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Abstract: In GeoSurf satellite constellations, any transmitter/receiver, wherever it is located, is linked
to a satellite with zenith paths. We have studied the tropospheric attenuation predicted for some
reference sites (Canberra, Holmdel, Pasadena, Robledo, and Spino d’Adda), which also set the
meridian along which we have considered sites with latitudes ranging between 60◦ N and 60◦ S.
At the annual probability of 1% of an average year, in the latitude between 30◦ N and 30◦ S, there
are no significant differences between GEO slant paths and GeoSurf zenith paths. On the contrary,
at 0.1% and 0.01% annual probabilities, large differences are found for latitudes greater than 30◦ N
or 30◦ S. For comparing the tropospheric attenuation in GeoSurf paths with that expected in LEO
highly variable slant paths, we have considered, as reference, a LEO satellite constellation orbiting in
circular at 817 km. GeoSurf zenith paths “gain” several dBs compared to LEO slant paths. The more
static total clear-sky attenuation (water vapor, oxygen, and clouds) in both GEO and LEO slant paths
shows larger values than GeoSurf zenith paths. Both for rain and clear-sky attenuations, Northern
and Southern Hemispheres show significant differences.

Keywords: GEO; LEO; satellite constellations; GeoSurf; rain attenuation; clear-sky attenuation

1. The GeoSurf Satellite Constellations

The GeoSurf satellite constellations belong to the family of Walker Star Constella-
tions [1]. The GeoSurf constellations emulate, for ground stations located at any latitude,
the geostationary orbit with zenith paths: any transmitter/receiver, wherever it is located,
can be linked to a satellite as if it were at the equator and the satellite at its zenith. The
GeoSurf constellations can have most of the advantages of the current GEO (Geostationary),
MEO (Medium Earth Orbit), and LEO (Low Earth Orbit) satellite constellations without
having most of their drawbacks. For comparing the advantages and disadvantages of a
GeoSurf constellation design, see Table 1 in [1].

In the present paper, our aim is to estimate, globally, the tropospheric attenuation
that can be expected in the GeoSurf links at 39.6 GHz—a frequency experimented with
the satellites Italsat [2,3] and Alphasat [4,5]—due to clear-sky (water vapor, oxygen, and
clouds) and to rain, in terms of the probability of annually exceeding a given fade level.
For link budgets, this fade level is to be considered as the largest power/coding margin
that must be available before link outage. Aside from frequency, of course, clear-sky and
rain fades depend on the site and elevation angle under which the satellite is seen from
the ground station—practically 90◦, i.e., zenith, in the GeoSurf constellations—not on
the satellite altitude; therefore, they can be globally applied to any GeoSurf constellation,
regardless of orbit altitude.

For the purpose of illustration, we have studied the tropospheric attenuation predicted
for the reference sites listed in Table 1 (Canberra, Holmdel, Pasadena, Robledo, and Spino
d’Adda) to show, with some prediction models, the tropospheric attenuation expected
there in GeoSurf (zenith) links, in GEO links with satellites located at the same longitude
of the site (GEO largest elevation angle), and in LEO links. These specific sites have been
chosen because historical radio propagation experiments have been conducted there for
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many years (Holmdel in New Jersey, Spino d’Adda in Italy) or because they are the seats
of important space stations (Canberra in Australia, Robledo in Spain) or space laboratories
(Jet Propulsion Laboratory, Pasadena in California).

These reference sites set the meridian on which we consider sites with latitudes
ranging between 60◦ N and 60◦ S, and report the tropospheric attenuation predicted first
for GEO and GeoSurf satellites along the meridian and then for LEO satellites. In other
words, we sample Earth longitude along these meridians and sample Earth latitude in a
continuous range between 60◦ N and 60◦ S. The choice of this particular latitude range is
just due to the fact that for larger latitudes, the GEO paths would be too low on the horizon
to be practical and useful, because they can be obstructed and suffer from large fades, due
either to rain or to clear sky, and large scintillations. On the contrary, it is obvious that
MEO, LEO, and GeoSurf satellites can always be used at any latitude, with the advantages
and disadvantages discussed in [1].

Table 1. Reference sites.

