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Abstract: With the rapid development of deep neural networks in the field of remote sensing image
fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable
effects. However, because remote sensing images contain complex features, existing methods cannot
fully extract spatial features while maintaining spectral quality, resulting in insufficient reconstruc-
tion capabilities. To produce high-quality pan-sharpened images, a multiscale perception dense
coding convolutional neural network (MDECNN) is proposed. The network is based on dual-stream
input, designing multiscale blocks to separately extract the rich spatial information contained in
panchromatic (PAN) images, designing feature enhancement blocks and dense coding structures to
fully learn the feature mapping relationship, and proposing comprehensive loss constraint expecta-
tions. Spectral mapping is used to maintain spectral quality and obtain high-quality fused images.
Experiments on different satellite datasets show that this method is superior to the existing methods
in both subjective and objective evaluations.

Keywords: convolutional neural network; multiscale perception; feature enhancement; comprehen-
sive loss; dense coding

1. Introduction

Since the 1960s, satellite technology has developed rapidly, and remote sensing tech-
nology has been widely used, for example, in environmental monitoring and geological
exploration, map navigation, precision agriculture, and national defense security [1]. Re-
mote sensing data is collected by satellite sensors with different imaging modes. The image
information contained in these different data has both redundant parts and complementary
parts in space. Remote sensing images can obtain visible light images that we are famil-
iar with and also multispectral and hyperspectral images with more abundant spectral
information. All objects on Earth emit or reflect externally in the form of electromagnetic
waves and absorb energy internally. Because of the essential differences between objects,
the electromagnetic characteristics they exhibit are also different. Remote sensing images
provide information about these objects and provide a snapshot of different aspects of
objects on the Earth’s surface. The combination of different vision technologies and remote
sensing technologies is more conducive for us to accomplish high-level vision tasks.

Limited by different satellite sensors, remote sensing imaging technology can acquire
only panchromatic (PAN) images with high spatial resolution and multispectral (MS)
images with high spectral resolution. For example, although Earth observation satellites
such as QuickBird, GeoEye, Ikonos, and WorldView-3 can capture two different types
of remote sensing images, satellite sensors cannot acquire MS images with high spatial
resolution due to the contradiction between spectrum and space, which cannot solve the
current research problems. This problem has led to the rapid development of multisource
information fusion technology. Therefore, a large number of studies are currently devoted
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to the fusion of MS images and PAN images. The fusion technology of MS images and PAN
images studied in this paper extracts rich spectral information and spatial information from
MS images and PAN images, respectively, and fuses different image information together
to generate composite images with hyperspectral resolution and spatial resolution. This
kind of fusion algorithm has become an important preprocessing step for remote sensing
feature detection and various land problem analyses, providing high-quality analysis data
for later complex problems.

To date, remote sensing image fusion algorithms can be roughly divided into com-
ponent replacement (CS) [1-4], multi-resolution analysis (MRA) [5-12], model-based opti-
mization (MBO) [13-21], and machine learning methods [22-45]. At present, the method
of CS is the earliest and most mature fusion algorithm, where the main idea is to use the
quantitative computing advantage of the color space model to linearly separate and replace
the spectral and spatial information of the image, and then recombine the replaced image
information to obtain the target fusion result. Intensity-hue saturation (IHS) [1], principal
component analysis (PCA) [2], Gram-Schmidt (GS) [3], and partial substitution (PRACS) [4]
all apply the idea of component replacement. In practical applications, although this kind
of algorithm can improve the resolution of MS images simply and effectively, it is usually
accompanied by serious spectral distortion.

The MRA method has also been successfully applied in many aspects of remote
sensing image fusion. The fusion method can be divided into three steps. First, the source
image is decomposed into multiple scales by using pyramid or wavelet transform. Second,
each layer of the source image is fused, and finally, the fusion result is obtained by inverse
transformation. Common MRA methods include Laplacian pyramid decomposition [5-7]
and wavelet transform [8-12]. Although these methods may affect the clarity of the image,
they have good spectral effects.

The MBO method establishes the relationship model between low-resolution (LR) multi-
spectral (LRMS) images, PAN images, and high-resolution (HR) multispectral images (HRMS)
and combines the prior characteristics of HRMS images to construct the objective function to
reconstruct the fused image. Some classic prior models include the Gauss-Markov random
field model [13,14], variational model [15-17], sparsity regularization [18-21]. Such methods
can achieve great improvements in gradient information extraction.

With the rapid development of the field of artificial intelligence, deep learning tech-
nology has achieved great success in the field of vision. Convolutional neural network
(CNN) has shown remarkable results in the field of deep learning. In the field of computer
vision, CNN has been successfully used in a large number of fields such as detection,
segmentation, object recognition, and image. CNN is an input-to-output mapping, which
can learn numerious mapping relations between input and output. Its characteristic is
that end-to-end training can effectively learn the mapping relations between LRMS and
HRMS images. Training is data driven and does not require manual setting of weight
parameters. Due to the complex spatial structure of remote sensing images and the local
similarity between geographic information, the contortion invariance and local weight
sharing of CNN have unique advantages in dealing with this problem. Its layout is closer
to the actual biological neural network, and weight sharing reduces the complexity of the
network, especially the feature that the image of multidimensional input vector can be
directly input into the network, which avoids the complexity of data reconstruction in the
process of feature extraction and classification. The CNN technique can retain the spectral
information of the image to a great extent while maintaining good spatial information.
The idea of this kind of method is inspired by super-resolution. Inspired by a deep con-
volutional network for image super-resolution (SRCNN) [22], Masi et al. [23] proposed
pan-sharpening by convolutional neural networks (PNNs) of a three-layer network. This
is one of the early applications of convolutional neural networks in remote sensing. With
the continuous deepening of deep learning networks, the fusion results obtained by the
complex and simple network structure can no longer meet the demand for images. Con-
volutional neural network has been widely used in remote sensing image fusion and its
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structure has become more and more complex. Wei et al. [24] proposed a deep residual
network (DRPNN) to extract more abundant image information. Yang et al. [25] proposed
a deep network architecture for pan-sharpening (PanNet), a residual structure of high-pass
domain training, on the basis of the previous deep learning network and better retained
the spectral information by means of spectral mapping. By learning the high-frequency
components of images, a correlation mapping relationship was obtained, and better fusion
results were obtained.

