
remote sensing  

Article

Retrieval of Daily Mean VIIRS SST Products in China Seas

Qianmei Li 1,2 , Qingyou He 1,3,4 and Chuqun Chen 1,2,3,*

����������
�������

Citation: Li, Q.; He, Q.; Chen, C.

Retrieval of Daily Mean VIIRS SST

Products in China Seas. Remote Sens.

2021, 13, 5158. https://doi.org/

10.3390/rs13245158

Academic Editors: Mitchell

D. Goldberg, Alexander Ignatov,

Satya Kalluri, Paul M. DiGiacomo

and Changyong Cao

Received: 3 November 2021

Accepted: 15 December 2021

Published: 19 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy
of Sciences, Guangzhou 510301, China; qianmeili@scsio.ac.cn (Q.L.); qyhe@scsio.ac.cn (Q.H.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
4 Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology,

Chinese Academy of Sciences, Guangzhou 510301, China
* Correspondence: cqchen@scsio.ac.cn

Abstract: Sea surface temperature (SST) is one of the most important factors in regulating air-sea
heat flux and, thus, climate change. Most of current global daily SST products are derived from one
or two transient measurements of polar-orbiting satellites, which are not the same to daily mean
SST values. In this study, high-temporal-resolution SST measurements (32–40 snapshots per day)
from a geostationary satellite, FengYun-4A (FY–4A), are used to analyze the diurnal variation of
SST in China seas. The results present a sinusoidal pattern of the diurnal variability in SST, with
the maximum value at 13:00–15:00 CST and the minimum at 06:00–08:00 CST. Based on the diurnal
variation of SST, a retrieval method for daily mean SST products from polar-orbiting satellites is
established and applied to 7716 visible infrared imaging radiometer (VIIRS) data in China seas. The
results suggest that it is feasible and practical for the retrieval of daily mean SST with an average
RMSE of 0.133 ◦C. This retrieval method can also be utilized to other polar-orbiting satellites and
obtain more daily mean satellite SST products, which will contribute to more accurate estimation
and prediction between atmosphere and ocean in the future.

Keywords: sea surface temperature; VIIRS; FY–4A; diurnal variation; daily mean SST

1. Introduction

Sea surface temperature (SST) is an important parameter in marine hydrography,
playing essential roles in regulating physical and biogeochemical environments in the
global ocean [1]. As a key variable of marine ecosystems, SST affects the growth rate of phy-
toplankton community [2] and indicates the potential favorable area for fish gathering [3],
providing theoretical basis and reference for fishery forecast [4]. As a crucial physical
quantity in the global air-sea interaction processes, SST controls the heat transmission in
the oceanic boundary layer and couples the ocean-atmosphere system and is frequently
applied in the boundary condition of atmospheric models [5]. Initially, SST data were
obtained from in situ measurements such as ships, buoys and ocean stations, which are
difficult to carry out and the derived measurements have poor spatial-temporal continuity.
With the development of remote sensing technology, satellite-retrieved SST products are
widely used with wide coverage and strong real-time performance. In addition, they are
mainly utilized in the studies of water mass properties [6], ocean circulation [7], tropi-
cal cyclone [8], weather prediction [9] and ocean numerical simulation [10,11]. In these
research areas, the quality of satellite SST products has becoming a prerequisite influenc-
ing the scientific findings. In another word, high-quality SST products are essential for
oceanographic research.

Numerous efforts have been paid to improve the accuracy of satellites SST mea-
surements, including advancement of instruments, improvement of in-orbit calibration,
upgrade of inversion algorithms and optimization of quality control procedures [12–17].
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However, an inevitable fact is that most of global daily SST products were based on instan-
taneous observations from polar-orbiting satellites with a sampling rate of 1–2 times a day,
which cannot represent the real daily mean SST. This is because that SST vary dramatically
in a day due to the diurnal variability of solar radiation [18].