Station Latitude Longitude Altitude (m)
GEO Elevation
Angle (◦) on the
Local Meridian

Canberra (Australia) 35.30◦ S 149.10◦ E 597 49.0

Holmdel (New Jersey) 40.40◦ N 74.10◦ W 23 43.3

Pasadena (California) 34.15◦ N 118.00◦ W 352 50.3

Robledo (Spain) 40.87◦ N 4.25◦ W 987 42.8

Spino d’Adda (Italy) 45.40◦ N 9.50◦ E 82 37.7

After this introductory section, Section 2 reports and discusses the probability dis-
tributions of rain attenuation at the reference sites in the GEO paths along the meridian;
Section 3 reports and discusses the GeoSurf probability distributions of rain attenuation
obtained along the meridian of the reference sites in the latitude range of 60◦ N to 60◦

S; Section 4 reports and discusses the expected tropospheric attenuation affecting LEO
satellites; Section 5 reports and discusses similar results but for clear-sky attenuation; and
finally, Section 6 reports some final remarks and suggests future work.

2. GEO Probability Distributions of Rain Attenuation at the Reference Sites

Let us consider Spino d’Adda. In the countryside of this town, there is a small
space station of Politecnico di Milano where, since the 1970s, the Italian National Research
Council (CNR) first, and the Italian Space Agency (ASI) later, with the experts of Politecnico
di Milano, have conducted radio propagation and telecommunication experiments at Ku
and Ka frequency bands, with the satellites SIRIO [6], ITALSAT [7], and currently Alphasat,
within the framework of the Aldo Paraboni experiment [4,5].

In Figure 1, we show the annual probability distributions (%) of exceeding rain
attenuation (dB) in the slant path in Spino d’Adda to a geostationary satellite on the
meridian (elevation angle 37.7◦, see Table 1) at 39.6 GHz and a circular polarization. Rain
attenuation is calculated by using, as input, the rain rate probability distribution recorded
locally—with rain rate expressed in millimeters per hour—in the years 1993−2002 (10
years of continuous observation). In other words, we simulate links towards GEO satellites
with the highest elevation angle.

The prediction models applied are those known in the literature as “Brazil” [8],
Bryant [9], Excell [10], Flavin [11], Garcia [12], Global Synthetic Storm Technique (SST
glo) [13], Svyatogor [14], and the current ITU−R model [15]. The choice of these particular
prediction models is mainly due to their global applicability for later calculations. For
predictions at low latitudes, we have not considered the ITU−R model because it predicts
doubtful results at these latitudes when the slant path elevation angle is large. We consider
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this model later because at the latitudes of the reference sites listed in Table 1, with the
slant paths elevation angles indicated there, its predictions are reliable (see Section 4).

Finally, note that it is not the aim of this paper to test the various models, an activity
that has been carried out several times (e.g., [16]). They are only used to show the possible
range of predictions, although we observe that the Svyatogor model predicts largely
pessimistic values, just at the largest probabilities where most direct user applications are
envisaged at the Ka band.
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Figure 1. Annual probability distributions (%) of rain attenuation exceeded in the slant path at Spino
d’Adda to a geostationary satellite (elevation angle 37.7◦) on the meridian, at 39.6 GHz and a circular
polarization, calculated by the indicated prediction models, using, as input, the rain rate probability
distribution recorded locally, with rain rate expressed in millimeters per hour, in the years 1993−2002.
The solid red line refers to using the full SST [17], whose input is the full set of rain rate time series
recorded in the same period of time, whose probability distribution is used as input to the models.

In Figure 1, the full Synthetic Storm Technique (SST) prediction is also reported (red
solid curve). This is the classical SST [17], which transforms the rain rate time series
into the rain attenuation time series and gives very reliable predictions of both first-
order statistics, i.e., probability distributions of rain attenuation [18–23], and second-order
statistics (parameters dependent on the time evolution of rain attenuation, such as, for
example, fade durations) [24–27]. Therefore, its probability distribution should be the
closest to real measurements. The full SST should always be used whenever rain rate time
series are locally available. The global SST (SST glo in Figure 1) only mimics the probability
distribution of the full SST, and similar to the other models mentioned, it only needs, as
input, the annual probability distribution of rain rate, expressed in millimeters per hour,
either given by local measurements or by the ITU−R [28].