PanNet also has certain limitations. First, PanNet performs feature extraction by
directly superimposing PAN and MS images, resulting in the network’s inability to fully
utilize the different features of PAN and MS images and its insufficient utilization of
different spatial information and spectral information. Second, PanNet only uses a simple
residual structure, which cannot fully extract image features of different scales and lacks
the ability to recover details. Finally, the network directly outputs the fusion result through
a single-layer convolutional layer, failing to make full use of all the features extracted by
the network, which affects the final fusion effect.

In response to the above problems, we consider using a multiscale perception dense
coding convolutional neural network (MDECNN) to improve the learning ability and
reconstruction ability of the model. The problem of gradient disappearance caused by a
large number of network layers is avoided by means of skip connections. The different
features of MS and PAN images are extracted by dual-stream network input. At the
same time, multiscale blocks are designed to extract features from PAN images with
richer spatial information. Two different multiscale feature extraction blocks are used
to enhance the features of the network, and then the spectral and spatial features of
the image are reconstructed with complete detailed information through dense coding
blocks. Finally, the fusion image reconstruction is completed through a three-layer super-
resolution network.

The main contributions of this paper are as follows:

1. Inview of the limitations of image spatial information acquisition, a single multiscale
feature extraction block is used for feature extraction of PAN images with high spatial
resolution, which enriches the spatial information of network extraction.

2. We propose a feature extraction block composed of two multiscale blocks with differ-
ent receptive fields to enhance the image details in the training network and reduce
the loss of details in the network training process.

3.  We design a dense coding structure block to reconstruct the spectral and spatial
features of the image and improve the spectral quality and detail recovery capabilities
of the fused image.

4. We propose a comprehensive spectral loss, adding spatial constraints on the basis of
common L, loss, reducing the loss of edge information during training, and enhancing
the spatial quality of fused images.

5. The rest of this paper is arranged as follows: In Section 2, the background of image
blending and related work are introduced, and the CNN-based pan-sharpening
approach is briefly reviewed; in Section 3, we describe our proposed multiscale dense
network structure in detail; in Section 4 we present the experimental results and
compare them with other methods; in Section 5, we discuss the structure of multiscale
dense networks; and finally, I Section 6, we provide conclusions.

2. Background and Related Work
2.1. Traditionally Based Pan-Sharpening

Remote sensing image fusion combines multiple registered images of the same scene
into the same image. The resulting composite image has better image interpretation and
better visual effect than the remote sensing image obtained by a single sensor, which is
more favorable for subsequent processing. In the process of image fusion, the following
three conditions must be met: save all relevant information as much as possible, elimi-



Remote Sens. 2021, 13, 535

40f22

nate irrelevant information and noise, and minimize distortion and inconsistency in the
merged image.

In the IHS fusion algorithm proposed by Xu, the three bands of the multispectral
image are converted from the red, green, and blue color space to the IHS color space [26].
Intensity describes the luminance value based on the amount of illumination, hue is the
actual color, and saturation describes the luminance value measured as a percentage. The
IHS fusion algorithm replaces the intensity component with the PAN image to sharpen
the enhanced image and finally obtains the fused image through inverse transformation.
The GS method, proposed by Laben, C. A, is based on the general algorithm of vector
orthogonalization-orthogonalization [27]. Each band corresponds to a high-dimensional
vector, and the core of the algorithm is the input non-orthogonal vector, which is orthogonal
by rotation. First, the MS band is weighted to calculate a low-resolution PAN band. Then,
each band vector is processed using the GS orthogonalization method. Finally, the low-
resolution vector is replaced with the PAN image, and the fusion result is obtained by
inverse transformation [28].

The High-Pass Filter (HPF) method, proposed by Gangkofner et al. [29], injects high-
frequency components of PAN into MS images, which can effectively improve the problem
of spectral distortion. HPF first calculates the spatial resolution ratio of PAN and MS
images. On the basis of the resolution ratio, a high-pass convolution filter is established
for convolution calculation of HR input. Then, the HPF images are added to each band,
the HPF images are weighted according to the global standard deviation of the MS band,
and the weight factors are calculated according to the scale. Finally, linear stretching is
used to fuse the image.

Although the traditional algorithm has a relatively good effect, the use of the features
of the image itself is insufficient, and the efficiency in detail recovery is low. Deep learning
algorithms solve these problems better, therefore, in the field of remote sensing image
fusion, deep learning methods are more commonly used. The next section will introduce
the concept of remote sensing image fusion in the direction of deep learning.

2.2. CNN-Based Pan-Sharpening

In recent years, the use of deep learning technology in the field of remote sensing
image fusion has become increasingly extensive. Through the learning of image features,
corresponding losses and mapping relationships, HRMS images can be reconstructed.