Stramma et al. [19] reported that the maximum diurnal difference of SST between
day and night reached 3.5 ◦C in the Sargasso Sea. Based on data of Advanced Very High
Resolution Radiometer (AVHRR) off northern California, model analysis revealed that that
the diurnal variation of SST could be greater than 6.6 ◦C under special conditions [20].
According to Gentemann et al. [21], in the extratropical ocean, the diurnal variability in SST
reached up to 5–7 ◦C under low wind speed and high insolation, which was equivalent to
the magnitude of SST seasonal variability. Previous studies showed that diurnal variability
in SST is considered to be responsible for the large deviation (10 W/m2) of air-sea latent
and sensible heat flux in the numerical simulation [22], the increase in ENSO amplitude
(by 15%) in air-sea coupled model [23] and the deviation (4.5 W/m2) of the annual mean
air-sea heat flux around the world [24]. Overall, the instantaneous SST at a time of day is
not the same to the daily mean SST.

Some studies, such as creation of early warning system for severe weather events [25],
estimation of daily mean air-sea flux [1], model of regional atmosphere-ocean coupling [26]
and the recruitment index and larval survival index of Pandalus borealis [27], may require
daily mean SST as input parameters. However, there are no available public data of
daily mean SST by high accuracy satellite sensors. Meanwhile, weekly and monthly SST
products are calculated from instantaneous daily SST products [28] and they are not the
actual weekly and monthly mean SST products. Therefore, we propose a method to retrieve
daily mean SST products from open satellite SST products.

The Visible Infrared Imaging Radiometer (VIIRS) is considered to be an extension and
improvement of Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR,
providing long-term measurements for climate research, weather forecasting and disaster
relief [29]. It captures diurnal cycle of SST at only two points, for consistency with the
Advanced Geosynchronous Radiation Imager (AGRI) which has the capability to resolve
the full diurnal cycle. AGRI on the recent launched China’s new geostationary satellite
FY–4A has sampling interval of 15 min and a satellite zenith of 0–59◦ (Figure 1), enabling
continuous observation under 24 h. Here, the high-temporal resolution SST products of
AGRI (Figure 1) from June 2018 to May 2019 are applied to investigation of the diurnal
variability in SST in the China seas (0–45◦N, 103–133◦E). The derived diurnal change rules
of SST are further used to establish a retrieval for 7716 instantaneous SST products of VIIRS
in China seas. Finally, we get high-accuracy daily mean VIIRS SST products, which are
crucial for marine climate monitoring and numerical simulation.
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Figure 1. Satellite zenith distribution of FY–4A/AGRI scanning range to the earth (Gray filled area is
land mask. Bold red dashed frame represents sea area studied in this paper). Zone 1 to Zone 3 are
used in the discussion of diurnal variation of SST in different zones in the latter part of this paper.
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2. Materials and Methods
2.1. S-NPP/VIIRS SST

The Suomi National Polar-orbiting Partnership (S-NPP) Satellite placed in orbit
28 October 2011 is a part of Joint Polar Satellite System (JPSS) [30]. The pass times of
S-NPP are approximately 1:30 a.m. (descending path) and 1:30 p.m. local time (ascending
path). VIIRS on S-NPP satellite has a nominal altitude of 824 km with swath width of
3600 km and provides 22 bands range from 0.4 µm to 12.5 µm with a spatial resolution
of 375–750 m [31]. On-orbit calibration of the VIIRS channels is performed with a spatial
perspective and a blackbody radiation source, which could diminish orbital temperature
changes driven by external factors [32]. The processing for cloud detection and SST re-
trieval from VIIRS images is completely dependent on five bands with central wavelength
of 0.67 µm (M5), 0.87 µm (M7), 3.7 µm (M12), 10.7 µm (M15) and 12.0 µm (M16) [33].
In addition, it is done by dividing a granule into 10 × 6 pixels-windows termed “target
array” and retrieving from cloud-screened 2 × 2 pixel unit arrays [34]. In addition, the
operational VIIRS SST products used in this article are retrieved from the improved al-
gorithm of the Naval Oceanographic Office (NAVO) based on the nonlinear algorithm
(NLSST) of MODIS and AVHRR. VIIRS measurements are regressed to a nominal depth
of 1 m [33]. The level–2 products of VIIRS NAVO SST are integrated into the Group
for High-Resolution SST (GHRSST) and added a 0–5 quality flag in accordance with the
GHRSST data processing specification. These data products are publicly obtained from
https://www.ncei.noaa.gov/data/oceans/ghrsst/L2P/VIIRS_NPP/NAVO/ (accessed on
28 October 2019).