Let us now consider the other reference sites. In Figure 2, we show the probability
distributions of rain attenuation predicted for the slant path to a GEO satellite along the
meridian of the site, by using the ITU−R rain rate probability distributions as input to the
models and its rain height [29]. The elevation angle at each site is reported in Table 1. For
comparing, at a glance, the rain attenuation exceeded at the same probability level, the
scales are kept fixed for all figures.
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Figure 2. Annual probability distributions (%) of rain attenuation exceeded in the slant paths directed along the local
meridian to a Geostationary satellite at 39.6 GHz and a circular polarization in: (a) Robledo (elevation angle 42.8◦):
(b) Holmdel (elevation angle 43.3◦), (c) Pasadena (elevation angle 50.3◦), and (d) Canberra (elevation angle 49.0), predicted
by using the ITU−R [28,29] rain rate probability distributions.

Of course, each site, because of the local climate, shows very different results. However,
we must comment that, excluding the full SST, which is very reliable, all other models give
predictions within too large a range to be really useful in link design, as a few more dBs
in the link margin come at a cost. For example, at 0.1%, the full SST predicts 20.5 dB in
Spino d’Adda (Figure 1), but the predictions range from 17 to 26 dB, a large range for any
cost-effective design. In Figure 2, we notice similar large ranges at 0.1%: from 9 to 18 dB in
Robledo, from 20 to 27 dB in Holmdel, from 8 to 15 dB in Pasadena, and from 12 to 19 dB
in Canberra.

However, the results reported in Figures 1 and 2 are useful for our exercise, because
in the next section, we compare them with those obtainable in paths with a 90◦ elevation
angle (GeoSurf), i.e., at the local zenith. This just a first and rough approach to studying the
tropospheric attenuation in GeoSurf constellations because a more significant comparison
should be done with the slant paths in LEO constellations—with elevation angles largely
variable—a task beyond the scope of this paper, except for a single case, as we show
in Section 4.
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3. Global GeoSurf Probability Distributions of Rain Attenuation

In this section, we consider the meridian of the reference sites and run the prediction
models along each meridian in the latitude range 60◦ N to 60◦ S. Our aim is to compare the
GEO links with the GeoSurf links, as we have done for the reference sites. The input to the
models is again the rain rate probability distribution given by the ITU−R. In particular, we
show the difference AGEO − AZ (dB), calculated at selected annual probabilities, between
the rain attenuation exceeded in the GEO path, AGEO (dB), and the rain attenuation
exceeded in the GeoSurf path, AZ (dB), i.e., at the zenith.

Figure 3 shows the results for the longitude of Spino d’Adda, 9.5◦ E (see Table 1),
for probabilities exceeded for 1%, 0.1%, and 0.01% of an average year. The difference
obtainable specifically at Spino d’Adda can be read at the latitude of 45.4◦ N.
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the rain attenuation exceeded in the GEO path, AGEO (dB), and the rain attenuation exceeded in the GeoSurf path, AZ (dB),
i.e., at the zenith in Spino d’Adda; 39.6 GHz, circular polarization.

We can observe some interesting findings:

1. At 1% probability (Figure 3, left panel), rain attenuation is due to low values of
rain rate; therefore, we expect it is produced by a rather uniform rain rate spatial
field. This yields limited differences between GEO and GeoSurf paths for GEO
high elevation angles (close to 90◦), as is the case for latitudes between 30◦ N and
30◦ S, the range in which there are no significant differences between Northern and
Southern Hemispheres.

2. Significant differences are found for latitudes greater than 30◦ N or 30◦ S. Now, the
GeoSurf (90◦ path) and the GEO paths intersect tracts of rain cells which can be
significantly diverse. At these latitudes, the GeoSurf paths are less attenuated than
the GEO paths. For example, at 60◦ N, the average difference AGEO − AZ predicted
is about 5 dB at 1% probability, 11 dB at 0.1% (middle panel), and 20 dB at 0.01%
(right panel).

3. In the low latitude range of ∼20◦ N to ∼20◦ S (GEO elevation angle along the merid-
ian is larger than about 67◦), the difference AGEO − AZ is quite small and even
negative for some models at probability 0.01%, especially for Excell and Global SST.
This latter model retains, in fact, some spatial features of the full SST, which at high
elevation angles, such as those found in this latitude range (>67◦), samples the small
high-intensity rain cells differently compared to the zenith path (see [13]). In this
range, desert areas, such as the Sahara Desert, also affect the results, of course.