Recently, Yang et al. [25] proposed a pan-sharpening method for MS images with deep
network structures. PanNet uses high-pass filtering to obtain high-frequency information
of MS and PAN images as the input of the network, and then improves the spectral
information of image fusion through spectral mapping. The experimental results show
that the deep residual network structure through high-pass domain training and spectral
mapping can make the image fusion algorithm show better results, and it also provides
more ideas for the research of remote sensing image fusion. Later, to further improve the
network quality, the Fu team [30] proposed a deep multiscale image sharpening method
using the dilated convolution block to extract the information of different scales of the
image, and then obtained better fusion results through the learning of the residual network.
A large number of network structure examples verify that the depth of the network and the
size of the receptive field have a significant influence on the quality of image fusion [31-45].

Deep learning technology is a training method with parameters. As shown in Figure 1,
we represent the PAN image as gpan (size : (H x scale) x (W x scale)) and the MS image
of N bands as gs(size : H x W x N). According to the Wald protocol [46], the MS and
PAN images are sampled up and down, respectively, obtaining the degraded images
8 ms(Hx W x N)andg',,,(H x W) to form the input data f(g’,,, &' )- Through deep
network training, the prediction loss between the generated image G = T(f(g’,,,, &’ pan )
and the reference image g5 is minimized, and the final data model is obtained. Finally,
in the testing phase, the trained data model is used to reconstruct the input real data
f'(§ms, gpan) to generate HRMS images G'.
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Figure 1. Workflow of the proposed convolutional neural network (CNN)-based pan-sharpening.

3. The Proposed Network

In this chapter, we introduce the proposed MDECNN, as shown in Figure 2. The dual-
stream network is used to extract the remote sensing image information contained in
the MS (size : H x W x N) image and PAN (size : H x W) image, and the fused image
G(size : H x W x N) is obtained after feature processing and image reconstruction of the

fusion network as:
Fpan = fup(6(6(PANp)))
Fyps = 6(5(T MSh))
where H denotes the high-pass information, é(-) denotes the convolution operation, and

fmp(+) denotes the multiscale feature extraction. Finally, we concatenate Fy;g and Fpyy to
from the fusion features as follows: F;

)

F; = Fyms ® Fpan )

where ® refers to the concatenation operation. Then, the output F,, is obtained through
the feature enhancement module and the output Fj, is obtained through the dense coding

structure as:
Fom = fem(3(3(F;))) ®3)
Fje = fdc(Fem)

where f., () denotes the feature enhancement operation and f;. denotes the dense coded
operation. The final prediction G is as follows:

A

G ~ 6(6(Fyc)) + Faet TMS 4)
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Figure 2. The detailed architecture of the proposed multiscale perception dense coding convolutional neural network

(MDECNN).

We attempt to use deep neural networks to learn the map between the input MS, PAN,
and output G. We us G to represent the reference target and use Loss regularization as
the loss function of the training to measure the magnitude of the error between G and G
as follows:

Loss=A[G=Gli +(1-1) | G-G |3 ®)

where the function || - ||; is the matrix norm, especially || - ||3 is the square of Frobe-
nius norm.

To obtain more spatial features, a multiscale feature extraction module was designed
to extract the feature information of the PAN image. The feature images extracted from
the dual-stream network are superimposed into the trunk network, and the features of
different receptive fields of the image are obtained by using the parallel dilated convolution
block. After the two-layer convolution, the feature is enhanced by skip connection with
the feature enhancement module. Then, a dense coding structure similar to the U-Net
structure, is sent for feature fusion and reconstruction. Finally, the fusion image is obtained
by enhancing the spectral information of the image by spectral mapping. The weight
parameters of the whole network are obtained by learning many nonlinear relationships
between simulated data and do not need to be set manually. The details of our proposed
network architecture are described below.

3.1. Multiscale Feature Extraction Block

The depth and width of the network have a significant influence on the image fusion
results. With a deeper network structure, the network can learn richer feature information
and context-dependent mapping. However, with the deepening of the network structure,
gradient explosion, gradient disappearance, training difficulties, and other problems often
occur. To solve relevant problems, He et al. [47] proposed a residual network structure,
the ResNet network structure. By means of skip connection, the training process is
optimized, while the network depth is guaranteed. In terms of the width of the network,
Szegedy, C. et al. [48] proposed an inception structure, which fully expands the width of
the network and enables the network to obtain more characteristic information.

Inspired by GoogLeNet, a multiscale feature extraction block was designed to extract
the rich spatial features contained in PAN images. Figure 3 shows the multiscale blocks we
designed for feature extraction of PAN images.
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Figure 3. Multiscale feature extraction block structure.

The convolution kernels with sizes of 7 x 7, 5 x5, 3 x 3, and 1 x 1 are used for
feature extraction of PAN images after two convolution layers. The size of the first three
convolution kernels to extract the characteristics of the different sizes of receptive field,
using the 1 X 1 convolution for dimension reduction of character figure, across the channel
characteristics of integration and model simplification, by the multiscale feature extraction
piece, we can get rich images in PAN image information.

3.2. Feature Enhancement (FE) Block

The feature enhancement module is shown in Figure 4.

Remote sensing images contain a large number of buildings, vegetation, mountains,
water, and other large-scale objects and contain relatively small-scale target objects such
as vehicles, ships, and roads. The traditional convolutional neural network selects the
convolution kernel of fixed size, and the receptive field is relatively small, so the context
information of the image is not sufficiently learned. To solve this problem, in this paper, the
feature enhancement block is proposed. As shown in Figure 4, we select three sensory fields
of 5x 5,3 x 3,and 1 x 1 and do not use an activation function to retain image information
when passing through the first convolutional layer. After the first convolutional layer,
we use a 3 x 3 convolutional layer to enlarge the feature sensory fields and obtain more
contextual information.