2.2. FY–4A/AGRI SST

FY–4A is a new generation of China’s geostationary meteorological satellite, which
was successfully launched in December 2016 and located at 104.7◦E. The observation in-
struments, data collection system and processing algorithm carried by FY–4A satellite are
independently developed by China and most of technical indicators are at the cutting-
edge level of Chinese industry [35]. The FY-4 satellite, together with the Geostationary
Operational Environmental Satellite (GOES-R), Himawari satellite and European Mete-
orological Satellite (EUMETSAT), forms an international constellation of geostationary
satellites, providing global observations and predictions of environment. The AGRI which
is one of the main payloads of FY–4A uses the self-developed two-dimensional scanning
technology and image navigation registration technology to realize imaging of the whole
disk of the earth, significantly improving the observation efficiency and image registration
accuracy. AGRI contains 14 spectral bands from visible to infrared at spatial resolutions
of 0.5–4.0 km. In the meantime, it obtains a full disk image at 15 min interval, with on-
board radiometric calibration accuracy and sensitivity of 0.5 K and 0.2 K [36]. The spatial
coverage of AGRI images is capacious, with longitudinal and latitudinal limits of about
±80◦ and satellite zenith angle of exceed 70◦. The main task is to improve the quantitative
monitoring capability of various physical variables in the earth surface and atmosphere
by means of continuous observation at the same location with full-time and full-weather.
Level–2 SST products are obtained after radiation calibration, cloud detection, inversion
calculation and quality control of level 1 data. Among them, cloud detection is carried
out by the different spectral and spatial characteristics of the 6 bands (center at 0.65 µm,
1.61 µm, 3.75 µm, 7.1 µm, 10.8 µm and 12.0 µm) in the case of cloudy and clear sky [37].
The SST retrieval is calculated based on the operational inversion algorithm proposed
by Walton [38] and the quality flag of 0–3 is added, which can be publicly achieved via
http://satellite.nsmc.org.cn/PortalSite/ (accessed on 29 November 2019).

2.3. In Situ SST

The in situ SST data used for validation of satellite data are from the in situ SST
Quality Monitor system (iQuam) developed by NOAA. Data in the system are collected
from various platforms, including ship, drifting buoy, coastal moored buoy, tropical moored
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buoy, Argo float, high resolution drifter, integrated marine observing system and coral reef
watch buoy, carried out by different countries and institutions. Due to the differences in
the characteristics and accuracy of various measuring instruments, as well as the deviation
introduced by instrument aging, failure and misoperation, the iQuam system carries
out strict quality control on the data, aiming to provide unified high-accuracy in-situ SST
products for scientific research. In addition to the basic screening techniques (deduplication
removal, geolocation check, platform track check and SST spike check), the quality control
algorithm also contains more complex reference check and cross-platform check [39], which
utilize the Bayesian-based approach by Lorenc and Hammon [40]. As a component data
of the GHRSST system, iQuam data provides a great help for data fusion and validation
of various SST satellite products. These data products are publicly acquired from https:
//www.star.nesdis.noaa.gov/socd/sst/iquam/ (accessed on 18 October 2019).

2.4. Quality Control

Since the analysis of SST diurnal variation characteristics requires high-quality data,
it is essential to eliminate outliers through quality control for data reliability. Based on
time and space consistency, a quality control procedure of SST datasets is established in
this paper. Firstly, the Global Self-consistent, Hierarchical, High-resolution Geography
(GSHHG) database provided by NOAA is utilized to identify inland water pixels. Secondly,
SST values are usually uniformly distributed or gradually changing; hence, the root mean
square error of SST in the data grid of n × n (2 ≤ n ≤ 5) is relatively small. A sliding data
detection window of 3 × 3 is established for statistical calculation of each pixel. If root
mean square error of the 9 pixels in the detection window is greater than 1 ◦C, the central
pixel will fall into disuse. Then, the 24 h of a day in Chinese standard time (CST, times
presented in this paper are CST) are divided into 12 groups and the images of each 2 h are
as one group in chronological order. If 12 groups of a same pixel all contain valid values,
the pixel will be recorded as valid, otherwise it will be eliminated. Then, a quartile robust
statistics technique is used to estimate the median and robust standard deviation (RSD)
and the results are less affected by outliers than the traditional estimators [41]. The data
of the same pixel at different moments in a day are set as a group and detected one by
one where the threshold is median ± 3 × RSD, where RSD is defined as (3rd quartile−1st
quartile)/1.3848 [42]. After the previous quality inspection steps, the remaining pixels are
reliable clear-sky data of ocean.