4. Notice that in the low latitude range of ∼20◦ N to ∼20◦ S, the difference AGEO − AZ
predicted by the ITU−R model is extremely large.

5. Northern and Southern Hemispheres show significant differences as probability
decreases, especially for the larger latitudes.

Figures 4–7 show similar results concerning the longitude of the other reference sites.
However, it is very interesting to notice the large negative difference (5 to 8 dB) found at
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a probability of 0.01% for sites along the meridian of Holmdel (74.1◦ W) in the latitude
range of ∼10 to ∼30◦ N , a region that includes Florida and the Carebbean Islands. Similar
observations can be done at a probability of 0.01% for the longitudes, such as the longitudes
of Pasadena (118◦ W) and Canberra (149.1◦ E), which include desert areas and the ocean.
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Figure 4. The difference AGEO − AZ, calculated at fixed annual probabilities 1% (a), 0.1% (b), and 0.01% (c), between the
rain attenuation exceeded in the GEO path, AGEO, and the rain attenuation exceeded in the GeoSurf path, AZ, i.e., at the
zenith in Robledo; 39.6 GHz, circular polarization.
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Figure 5. The difference AGEO − AZ, calculated at fixed annual probabilities 1% (a), 0.1% (b), and 0.01% (c), between the
rain attenuation exceeded in the GEO path, AGEO, and the rain attenuation exceeded in the GeoSurf path, AZ, i.e., at the
zenith in Holmdel; 39.6 GHz, circular polarization.
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In these figures, we have not further shown the ITU−R predictions because this model
gives unexplainable large differences, AGEO − AZ, at low latitudes, as it does for the Spino
d’Adda longitude. These values are very different from the values predicted by the other
models, especially those based on some physical insight, such as Excell and Global SST.
Now, because the purpose of the present paper is not to investigate the reliability of the
ITU−R model at low latitudes, we have abandoned its use at these latitudes in order not to
bias the reader’s perception of the various comparisons.

In conclusion, the comparison between GEO and GeoSurf paths shows that when the
latitude is in the range of ∼20◦N to ∼ 20◦S (GEO elevation angle larger than about 67◦),
the GEO path is less attenuated, particularly at a probability of 0.01%, which corresponds,
of course, to high rain rates and very concentrated rain cells, differently sampled by the
zenith path and the slant paths, as predicted by Global SST. At the zenith, the path is
always filled with rain, while in the GEO slant paths, changing the elevation angle can
make significant difference, because of the small linear extension of high intensity rain cells.
Now, the path can be directed along the periphery of the cell, on average, as envisaged by
the Global SST, which mimics what is directly observable with the full SST. This physical
effect is also present, although just slightly pronounced, in the Excell model predictions.

In the next section, we calculate, for a specific case, the probability distribution of rain
attenuation predicted for LEO satellites.

4. LEO Probability Distributions of Rain Attenuation

In this section, we show the expected tropospheric attenuation affecting LEO satellites.
To this end, we have considered, as an example, the Metop−C satellite (launched on
7 November 2018), which is part of the EUMETSAT Polar System Constellation [30], as
seen from Spino d’Adda. The constellation altitude is 817 km, and the satellites provide
data for both operational meteorology and climate studies. The instruments on board can
observe the Earth day and night, as well as under cloudy conditions.

The satellite visibility was calculated by means of the simplified general perturbation
model, which allows propagating the satellite position and velocity along the orbit [31].
The input to the model is given by NORAD and also stored on the EUMETSAT website
(see https://service.eumetsat.int/tle/, accessed on 5 November 2021).

As an example, Figure 8 shows the orbits and satellite track on the ground for 6 h
(20 October 2021, starting time 20:07:26 UTC). Figure 9 shows two visibility windows, in
terms of satellite elevation and azimuth angles, as seen from Spino d’Adda. Considering
only elevation angles larger than 20◦, there are typically three daily passes with an average
duration of approximately 6 minutes and a maximum duration of roughly 7.6 min when
reaching the zenith.

https://service.eumetsat.int/tle/
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Figure 9. Sample visibility windows: Metop−C satellite seen from Spino d’Adda. (a): LEO satellite elevation angle. (b): LEO
satellite azimuth.