To enhance each feature detail in the remote sensing image, a dilated convolution
block, as shown in Figure 5, is designed in the trunk network to extract the multiscale
details of the image, and then the features extracted by a skip connection and parallel
feature extraction block are stacked to achieve the effect of feature enhancement.

We follow the experimental setting of Fu et al. [30] and set the dilation rate of the
dilated convolution block to 1, 2, 3, and 4. The magnitude of the receptive field of the
convolution kernel of the dilated convolution is d x (k — 1) + 1, where d represents the
dilation rate, and k represents the size of the convolution kernel. In the parameter setting,
the size of the standard convolution kernel and the dilated convolution kernel are both
3 x 3, the activation function is ReLU, and the number of filters is 64. In addition, after
the dilated convolution of each layer, a convolutional layer with the same dilation rate is
added to further expand the receptive field. Finally, a convolution layer of size 1 x 1 is
used for dimensionality reduction to reduce computing consumption.
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Figure 4. Feature enhancement module structure.
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Figure 5. Hybrid dilated convolution (HDC) module.
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Although the dilated convolution can increase the receptive field of the convolution
kernel by expanding the dilation coefficient, it has the problem of “meshing” [49]. In
remote sensing images, there are a large number of buildings, vegetation, vehicles, and
other objects. These feature-rich objects tend to gather in a large number in the same area,
so that there is a strong similarity in the spectrum and spatial structure. Therefore, the
use of dilated convolution will lead to the loss of local information from remote sensing
images.

To solve this problem, the feature enhancement method, mentioned above, is used
to extract multiscale features through parallel feature extraction blocks and to fuse and
enhance the features extracted by dilated convolution blocks in the trunk network to
improve the robustness of feature extraction in various complex remote sensing images.
In addition, through such a feature extraction method, we can extract more perfect spectral
information and spatial information and reduce the feature loss in the fusion process.

3.3. Dense Coding (DC) Structure

Considering the abundance of remote sensing image characteristics, a common net-
work structure would not be able to fully extract the deep image characteristics, easily
causing information loss in the process of convolution, therefore, we designed a dense
coding block to fully image the deep character extraction and avoid common coding in the
network layer useful information leakage problems. As shown in Figure 6, in the dense
coding network, the feature mapping obtained at each layer is cascaded with the input at
the next layer, and the information of the middle layer is retained to the greatest extent by
adding channels. At the same time, the feature multiplexing of dense connections does not
introduce redundant parameters and does not increase the computing consumption.

' Conv 3x3

nput | Conv 33 | Conv3x3 | Conv 33 |
2x64 2x64 3x64 Nx64
= lf;:gmre = feature — feature I~ 7 feature | feature
P map map map map

Figure 6. Dense coding structure.

There are three advantages to using a block-intensive architecture which are the
following: (1) it can hold as much information as possible; (2) this architecture can improve
the information flow and gradient flow in the network, making the network easy to train;
and (3) intensive contact has a regularized effect, which reduces the over adaptation of
tasks [50].

In the decoding stage, to avoid information loss caused by channel plummeting, a U-
Net decoding structure similar to the structure of the encoder is used, which is reduced to
the number of channels equivalent to the encoder each time to facilitate the full extraction
and fusion of features. Its structure is shown in Figure 7.

Conv 3x3 Conv 3x3 Conv 3x3 Outout
Nx64 N-1x64 N-2x64 tp
------ 64 feature
feature feature feature
map
map map map

Figure 7. Decoding structure.

In the encoding and decoding process, the convolution kernel size is set as 3 x 3 and
the number of channels is 64, so the reduction of channels at each layer in the decoding
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process is 64. Through the dense coding structure proposed by us, the deep features of
remote sensing images can be fully extracted, and the feature details can be fully recovered
in the subsequent image reconstruction process. With the deepening of the network depth,
spectral information is often seriously lost. Inspired by PanNet, the spectral mapping
method is used to enhance the spectral details of the image in the final image reconstruction
part of the network to ensure the spectral quality of the fused image.

3.4. Loss Function

In addition to the network architecture, the loss function is another important factor
affecting the fusion image quality. The loss function optimizes the parameters by minimiz-
ing the loss between the reconstructed image and the corresponding ground live HR image.

Thus, we give a set of training sets X = { (Xl(f), X](\z), F (i)) }, where Xl(ji ) and X](\Z) represent

the PAN image and LRMS image, respectively, and F(?) is the corresponding HRMS image.
In the existing remote sensing image fusion literature, most of the loss functions used are
L norm, i.e., root mean square error (MSE). By minimizing the prediction error between

the output data g (Xl(f), ng}) and the standard image, the nonlinear mapping relationship

between the input image and the output image is learned. The L, loss function is defined

as follows: )

1 (i) (i) (i)

Lo :argmmﬁx Hg(Xp 'XM) - Y (6)
X i=1 2

where N is the number of small batch samples and i is the ith image. We select the Adam

optimizer to carry out back propagation and optimize the allocation of all parameters in

the iterative network.

Sharpening the image using L, losses smooths the image and penalizes larger outliers
but is less sensitive to smaller outliers, meaning that the learning process slows significantly
as the output approaches the target. To make further improvements, additional small
outliers are processed, and image edge information is retained. The L; norm provides the
better effect, with the more pronounced smooth L; loss defined as follows:

0.5x2 if|x] <1

smoothy, (x) = { |x| — 0.5 otherwise

@)

Selecting the L, norm alone will cause the image to be too smooth and the edge infor-
mation will be lost. The use of L; norm alone will lead to insufficient training convergence
and serious spectral noise. In view of this problem, we have designed a mixed loss function
that uses the combination of L, loss and smooth L; loss. The loss of spectral information is
constrained by L, loss and smooth L; is used as the spatial loss constraint. The mixed loss

is defined as follows:
Loss = Asmoothr, + (1 —A)Ly 8)

Through experience, the value of A is set to 0.3.