2.5. Matchups and Validation

Before verifying the accuracy of remote sensing inversion data, it is necessary to
match up the satellite data to in situ observations in time and space domain, which can
limit the possible influence of SST diurnal variation. For each in situ measurement, the
near-simultaneous (within ±30 min) satellite products are selected. The spatial matching
is based on the nearest neighbor principle, namely, that the arithmetic average value of
in-situ data contained in each remote sensing pixel cell will be calculated.

In this paper, the China seas (0–45◦N, 103–133◦E) are taken as an example (Figure 2)
and a total of 6806 matchups between FY–4A/AGRI SST and iQuam SST are obtained
between June 2018 and May 2019. In comparison, the root mean square error (RMSE) of
these matchups is 0.6961 ◦C and the correlation coefficient is 0.9714, indicating that the
AGRI SST data are highly accurate and strongly correlated with the iQuam SST data.

https://www.star.nesdis.noaa.gov/socd/sst/iquam/
https://www.star.nesdis.noaa.gov/socd/sst/iquam/
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Figure 2. Distribution of FY–4A/AGRI matchups with (a) in-situ measurements and (b) S-NPP/VIIRS respectively, during
June 2018 to May 2019 in China seas. The colors are the number of matchups in 1◦ × 1◦ resolution. Frequency diagrams
(c,d) plotting SST comparison of matchups in figures (a,b), respectively. The colors denote the total number of SST values in
each 0.5 ◦C × 0.5 ◦C box.

At the same time, we match up the S-NPP/VIIRS SST data to the FY–4A/AGRI SST
data for the purpose of retrieval of daily mean SST. For temporal resolution, the sampling
rate of VIIRS (only 1–2 times per day) is less than that of AGRI (32–40 times per day). In
addition, its equator-crossing time is 13:30 CST; hence, AGRI selects 13:45 CST data which
is with no more than 30 min interval. In terms of spatial resolution, AGRI (4 km) is lower
than VIIRS (0.75 km) and the movement detection window is established based on pixel
size of AGRI. The values of VIIRS pixels falling into a single window are averaged to
obtain the matching data corresponding to AGRI. There are 37,837,316 SST matchups of
AGRI and VIIRS, with RMSE of 0.5919 ◦C and correlation coefficient of 0.9851. The results
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demonstrate that AGRI SST has a strong correlation with VIIRS SST and it is feasible to
obtain the daily mean VIIRS SST by scaling the daytime VIIRS SST with factors derived
from AGRI data.

3. Results
3.1. Case Analysis

Previous researches have demonstrated that there are a large number of diurnal
warming events in China seas [41,43] and the temporal evolution of the China seas on
9 February 2019 is analyzed for a direct insight of SST diurnal variation (Figure 3). Because
of large temperature difference between low and high latitudes, the characteristics of SST
diurnal variation are difficult to be discerned. Thus, we calculate the SST variation (SSTdv)
at different hours relative to the daily mean temperature in the day. Figure 3 shows the
spatial distribution of SSTdv in the study area, with intervals of 4 h. The results show that
the lowest SST in a day appears at 6:00 CST and it is 0.40 ◦C lower than the mean value of
the day. Then, SST increases rapidly and reaches its peak value at 14:00 CST when the SST
is 0.50 ◦C higher than the daily mean value.
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Figure 3. SST diurnal variation (SSTdv) at different hours on 9 February 2019 in the study area. The
colors indicate the difference (◦C) between instantaneous SST and the daily mean SST. These SST
data are from level–2 products of FY–4A/AGRI. The blank areas in the figure are missing data due to
cloud pollution.
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Because of the strong influence of clouds, the SST valid data cannot cover the whole
study area on any single day during the study period from June 2018 to May 2019. We
thus mapped the monthly mean SST at different time of a day in October 2018 to provide a
more detail insight to the diurnal variability of SST (Figure 4). Meanwhile, the maximum
amplitude (SSTamp_max) of SST daily variation is defined by the difference between the
daily maximum and minimum of SST and the monthly mean SSTamp_max in 1◦ × 1◦ grid
are presented in Figure 4b.
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first zone (denoted as Zone 1), 15–30°N is the second zone (denoted as Zone 2) and 30–

Figure 4. (a) The monthly mean SST (◦C) and (b) the monthly mean values of SSTamp_max in bins of
1◦ × 1◦ (◦C) during October 2018 in China seas. The SSTamp_max is the maximum difference of SST
in a day. Time series of SST diurnal variation in area X1 (c) and area X2 (d) in October 2018. The blue
dots are monthly mean values of SST (◦C) for each hour and the black line is the trendline obtained
by smoothing the scatters.

