4

For our CloudSat–CALIPSO dataset, the considered model (Table 3) explained 65.3%
of CI variability at 1◦ resolution, and >87% at coarser resolutions. As expected, the cloud
regime was the dominating factor, since cloud amount and its standard deviation directly
impact the bootstrap’s standard error, and thus the CI width. The only unknown was
the relative impact of the cloud regime. The analysis found that the factor constituted as
much as ~60–70% of R2, regardless of the spatial resolution of the grid. Of the “statistical”
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variables, a predefined CL was always twice as important as the number of observations,
and together they contributed ~30% to R2. Geographical factors were practically irrelevant.

The results of our assessment of the relative importance of different factors leads us to
conclude that, on a global scale, the sampling frequency of the CloudSat–CALIPSO mission
is sufficient to provide reliable cloud amount statistics. A higher sampling frequency would
not result in a narrower CI, as it is primarily determined by the cloud regime—a factor
that is not controlled by humans (unlike an orbit design). On the other hand, the statistic
given in Table 3 is globally-averaged, meaning that for some locations the actual number of
observations is much smaller than the global average and, for those volumes, the number
of observations will be higher. Additionally, the global statistics is, to some extent, biased
by the number of cloud-free and almost-cloud-free volumes located in the mid- and
upper-troposphere at low latitudes. These volumes were characterized by narrow CIs
regardless of the number of observations, as the variation in cloud amount was very small,
even monotonic.

5. Summary and Conclusions

Our study evaluated uncertainties in vertically-resolved cloud amount, resulting from
the unique, joint CloudSat–CALIPSO climatology (2B-GEOPROF-LIDAR product, ver-
sion P2_R05). Our dataset covered the pre-Daylight Only Operations era of the CloudSat
mission, i.e., the longest unbiased record of joint radar–lidar observations. Uncertain-
ties were examined in terms of the CI, calculated with the bootstrap approach. In order to
obtain a comprehensive insight into factors that control CI widths, we simultaneously con-
sidered four spatial resolutions (1.0◦, 2.5◦, 5.0◦, and 10.0◦), four confidence levels (0.85, 0.90,
0.95, and 0.99), and three time scales (annual, seasonal, and monthly). Additional statistics
were provided for the more generalized low-, mid-, and high-levels defined by the WMO.
We found that:

• average CI width was 8.27% at 1◦ resolution, and CL = 0.95. However, CI widths:
(1) decreased four times as the spatial resolution increased from 1◦ to 10◦, (2) doubled
as the CL increased from 0.85 to 0.99, and (3) tripled as the number of data-months
increased from one (monthly mean) to twelve (annual mean);

• mean CI width was largest in the mid-latitudes and decreased towards the poles
and the equator. The greatest range of CI width variability occurred in the tropics
and resembled the spatial pattern of marine stratocumulus and the ITCZ. Regions of
tropical stratocumulus were correlated with higher CI widths in the low troposphere,
and the opposite trend was observed in overlying levels. In the ITZC, CI widths could
only be calculated for the mid and high troposphere;

• based on a general analysis of relative importance, the cloud regime (mean cloud
amount, and its standard deviation) was the most important factor impacting overall
CI width. On a global scale, the number of observations was an order of magnitude
less significant than the cloud regime, or the assumed confidence level. This sug-
gests that uncertainties in the CloudSat–CALIPSO annual climatology result from
the cloud regime (i.e., the typical cloud amount and cloud amount variability at a
specific location), rather than the current sampling strategy.

The central question of our study was to establish whether it is possible to obtain
a mean cloud amount from joint CloudSat–CALIPSO observations, at 1 or 5% accuracy,
with a high level of confidence (>0.95), and at a fine spatial resolution (1–2.5◦). Using CI
width as an indicator of accuracy, we demonstrated that the answer is negative, either at 1%
or 5% accuracy. The 1% requirement can only be satisfied if profiles are spatiotemporally
averaged at 10◦ resolution, and only for a five-year mean. The looser criterion of 5% can
only be met at four times lower resolution (5◦).

Existing uncertainties are unlikely to prevent the detection of a climate change signal
in high clouds globally, but only for thin clouds. Change in thick clouds may only be
detectable in the tropics, above 8 km, or in polar regions, below 5 km. For other locations,
altitudes and cloud types, the CI widths we noted were larger than model-predicted change
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in cloud amount. Although our findings need to be confirmed in more detailed studies,
we were able to compare our results with lidar-only cloud change scenarios.
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