4. Experimental Analysis

In this section, we will demonstrate the superiority of the proposed method through
experimental results on multiple datasets. By comparing and evaluating the training and
test results of the models with different network parameters, the best model is selected
for the experiment. Finally, the visual and objective indicators of our best model are
compared with several other existing methods to prove the superior performance of the
proposed method.

4.1. Dataset and Model Training

To evaluate the performance of our proposed dense coding network based on multi-
scale perception, we conducted model training and testing on datasets collected by three
different satellite sensors, GeoEye-1, Quickbird, and WorldView-3. The band number and
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spatial resolution of different satellite sensors are shown in Table 1. For the convenience of
training, the input images of each dataset are uniformly set as 64 x 64 image patch, and the
size of each training batch is 4. The train set is used for network training, while the test set
is used to evaluate network performance. The spatial resolution of the train set and the test
set are shown in Table 2.

Table 1. The spatial resolution of datasets from different satellites.

Sensors Bands PAN (GSD at Nadir) MS (GSD at Nadir)
GeoEye-1 4 0.41m 1.65m
Quickbird 4 0.61m 2.44 m

WorldView-3 8 0.31m 1.24m

Table 2. The spatial resolution of datasets from different satellites.

Dataset Train Set Test Set
GeoEye-1 750 200
Quickbird 750 200

WorldView-3 1000 300

The maximum number of training sessions is set to 350,000. For the Adam optimizer,
we set the learning rate to 0.001 and the exponential decay factor to 0.9. We set the
weight attenuation to 10~°. We use the proposed comprehensive loss as a loss function to
minimize the prediction error of the model, and the training time of the overall program is
approximately 26 h 54 min.

The network is implemented in the TensorFlow deep learning framework and trained
on an NVIDIA Tesla V100-5XM2-32GB, and the results are presented with ENVI Classic 5.3.

To facilitate visual observation, the red, green, and blue bands of the multispectral
image are used as the imaging bands of the RGB image to form color images. However,
in the calculation of objective indicators, other bands of the image will not be ignored.

4.2. Compare Algorithms and Evaluation Methods

For the three experimental datasets, we choose several typical representative meth-
ods of pan-sharpening as comparison methods. These include four CS-based methods,
i.e., GS [3], PRACS [4], IHS [1], and HPF [29]; two MRA-based methods, i.e., DWT [6] and
GLP [8]; one model-based method, i.e., SIRF [13]; and two methods based on the CNN, i.e.,
PanNet [25] and PSGan [51].

In real application scenes of remote sensing images, HRMS images are often lacking.
Therefore, in the comparison algorithm, we use the following two kinds of experiments for
comparison: one is the simulation experiment with HRMS images as a reference, and the
other is the real experiment without HRMS images. The evaluation criteria of the reference
images are as follows: the spectral angle mapper (SAM), the relative average spectral error
(RASE), the root mean squared error (RMSE), the universal image quality index (QAVE),
the relative dimensionless global error in synthesis (ERGAS), the correlation coefficient
(CQC), and the structural similarity (SSIM). The other assessments are based on the quality
with no reference index (QNR) and the spectral and spatial components (D, and Ds).

4.3. Simulated Experiments
4.3.1. Experiment with WorldView-3 Dataset with Eight Bands

Figure 8 shows a set of fusion results on WorldView-3 satellite data; the data are
8-band data. Figure 8a,b show the HRMS and PAN images with resolution, respectively.
Figure 8c—i are seven non-deep learning pan-sharpening methods, and Figure 8j-1 are deep
learning methods.
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(i) () (k) @

Figure 8. Results of the WorldView-3 dataset with four bands and 256 x 256 size. (a) Reference image; (b) panchromatic
(PAN) image; (c) intensity-hue saturation (IHS); (d) partial substitution (PRACS); (e) Gram-Schmidt (GS); (f) HPF; (g) multi-
resolution analysis-based method DWT; (h) multi-resolution analysis-based method GLP; (i) model-based method SIRF;
(j) CNN-based method PanNet; (k) CNN-based method PSGan; (1) MDECNN.

Figure 8 shows that seven methods of non-deep learning are accompanied by relatively
obvious spectral deviation. Among these methods, DWT and SIRF exhibit obvious spectral
distortion, while the edge details of the image are blurred. The IHS fusion image shows
partial detail loss in some spectral distortion areas and fuzzy artefacts in road vehicle
areas. The HPF, GS, GLP, and PRACS methods show good performance in the overall
spatial structure, but they are distorted and blurred in both spectrum and detail. For the
fusion method of deep learning, the image texture information performs well, but in terms
of spectral information, the fusion method of PSGan shows obvious changes in partial
regional spectra, while other differences are not obvious. To further distinguish the image
quality, we use the objective evaluation index mentioned before for further comparison.
The results are shown in Table 3.
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Table 3. Quantitative assessment of the WorldView-3 dataset is shown in Figure 8. The best perfor-
mance is shown in bold.