We have simulated the Metop−C orbits for two consecutive months for providing a
stable histogram and have calculated the probability of the elevation angle seen from Spino
d’Adda, whose histogram is shown in Figure 10 (5◦ bins), for values large than 20◦. This
elevation angle is the minimum elevation tolerated in most LEO constellations, because
at lower elevation angles, tropospheric fades, scintillation, and obstructions can produce
severe outages. Afterwards, for each elevation angle up to zenith, we have calculated the
probability distribution of rain attenuation predicted in each path and finally merged all
probability distributions in the final curve by weighing each probability sample according
to the probability shown in Figure 10. Moreover, we have supposed that sampling slant
paths with an elevation angle larger than 20◦ is also equivalent to sampling all possible
rain events of the area, which, of course, produce the local rain rate probability distribution.
This is a strong hypothesis but the only one that can be done at this stage for comparing
LEO tropospheric attenuation with GEO or GeoSurf attenuation at equal probability.
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Figure 10. Probability density of the Metop−C satellite elevation angle seen from Spino d’Adda for
elevation angles larger than ∼20◦.

Figure 11 shows (left panel) the probability distributions of rain attenuation predicted
for the LEO paths at the reference sites with the Global SST obtained by weighing the
probability distribution of rain attenuation predicted for each elevation angle larger than
20◦ according to the probability of the elevation angle shown in Figure 10. For compar-
ing LEO and GeoSurf attenuation at equal probabilities, in Figure 11 (right panel), we
show the difference ALEO − AZ versus the annual probability (%). From these curves,
it is evident that GeoSurf “gains” several dBs compared to LEO. For example, at 0.1%,
ALEO − AZ ≈ 5 dB for Pasadena and Canberra, and ALEO − AZ ≈ 9 dB for Holmdel.
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Figure 11. Results predicted with the Global SST model. (a) LEO annual probability distributions (%) of rain attenuation
at the reference sites, obtained by weighing the probability distribution of rain attenuation predicted for each elevation
angle larger than 20◦ according to the probability of the elevation angle shown in Figure 10; 39.6 GHz, at the reference sites.
(b) The difference ALEO − AZ, vs. annual probability (%), between the rain attenuation exceed in the LEO path, ALEO, and
the rain attenuation exceed in the GeoSurf path, AZ, i.e., at the zenith at the reference sites.

In any constellation, the switchover between satellites is obviously mandatory for
providing a continuous service. However, the number of switchovers and the interval
between them, which is a function of the orbit altitude, increasing with altitude, should
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not change the results of our investigation in any significant way because rainfall and
switchovers are, of course, uncorrelated.

5. Global Clear-Sky Attenuation at 39.6 GHz

In this section, we consider the total clear-sky attenuation due to water vapor, oxygen,
and cloud, calculated with the ITU−R recommendations [32,33] at 39.6 GHz. Figure 12
shows the annual probability distributions predicted in the GEO paths on the local meridian
of the reference sites. As for rain attenuation, the attenuation depends on site, with drier
sites (Pasadena) being less affected than wetter ones (Holmdel).
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Figure 12. Annual probability distributions of clear-sky attenuation exceeded in the GEO paths on
the local meridian at the reference sites.

Figure 13 shows the difference AGEO − AZ, calculated at the fixed annual probabilities
of 1%, 5%, and 10%, between the clear-sky attenuation exceed in the GEO path, AGEO,
and that exceeded in the GeoSurf path, AZ, in the latitude range 60◦ N to 60◦ S along the
meridian of Spino d’Adda. We can notice that the Northern hemisphere is more attenuated
than the Southern one. Now, even if the attenuation is smaller than that due to rain, it is
always present because for probabilities below 1%, the values do not significantly change;
therefore, for any link design, the values exceeded at 1% should be considered. Figure 14
shows similar results for the other reference sites.