The results show decrease in both of the monthly mean and diurnal variability of SST
with the increase in latitude (Figure 4a,b). The south region X1 and north region X2 are
thus selected to display the difference in SST at different latitudes. Although the mean SST
in region X1 (29.4 ◦C) is higher than that in region X2 (23.8 ◦C), the diurnal variations of
SST in the regions have a similar tendency. It shows a sinusoidal form which reaches the
diurnal minimum at 7:00 CST and then rising rapidly, achieving the maximum at 14:00
CST. In spite of this, the amplitude of SST diurnal variation in region X1 (0.79 ◦C) is greater
than that in region X2 (0.34 ◦C). This characteristic is consistent with satellite observations
and model results in Gentemann, et al. [44] and it may be affected by insolation and sea
surface wind speed [45,46]. Because of the low wind speed (4 m/s) and the high solar
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radiation (850 W/m2) in region X1 (Figure A1d,h), the heat accumulates at the sea surface,
resulting in great diurnal variation of SST [47]. In contrast, the strong wind speed (8 m/s)
dominates the SST diurnal variation when the insolation is weak (580 W/m2) in region X2
(Figure A1d,h). It causes convergent currents and transfers heat from the surface to the
deeper water, which slows down sea surface warming and leads to small magnitude of
SST diurnal variability [48]. Therefore, the amplitude of diurnal SST variation in region X1
is greater than that in region X2.

3.2. Diurnal Variation of SST

According to the latitude, the study area is divided into three zones: 0–15◦N is the first
zone (denoted as Zone 1), 15–30◦N is the second zone (denoted as Zone 2) and 30–45◦N is
the third zone (denoted as Zone 3). Meanwhile, January, April, July and October represent
winter, spring, summer and fall respectively. As presented in Figure 5a–c, Zone 3 exhibits
the most significant seasonal variation of SST (up to 15 ◦C), with an average SST of 27.06 ◦C
in summer, 20.96 ◦C in autumn, 12.99 ◦C in spring and 12.11 ◦C in winter. In comparison,
the seasonal variation of SST in Zone 1 is the smallest (<3.00 ◦C). In this region, SST in
spring, summer and autumn is between 29.00 ◦C and 30.00 ◦C, while that in winter is
around 27.58 ◦C. On average, SST in the three zones is the highest in summer and the
lowest in winter. Figure 5d–f shows that the time series of SSTdv in each zone in different
seasons have similar sinusoidal patterns, with the minimum value at 06:00–08:00 CST and
the maximum value at 13:00–15:00 CST. It can be seen from this figure that the SSTdv in
Zone 1 is maximum in autumn (0.65 ◦C) and is similar and minimum in winter and summer
(0.33 ◦C). Zone 2 has the largest SSTdv in summer (0.60 ◦C), followed by spring (0.49 ◦C)
and autumn (0.41 ◦C), while the smallest SSTdv in winter (0.38 ◦C). In the meantime, the
maximum SSTdv (0.92 ◦C) in Zone 3 appears in winter and the minimum (0.34 ◦C) appears
in autumn.

Figure 6 presents the time series of SSTdv in different zones for season wise. In winter,
it demonstrates that Zone 3 has the largest SSTdv (0.92 ◦C, which is the difference between
the maximum of 0.44 ◦C and the minimum of −0.48 ◦C), while Zone 1 and Zone 2 have
similar variation (0.32 ◦C and 0.38 ◦C). In spring, the cycles of SSTdv in the three zones are
similar and their variation amplitudes are close to 0.49 ◦C. In summer, the magnitude of
SSTdv increased from 0.33 ◦C in Zone 1 to 0.73 ◦C in Zone 3, revealing the rule of gradual
increase from south to north. On the contrary, the amplitude of SSTdv gradually decreases
from south (0.65 ◦C) to north (0.34 ◦C) in autumn.