Method SAM RASE RMSE Q_AVE ERGAS CcC SSIM
IHS 3.5833 17.6374 0.0303 0.8141 4.4781 0.9640 0.7943
PRACS 3.6699 15.9310 0.0274 0.8334 3.9593 0.9681 0.8117
GS 3.3445 17.4713 0.0301 0.8210 4.4143 0.9648 0.8020
HPF 3.2204 16.0554 0.0276 0.8175 4.0414 0.9678 0.7888
DWT 7.9628 26.8781 0.0507 0.6631 6.8043 0.9069 0.6248
GLP 3.3376 16.0915 0.0277 0.8280 4.0460 0.9702 0.8061
SIRF 4.8736 16.0130 0.0277 0.8066 4.2910 0.9690 0.7985

PanNet 3.2644 12.6437 0.0218 0.8519 3.1523 0.9800 0.8309
PSGan 3.0051 12.3693 0.0210 0.8863 3.0607 0.9816 0.8788
MDECNN  2.0007 8.1989 0.0141 0.9306 2.0609 0.9917 0.9231

As shown in Table 3, from the perspective of the reference index of WorldView-3
dataset, the pan-sharpening method of deep learning is obviously better than the fusion
method of non-deep learning. Among these methods, GLP is superior to other non-deep
learning methods in overall effect, and the spectral information of fusion results obtained
by HPF and GLP is superior to that obtained by other non-deep learning methods. GLP
and PRACS are more complete in preserving spatial information than those of the non-deep
learning methods. The results obtained by the PRACS, HPFE, and GLP methods showed
no significant difference in image quality. In the pan-sharpening method of deep learning,
the effectiveness of the network structure directly affects the fusion effect. Therefore,
the method proposed in this paper is obviously superior to the existing fusion methods,
which proves the effectiveness of the method proposed in this paper.

4.3.2. Experiment with QuickBird Dataset

Figure 9 shows a set of fusion results on QuickBird satellite data with a dataset of
4-band images. Figure 9a,b show HRMS and PAN images with resolution, Figure 9c—i
represent seven non-deep learning pan-sharpening methods, and Figure 9j-1 represent
deep learning methods.

In Figure 9, the non-deep learning method obviously has spectral distortion. From
Figure 9c—i, the traditional fusion method more or less exhibits the whole spectrum dis-
tortion phenomenon. Among the methods, DWT, his, and SIRF present the most severe
spectral distortion. GLP and GS present obvious edge blurring in the spectral distortion
area, and the PRACS method presents artefacts in the image edge. The deep learning
method has good fidelity in both spectral information and spatial information, among
which the method proposed by us is the most similar to the original image in both spectral
information and spatial information. Table 4 below objectively analyses each method in
terms of index values.

As shown in Table 4, the QuickBird experimental assessment results show that the
performance of the pan-sharpening method, which is deep learning on the 4-band dataset
and is significantly better than the traditional method. In terms of the experimental results
of these data, HPF has achieved an overall better performance in traditional methods.
Although the HPF method and GLP method are not significantly different in other indi-
cators, the HPF method is obviously superior to the GLP method in maintaining spectral
information. PanNet and PSGan have good performance in the deep learning method,
but the method proposed in this paper is the best among all the existing methods in terms
of all the indicators.
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Figure 9. Results of the QuickBird dataset with four bands and 256 x 256 size. (a) Reference image; (b) PAN image; (c) IHS;
(d) PRACS; (e) GS; (f) HPF; (g) DWT; (h) GLP; (i) SIRF; (j) PanNet; (k) PSGan; (1) MDECNN.

Table 4. Quantitative assessment of the QuickBird dataset shown in Figure 9. The best performance
is shown in bold.

Method SAM RASE RMSE Q_AVE ERGAS CC SSIM
IHS 7.5079 29.8941 0.0390 0.6634 7.7151 0.9299 0.7206
PRACS 6.5212 30.1369 0.0393 0.6341 8.2774 0.9211 0.6860
GS 7.3094 29.0126 0.0378 0.6647 7.7323 0.9363 0.7220
HPF 6.4087 26.5668 0.0346 0.6906 7.0718 0.9375 0.7470
DWT 13.8999 42.2315 0.0553 0.5275 10.7812 0.8322 0.5634
GLP 6.8212 26.8050 0.0350 0.6952 7.1060 0.9350 0.7518
SIRF 11.5283 35.9064 0.0483 0.5683 10.5544 0.8746 0.6212
PanNet 4.8238 18.7275 0.0246 0.7329 5.0167 0.9687 0.7766
PSGan 4.3774 20.0302 0.0258 0.7405 5.3411 0.9654 0.7981
MDECNN  3.3550 13.1669 0.0171 0.8328 3.5883 0.9849 0.8640

4.3.3. Experiment with GeoEye-1 Dataset

In this section, experiments were performed using a 4-band dataset from GeoEye-1,
and the image size is 256 x 256. Figure 10 shows the experimental results of a set of
images. Figure 10a,b show HRMS and PAN images, respectively. Figure 10c—i represent
seven non-deep learning pan-sharpening methods, while Figure 10j-1 represent deep
learning methods.
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Figure 10. Results of the GeoEye-1 dataset with eight bands and 256 x 256 size. (a) Reference image; (b) PAN image; (c) HIS;
(d) PRACS; (e) GS; (f) HPF; (g) DWT; (h) GLP; (i) SIRF; (j) PanNet; (k) PSGan; (1) MDECNN.

Figure 10 shows that obvious spectral distortion occurs in the DWT, GS, IHS, and SIRF
methods, and blurring or loss of edge details occurs in all seven traditional methods. The
PRACS method retains good spectral information, but the spatial structure is too smooth,
the edge information is severely lost, and there are many artefacts. Compared with GLP
and HPF methods, the overall effect is better. In the deep learning method, the PSGan
method exhibits spectral distortion in local areas, and the overall effect of deep learning
is better than traditional methods. The image from our proposed method is the closest to
the original image. The index values shown in Table 5 objectively show the comparison of
various methods.