Now, for comparing LEO and GeoSurf attenuation at equal probabilities, in Figure 15,
we show the difference ALEO − AZ, versus annual probability (%), for the reference sites.
From these results, we conclude that the GeoSurf should be affected, as expected, by smaller
clear-sky attenuation. Because in system design we are interested in low probabilities and,
as recalled, the clear-sky attenuation expected for probabilities below 1% is practically
that estimated at 1%, we can assume the values given by the black curves. As for rain
attenuation, the Northern hemisphere is more attenuated than the Southern one.
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Figure 13. The difference AGEO − AZ, calculated at annual probabilities 1%, 5%, and 10%, between the
clear-sky attenuation exceeded in the GEO path (elevation angle 37.7◦), AGEO, and that exceeded in the
GeoSurf path, AZ, along the meridian of Spino d’Adda (9.5◦), in the latitude range 60◦ N to 60◦ S.
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Figure 14. The difference AGEO − AZ, calculated at annual probabilities 1%, 5%, and 10%, between the clear-sky attenuation
exceeded in the GEO path, AGEO, and that exceeded in the GeoSurf path, AZ, along the meridian of: (a) Robledo (GEO
elevation angle 42.8◦), (b) Holmdel (GEO elevation angle 43.3◦), (c) Pasadena (GEO elevation angle 50.3◦), and (d) Canberra
(GEO elevation angle 49.0◦), in the latitude range 60◦ N to 60◦ S.
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6. Final Remarks and Conclusions

In GeoSurf satellite constellations, any transmitter/receiver, wherever it is located,
can be linked to a satellite with zenith paths. In general, GeoSurf satellite constellations can
have most of the advantages of the current GEO, MEO, and LEO satellite constellations
without having most of their drawbacks [1].

In the present paper, we have studied one of the many feasibility issues that should
be addressed before any industrial design is started, which is the tropospheric attenuation
expected in the GeoSurf links, compared to other LEO satellite constellations and to GEO
satellites. To be specific in predicting the annual average probability distributions of
tropospheric attenuation, we have estimated both rain and clear-sky attenuation at 39.6
GHz. For link budget, once the outage probability is fixed, the total tropospheric attenuation
exceeded at this probability sets the minimum signal-to-noise power ratio that must be
provided to any link. Clear-sky and rain attenuation depend mainly on the frequency, site,
and elevation angle under which the satellite is seen from the ground station.

For the purpose of illustration, we have studied the tropospheric attenuation predicted
for some reference sites (Canberra, Holmdel, Pasadena, Robledo, and Spino d’Adda), which
also set the meridian on which we have considered sites with latitudes ranging between
60◦ N and 60◦ S. The choice of this particular latitude range is due to the fact that for
larger latitudes, the GEO paths would be too low on the horizon to be practical and useful,
whereas LEO and GeoSurf satellites can always be used at any latitude.

We have found that at high probabilities for system design (around 1% of an average
year), in the latitude between 30◦ N and 30◦ S, there are no significant differences between
GEO slant paths and GeoSurf zenith paths. On the contrary, significant differences are
found for latitudes greater than 30◦ N or 30◦ S and lower probabilities. For example,
along the meridian of Spino d’Adda (9.5◦ E), at 60◦ N, the average difference AGEO − AZ
predicted is about 5 dB at a 1% probability, 11 dB at 0.1%, and 20 dB at 0.01%.

In the low latitude range of ∼20◦ N to ∼20◦ S (GEO elevation angle along the meridian
is larger than about 67◦), the difference AGEO − AZ is quite small, and even negative at a
probability of 0.01%, as most physical models (Global SST and Excell) retain some spatial
features concerning small high-intensity rain cells.

For comparing the tropospheric attenuation in GeoSurf paths (zenith) with that ex-
pected in highly variable LEO slant paths, we have considered, as an example, a LEO
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satellite orbiting at 817 km as seen from Spino d’Adda and have supposed that it is also
seen in the same way in the other reference sites.

From the results of our simulations using the Global SST, it is evident that GeoSurf
zenith paths “gain” several dBs compared to LEO slant paths. For example, at a probability
of 0.1%, the minimum difference ALEO − AZ ≈ 5 dB is found at Pasadena and Canberra,
and the maximum difference ALEO − AZ ≈ 9 dB is found at Holmdel.

We have also studied the more static total clear-sky attenuation (due to water vapor,
oxygen, and clouds), which depends on the site and annual probability considered for
link design. As expected, for any path, drier sites (Pasadena) are less affected than wetter
sites (Holmdel). Moreover, both GEO and LEO slant paths show larger attenuation than
GeoSurf (zenith) paths.

In general, both for rain and clear-sky attenuations, Northern and Southern Hemi-
spheres show significant differences as probability decreases, especially for the larger
latitudes.

Future work should be directed toward comparing the tropospheric attenuation
expected in any LEO satellite constellation with that expected in a GeoSurf constellation
globally, i.e., for any latitude and longitude.
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