Previous researchers have thoroughly validated that the diurnal variability of SST is
positively correlated with solar radiation and negatively correlated with wind speed on sea
surface [44–46]. Therefore, we guess that the features of SSTdv in Figure 6 may be the results
of combined effects of sea surface wind speed and solar radiation. In winter (Figure A1a,e),
the wind speed in the north and south of the study area is similar (9.5 m/s). The solar
radiation in Zone3 (350 W/m2) is significantly lower than that in Zone1 (700 W/m2) and
Zone2 (550 W/m2), for the Sun is directly above the Southern Hemisphere. As a result, the
magnitude of SSTdv in Zone3 is greater than that in other zones. In spring (Figure A1b,f), as
the subsolar point moves to the equator, the difference of solar radiation between the north
and south of the study area is reduced and their wind speed is similar, so the amplitudes
of SSTdv in the three regions are alike. In summer (Figure A1c,g), the solar radiation are
roughly the same (750 W/m2) in the whole study area, while the sun is directly above a
point near the tropic of cancer. The wind speed in the south (8 m/s) is stronger than that in
the north (5 m/s), resulting in the gradual decrease of SSTdv from south to north opposite
to the wind speed. In autumn (Figure A1d,h), the direct point of the sun moves to the
equator again, the solar radiation decreases from south (800 W/m2) to north (500 W/m2)
while the wind speed increases (from 3.5 m/s to 8.5 m/s), leading to the decrease of SSTdv
from south to north.
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Figure 5. Time series of monthly mean SST (a–c) and monthly mean SSTdv (d–f) in January, April, July and October
(representing winter, spring, summer and autumn, respectively) for the three zones. SSTdv (◦C) = SSTi–SSTdaily_mean, where
i represents different hours. Zone 1 includes 0–15◦N and Zone 2 includes 15–30◦N, while Zone 3 includes 30–45◦N.

3.3. Retrieval of Daily Mean SST

The polar orbiting satellite S-NPP passes through a given region only twice a day;
therefore, the VIIRS sensor on it can only obtain instantaneous SST at 1–2 moments in China
seas. If the instantaneous data are applied as its daily average SST products, the results will
be larger or smaller than the actual values. As shown in Figure 7, the instantaneous SST
obtained by VIIRS in Zone 2 on 25 June 2018 is 29.07 ◦C and the daily mean SST obtained
by AGRI is 28.50 ◦C, which reveals an overestimate of 0.57 ◦C using instantaneous SST as
daily mean. This result may lead to underestimation of latent heat flux in the numerical
model during daytime and overestimation at night [22], resulting in errors in the estimation
of sea surface energy balance [49]. Furthermore, the phase structure error appears in the
simulation of seasonal variation of sea surface heat flux in the western Pacific warm pool,
which reduces the accuracy of the air-sea oscillator coupling model for the ENSO [23].
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Figure 7. Diurnal variation of AGRI SST (blue dots) and VIIRS SST (red triangles) in Zone 2 on
25 June 2018. VIIRS SST was obtained by the sensor aboard S-NPP at approximately 13:30 p.m.
(ascending node). The solid black line is time series curve of AGRI SST for the day, which is smoothed
from the scatters.
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The features of diurnal SST variation have been derived based on AGRI SST with high
temporally resolution and the results can be used to retrieve the daily mean VIIRS SST
products. Firstly, we calculated the daily mean AGRI SST and the instantaneous AGRI
SST of 13:45 CST in each month. Secondly, the ratio (assuming K) of these two variables is
taken as the retrieval coefficient of VIIRS SST. The retrieved daily mean VIIRS SST thus can
be obtained as:

VIIRSdm
VIIRSins

=
AGRIdm
AGRIins

= K (1)

VIIRSdm = K × VIIRSins (2)

where VIIRSdm and VIIRSins represent the daily mean and instantaneous VIIRS SST, respec-
tively, while AGRIdm and AGRIins represent the daily mean and instantaneous values of
AGRI SST, respectively.

The look-up table for retrieved coefficient K in each month is calculated from AGRI
SST products (Table 1). The resultant K ranges from 0.960 to 0.990 in China seas. After
retrieval, we are expected to obtain more accurate daily mean VIIRS SST.

Table 1. Lookup table of retrieval coefficient K for monthly mean of VIIRS SST.