Combined with Table 5, the experimental evaluation indexes of GeoEye-1, QuickBird,
and WorldView-3 are roughly the same, which proves the robustness of the network
structure proposed by us. Through the above experimental results, the numerical values
clearly support the proposed solution, thus, indicating that the proposed solution achieves
a significant performance improvement on the same satellite or different satellite, 8-band
or 4-band datasets.
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Table 5. Quantitative assessment of the GeoEye-1 dataset shown in Figure 10. The best performance
is shown in bold.

Method SAM RASE RMSE Q_AVE ERGAS CcC SSIM
IHS 7.5153 29.6974 0.0505 0.6557 6.1735 0.9291 0.6355
PRACS 7.0326 30.8486 0.0524 0.6366 6.1633 0.9219 0.6072
GS 7.1742 28.9810 0.0492 0.6699 5.9869 0.9334 0.6550
HPF 7.0388 25.4033 0.0432 0.7418 5.0361 0.9475 0.7185
DWT 13.4489 50.4446 0.0801 0.4996 9.9815 0.8645 0.4790
GLP 7.1957 25.6215 0.0436 0.7397 5.0448 0.9462 0.7185
SIRF 6.9346 26.7501 0.0455 0.6903 5.5004 0.9413 0.6703

PanNet 5.1240 20.2831 0.0344 0.7430 4.5522 0.9668 0.7308
PSGan 6.3814 26.4536 0.0449 0.7103 5.4148 0.9433 0.6972
MDECNN  2.1406 11.4061 0.0193 0.9188 2.5704 0.9897 0.9122

4.4. Experiment with GeoEye-1 Real Dataset

Figure 11 shows the pan-sharpening results of the GeoEye-1 image size dataset under
real data from unreferenced images. Figure 11a,b show the MS and PAN images, respec-
tively. Figure 11c-1 show the DWT, GLP, GS, HPF, IHS, PRACS, SIRF, PanNet, PSGan,
and our fusion results of the proposed method.

(@) ) (k) )

Figure 11. Results of the GeoEye-1 real dataset with four bands and 256 x 256 size. (a) Reference
image; (b) PAN image; (c) IHS; (d) PRACS; (e) GS; (f) HPF; (g) DWT; (h) GLP; (i) SIRF; (j) PanNet;
(k) PSGan; (1) MDECNN.

By observing the fusion images, DWT, IHS, and SIRF all can be found to have obvi-
ous spectral distortion, and the edge information of SIRF appears fuzzy. Although the
overall spatial structure information is well preserved in the GS and GLP methods, local
information is lost. The merged image in the PRACS method is too smooth, resulting in
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severe loss of edge details. PanNet, PSGan, and our proposed method have the best overall
performance, but spectral distortion appears in some regions of PSGan. Table 6 shows
that the fusion method proposed by us is the most effective on the real dataset without
reference images.

Table 6. Quantitative assessment of the GeoEye-1 real dataset shown in Figure 11. The best perfor-
mance is shown in bold.

Method QNR D, D
THS 0.8753 0.0531 0.0756
PRACS 0.9013 0.0183 0.0818
GS 0.8636 0.0477 0.0931
HPF 0.7974 0.0848 0.1287
DWT 0.5506 0.2805 0.2347
GLP 0.8026 0.1073 0.1010
SIRF 0.9100 0.0660 0.0257
PanNet 0.9052 0.0235 0.0731
PSGan 0.8887 0.0245 0.0888
MDECNN 0.9190 0.0166 0.0655

5. Discussion
5.1. Convergence

Figure 12 shows the convergence process of L, loss function and the loss function
proposed in this paper on the training set. Table 7 shows the objective evaluation indexes
of fused images obtained by different loss functions. The network structure proposed
in the paper and the PanNet network structure are used to test the convergence of the
loss function. Figure 12a shows the convergence effect of the loss function proposed in
this paper of MDECNN, and Figure 12b shows the convergence effect of the loss function
proposed in this paper on the network structure of PanNet. The convergence positions of
Figure 12a,b indicate that the new loss function training network converges faster and has
a better final convergence effect than L, loss function. At the same time, Table 7 shows
that the fused images obtained by the new loss function are more in line with expectations.
Meanwhile, by comparing the convergence images in Figure 12a,b, it can be seen that
the error fluctuation in Figure 12a is small, indicating that our network structure is more
stable and has better convergence effect than that of PanNet. Combined with the results in
Figure 12 and Table 7, the proposed solution of the comprehensive loss function is shown
to be obviously superior to the general solution of spectral loss L,.

10 T 10
“ 'I —— L2_loss —— PanNet+L2_loss
our —— PanNet+our

©
©

o

magnitude of the loss
magnitude of the loss
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(a) (b)

Figure 12. Convergence images of different loss functions. (a) The convergence of different loss functions corresponding to
the network structure proposed in this paper; (b)The convergence of different loss functions corresponding to PanNet.
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Table 7. Quantitative evaluation results of different loss functions. The best performance is shown
in bold.

Setting SAM RASE RMSE Q_AVE ERGAS CcC SSIM

PanNet+L2 5.4322 21.3489 0.0365 0.7320 4.7609 0.9627 0.7183
PanNet+our 5.3997 21.0970 0.0359 0.7354 4.7374 0.9641 0.7229
Proposed+L2 3.2503 13.4427 0.0229 0.8570 3.1788 0.9855 0.8528
Proposed 2.7442 12.3498 0.0208 0.8886 2.7651 0.9881 0.8827

5.2. Ablation Study

We provide ablation learning to explore the impact of each part of our model as follows:

Influence of the multiscale spatial information extraction module This paper fo-
cuses on the extraction of rich spatial information and proposes the multiscale spatial
information extraction module to independently extract rich spatial information from PAN
images. In order to verify the effectiveness of the proposed module and the influence
of different receptive field parameters on the fusion results, several convolution blocks
with different receptive field sizes are cascaded to form a multiscale feature extraction
module. We compare the multiscale block of different scales to test the effect of the mul-
tiscale block of different scales. Specifically, we select the best multiscale block by using
convolution kernel combinations with different sensory fields, where the convolution
kernel size K={1, 3, 5, 7}. These convolution kernels of different sizes are combined in
different ways to obtain the multiscale blocks required by the experiment. To avoid the
"meshwork" problem caused by the use of dilated convolution, we use a convolution kernel
with different sensory fields to extract feature maps. To make a fair comparison, we adjust
the different multiscale blocks so that their parameter numbers are close to each other. The
experimental results are shown in Table 8.

Table 8. Quantitative assessment results of multiscale feature extraction module. The best perfor-
mance is shown in bold.

DF SAM RASE RMSE Q_AVE ERGAS CcC SSIM
K={ } 31916 125804 0.0214 0.8566 3.0728 0.9873 0.8529
K={ } 32684 124054  0.0210 0.8559 29116 0.9879 0.8478
K={3,3,5,5} 3.3080 12.5134  0.0214 0.8455 3.0015 0.9873 0.8406
K= { )
K={ }

24428  11.7500  0.0199 0.9041 2.6221 0.9891 0.8985
2.1406  11.4061  0.0193 0.9188 2.5704 0.9897 0.9122

The quantitative evaluation results show that the feature information obtained by
using a richer receptive field is more expressive. As shown in Table 8, it is obvious that
our proposed method is superior to other receptive field sets under different orders of
magnitude. Therefore, to balance the performance and computing speed, we use four
multiscale sensing modules with different sensing fields, namely, 1, 3, 5, and 7.

Influence of the feature enhancement module Influenced by the inception module,
we propose the structure of the feature enhancement module. To validate its impact, we
remove the feature enhancement module and add more modules to validate its impact.
We experiment on the trunk network without the feature enhancement module and the
double-branch network with two feature enhancement modules cascaded. Fusion results
are obtained and compared. The quantitative results are shown in Table 9.
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Table 9. Quantitative assessment results of feature enhancement module. The best performance is
shown in bold.

DF SAM RASE RMSE Q_AVE ERGAS CC SSIM

0 2.5801 9.4257 0.0161 0.9058 2.3802 0.9893 0.8953

1 (default) 1.7991 7.7984 0.0134 0.9343 1.9607 0.9925 0.9282
2 2.0673 7.8778 0.0136 0.9257 1.9765 0.9922 0.9177

As seen from the quantitative evaluation results, using a feature enhancement module
to broaden the width of the network can enable the network to extract richer feature
information and learn more mapping relationships in line with expectations. Failure
to use feature enhancement modules led to insufficient learning ability of the model
for multiscale features, inadequate learning of details, and decreased ability of image
reconstruction. However, using too many feature enhancement modules would lead
to convergence difficulty or feature explosion, increasing the computing consumption
and also affecting the network convergence effect. Therefore, based on the results of the
experiment, we choose to use one feature enhancement module to deal with features for
our network.

Setting of encoding network parameters We also test the influence of encoding net-
work depth. Specifically, we fix the other module parameters, and then we set the encoding
network depth to L= {3, 6, 12, 14, 16} for verification. The model is trained by using the
coding networks of 3, 6, 12, 14, and 16 dense-coded layers and the decoding networks
of corresponding layers to obtain the corresponding fusion images. Meanwhile, objec-
tive evaluation indexes are used to observe the visual statistics on the results, and the
quantitative results are shown in Figure 13.

RASE Q_AVE ERGAS CcC SSIM

H[=3 m[=6 #|l=12 m|l=14 m|=16

Figure 13. Figure of quantitative assessment results of different coding network parameters.

The objective evaluation index shows that increasing the depth of the dense coding
network can improve the performance of the network, and the performance of the network
can be significantly improved when the depth of the coding network increases. The reason
lies in the increase in network depth and width, which enhances the ability of network
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to extract and reconstruct high latitude features. However, when the network depth is
greater than 16 layers and the network is too deep and wide, the redundancy of feature
extraction is increased, and the loss of features is also caused, resulting in the convergence
difficulty of the network. Figure 13 shows that the depth of the coding network affects
the performance of the network. After testing, the depth of the dense coding network was
finally set to 14.

6. Conclusions

In this paper, we propose a deep learning-based method to solve the pan-sharpening
problem by combining convolutional neural network technology and domain-specific
knowledge. On the basis of the existing pan-sharpening solutions, multiscale feature
blocks are designed to process PAN images separately to extract richer and more complete
spatial information, feature enhancement blocks and dense coding networks are used to
learn more accurate mapping relationships, and comprehensive loss functions are designed
to constrain image loss. Better fusion images can be obtained with full consideration of
different spectral and spatial characteristics. In remote sensing images, regional spatial
structure, land cover and development characteristics are diverse. Because the method
proposed in this paper is more sensitive to multiscale features in theory, MDECNN can
achieve better results in different types of remote sensing images in areas with different
sizes of seeding sites, diverse structures in densely built areas, and different urban greening
proportions. It is significant for remote sensing image fusion of complex image information.
At the same time, in some remote sensing images with relatively single image features,
the improvement of fusion effect of the proposed method is relatively limited, which
reflects the limitations of multiscale feature image fusion. The experimental results of three
kinds of satellite datasets show that the proposed method can perform better than the
existing methods in the pan-sharpening of a wide range of satellite data, which proves the
potential value of our network for different tasks. Next, we will take the loss function with
the constraint of objective indexes as the starting point to further improve the network
performance on the premise of ensuring the spectrum and space quality.
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