Month Zone 1 Zone 2 Zone 3

January 0.978 0.981 0.985
February 0.984 0.984 0.964

March 0.983 0.983 0.985
April 0.982 0.980 0.981
May 0.982 0.984 0.984
June 0.984 0.985 0.985
July 0.986 0.983 0.979

August 0.984 0.983 0.985
September 0.982 0.984 0.986

October 0.977 0.984 0.989
November 0.981 0.980 0.989
December 0.977 0.980 0.987

3.4. Verification of Retrieved Results

Figure 8 takes October 2018 and May 2019 as examples for the validation of the
retrieval method for daily mean SST data in this paper. In May 2019, the daytime VIIRS
SST has a RMSE of 0.595 ◦C and a bias of 0.522 ◦C as compared to daily mean AGRI SST.
After applied retrieval method, the correlation coefficient between these two SST products
remains unchanged (R = 0.995), while the RMSE decreases to 0.272 ◦C and the bias decreases
to 0.007 ◦C. In October 2018, the RMSE is 0.627 ◦C and the bias is 0.552 ◦C between the
daytime VIIRS SST and the daily mean AGRI SST. By contrast, the retrieved daily mean
VIIRS SST has a RMSE of 0.284 ◦C and a bias of 0.005 ◦C with the daily mean AGRI SST.
These results show that the retrieved VIIRS SST values are closer to the daily mean SST
values, which is of great significance to the process of marine numerical simulation.

In the scatter plot of Figure 9, the daytime VIIRS SST and the retrieved daily mean
VIIRS SST in the three zones are compared with the daily mean AGRI SST during the
period between June 2018 and May 2019. After retrieval, the RMSE between daily mean
VIIRS SST and daily mean AGRI SST is 0.123 ◦C in Zone 1, 0.131 ◦C in Zone 2 and 0.144 ◦C
in Zone 3, while their correlation coefficients are more than 0.990. Meanwhile, it illustrates
that the lower latitude has the better effect of retrieval, which might be related to the range
of SST in different sea areas. It is concluded that the average RMSE of the three zones is
0.133 ◦C and the retrieval method of daily mean SST in this paper is feasible and practical.
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Figure 10 presents the comparison of daily mean AGRI SST, instantaneous VIIRS
SST in daytime, retrieved VIIRS SST and the mean of instantaneous VIIRS SST between
day and night during July 2018. It shows that the instantaneous VIIRS SST data during
daytime are about 0.50 ◦C higher than the daily mean of AGRI SST. After retrieval, the
daily mean VIIRS SST is closer to the actual value and it indicates that the retrieval method
in this paper can obtain more accurate daily mean SST data. In general, the daily mean is
the arithmetic average of day and night, so we add instantaneous SST at night to better
demonstrate the feasibility of this retrieval method. As can be seen from the Figure 10, the
mean of instantaneous VIIRS SST between day and night still have a bias (about 0.14 ◦C)
compared with the daily mean of AGRI SST, while the retrieved VIIRS SST data are very
closer to it. This proves that the retrieval method in this paper can get accurate daily mean
SST products and has certain necessity and reliability.
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Figure 9. (a–f) Validation for retrieved results of daily mean SST in the three zones from June 2018 to May 2019, while the
spatiotemporal consistent daily means of AGRI SST are applied for comparison with the daytime VIIRS SST (left panels)
and retrieved daily mean VIIRS SST (right panels).
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mean of AGRI SST.

4. Discussion

Based on the analysis of FY–4A/AGRI SST data, it can be seen that SST in Chinese seas
varies within a day and its pattern of diurnal variation is nearly a sinusoidal form, with the
maximum value at 13:00–15:00 CST and the minimum value at 6:00–8:00 CST. This feature
is consistent with the results from Gentemann, et al. [44] and Li, et al. [50]. This is due to
the gradual accumulation of heat on the sea surface during the day, leading to increase
of SST [51]. Although solar radiation peaks at about midday, the sea water absorbs more
heat than it loses at this moment and it takes 1–3 h to reach thermal equilibrium. Then,
SST decreases when the received heat from insolation weakens and no longer overcomes
the heat loses due to sea surface latent and sensible heat fluxes [52]. Therefore, the daily
peak of SST appears at 13:00–15:00 CST. At night, there is no solar radiation reaching sea
surface [51] and the heat gained in daytime is lost to the atmosphere through latent and
sensible heat fluxes, or penetrates into the deeper ocean through vertical mixing of sea
water [53]. Thus, SST decreases gradually before sunrise and the diurnal minimum occurs
at 6:00–8:00 CST. These facts indicate that SST is different at different times of the day and
instantaneous SST values are not the same with daily mean SST values.

In order to obtain accurate daily mean SST products, researchers have tried many
methods [45,49,54,55], including the fusion of multiple satellite data and the establishment
of estimation model for diurnal SST variability. If we average instantaneous SST values of a
polar-orbiting satellite when it crosses the ascending and descending node, the results will
be closer to the daily mean SST than the instantaneous SST in daytime (Figure 10). However,
for the influence of clouds, there are few pixels with effective values in both day and night,
resulting in many blanks in the images of daily mean SST. At present, the Group for High
Resolution Sea Surface Temperature (GHRSST) provides daily SST fusion products merged
from a variety of sensors and they are widely used in oceanographic researches. As the
spatial resolution of different satellite data is inconsistent, the maximum spatial resolution
of SST fusion products from GHRSST is only 4 km, resulting in some SST information being
smoothed. Meanwhile, the purpose of GHRSST is to provide foundation SST and they reject
SST data when the diurnal amplitude is larger than 3 K or the wind speed is less than 6 m/s
in daytime, to prevent pollution caused by daily warming [54]. Thus, GHRSST products
cannot represent the true daily mean of SST. In addition, the workload of multi-data fusion
is heavy, because the storage and processing for each satellite data type consumes memory
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and time. Therefore, it is little feasible to obtain daily mean SST data through satellite data
fusion. At this time, various estimation models for SST diurnal variation are established by
utilization of solar radiation, sea surface wind speed, precipitation and other data [45,48,49].
It is challenging to obtain high frequency observations of wind speed and precipitation in a
large area and there are many boundary conditions and limitations exist to the estimation
models. In consequence, it is difficult to obtain accurate daily mean SST data through the
estimation model of SSTdv. We propose a new method to obtain the relationship between
instantaneous value and daily mean value as retrieval coefficient through the diurnal cycle
of SST and then retrieve the daily mean SST products of polar-orbiting satellite. By this
method, the spatial resolution of the daily mean SST products is consistent with that of
daytime VIIRS SST. Since the recently launched FY–4A/AGRI sensor can obtain continuous
observations of SST within 24 h and the data are relatively easy to achieve [36], it is feasible
to apply them to retrieve SST products of polar-orbiting satellites.

Whereas, a one-year data of AGRI from June 2018 to May 2019 are just utilized to
analyze the temporal and spatial characteristics of SST diurnal variations in China seas. In
fact, the diurnal variation of SST may also have interannual variation and the coefficient
lookup table in this study may lead to bias for results from other years. Therefore, more
works will be done for universal method by use of longer time data set.

5. Conclusions

The existing SST daily products from polar-orbiting satellites are in fact instantaneous
SST measurements at the time of satellite transit and they cannot represent the actual daily
mean SST. In this paper, geostationary satellite data of FY–4A/AGRI are applied to learn
that the diurnal SST variations have different amplitudes in different seasons and latitudes
in China seas, but they show a similar diurnal variability in sinusoidal form with the
maximum value at 13:00–15:00 CST and the minimum value at 6:00–8:00 CST. According
to this regularity, a lookup table of coefficients for the retrieval of SST daily products is
established and its values range from 0.960 to 0.990. After the retrieval of 7716 images, it is
found that the retrieval of daily mean SST has an average RMSE of 0.133 ◦C. It proves the
feasibility and reliability of using geostationary satellite data to retrieve the daily mean SST
products from polar-orbit satellites. Based on this idea, available data can be provided for
some applications which need daily mean SST, weekly mean SST and monthly mean SST.

In the future, there will be a lot of work to be done as more and more AGRI data are
continually accumulated. For example, the diurnal variation characteristics of SST in China
seas over a longer time series will be analyzed with the use of more than three years data.
The zones within the research area will be divided more finely and the retrieval coefficient
lookup table will be more detailed, which can further obtain more accurate retrieval results.
This retrieval method will be extended to different remote sensing data and different sea
areas to explore regional and global SST diurnal variation characteristics and get more
high-quality daily mean SST products over the world.
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