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Abstract: In the last decade, thousands of hectares of forests have been lost in the Czech Republic,
primarily related to European spruce bark beetle (Ips typographus L.), while more than 50% of the
remaining Czech forests are in great danger, thus posing severe threats to the resilience, stability,
and functionality of those forests. The role of remote sensing in monitoring dynamic structural
changes caused by pests is essential to understand and sustainably manage these forests. This study
hypothesized a possible correlation between tree health status and multisource time series remote
sensing data using different processed layers to predict the potential spread of attack by European
spruce bark beetle in healthy trees. For this purpose, we used WorldView-2, Pléiades 1B, and SPOT-6
images for the period of April to September from 2018 to 2020; unmanned aerial vehicle (UAV)
imagery data were also collected for use as a reference data source. Our results revealed that spectral
resolution is crucial for the early detection of infestation. We observed a significant difference in
the reflectance of different health statuses, which can lead to the early detection of infestation as
much as two years in advance. More specifically, several bands from two different satellites in 2018
perfectly predicted the health status classes from 2020. This method could be used to evaluate health
status classes in the early stage of infestation over large forested areas, which would provide a
better understanding of the current situation and information for decision making and planning for
the future.

Keywords: European spruce bark beetle; forest disturbance; population dynamics; time series data;
unmanned aerial vehicle (UAV); satellite imagery; tasseled cap transformation; principal component
analysis (PCA); vegetation indices; forest monitoring

1. Introduction

During the past decade, rising mean annual temperatures have caused drought pro-
longation and shifts in growing seasons, which have led to an increased frequency of forest
insect attacks and mass propagation of the European spruce bark beetle (Ips typographus L.)
in the temperate forests of Central Europe [1,2]. For example, spruce (Picea spp.) and pine
(Pinus spp.) stands currently account for 49.2% and 15.9% of forests, respectively, in the
Czech Republic [3], and usually grow in homogenous forest stands affected by deer damage
and root or stem diseases. Such forest stands are more vulnerable to abiotic factors, partic-
ularly strong winds [4]. European spruce bark beetles are capable of eruptive population
growth, which usually leads to widespread tree mortality, particularly for Norway spruce
(Picea abies (L.) Karst.) stands [5]. Several studies have also observed a connection between
European spruce bark beetle outbreaks and other forms of forest disturbances, such as
snow damage and windthrows [6–9]. However, the recent unprecedented bark beetle
outbreak in Czechia indicates a shift to more drought-driven dynamics [10]. Unfortunately,
the situation continues to escalate, thus posing serious threats for the health and future of
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forests in central Europe [11]. Despite the abundance of literature and research about the
European spruce bark beetle, the driving forces behind such eruptive population dynamics
are not fully understood. From a management perspective, attacked spruce forests are
difficult to control. Forest managers require thorough knowledge of the: (i) impacted forest
area, (ii) bark beetle spatial spread patterns, and (iii) factors influencing the risk of abiotic
disturbances on forest stand structures (e.g., windthrow) [12].

In forest monitoring and mapping, extensive scale coverage of damaged forests by
field observations is practically impossible [13]. However, remote sensing approaches can
quantify the expansion and frequency of European spruce bark beetle outbreaks by moni-
toring and mapping the spatiotemporal changes over time [14,15]. In addition, drought
stress affects the biochemical and biophysical properties of trees, and creates spectral
signature variations that can be inferred from moisture content decreases and chlorophyll
fluorescence changes [16,17]. Different satellite sensors have been used to identify dis-
turbed forest areas because they offer data collection ability over broad geographic regions
at multiple resolutions [18,19]. In addition, very-high-resolution satellites, such as Pléiades
1A/1B (PHRB) and WorldView-2 (WV2), can be utilized to detect disturbed areas (e.g.,
harvested areas), and estimate and extrapolate individual tree parameters with significant
accuracy [20–22].

Most studies of the detection of disturbed trees by pests are based on optical remote
sensing sensors. One of the main advantages of optical satellite sensors is the increased
number of spectral bands; the spectral properties of each band can be effectively used for
forest pest disturbance monitoring and mapping. The red edge and green regions of the
electromagnetic spectrum (400 to 700 nm) have proven to be very sensitive to changes in
chlorophyll content [22]. Furthermore, WorldView-2 has a red edge band with superior
sensitivity for early detection of damaged trees by bark beetles [23,24]. Immitzer and
Atzberger [25] used satellite images acquired by WorldView-2 for early-stage detection of
European spruce bark beetle attacks, with an overall accuracy of 70% for distinguishing
green-attacked trees from healthy trees. Mullen [26] also used WorldView-2 for early-
stage tree damage detection by montane pine beetles, with an overall accuracy of 75%
to distinguish between green-attacked trees and nonattacked trees. In another study,
Flichev [27] used WorldView-2 images to assess the damage caused by European spruce
bark beetles in the Bistrishko Branishte UNESCO Man and Biosphere (MAB) reserve
using several vegetation indices (VIs). His results showed that the plant stress index
CSc (λ = 605/760 nm) performed better in detecting stressed trees than the anthocyanin
reflectance index (ARI). Finally, Huo et al. [28] used Sentinel-1 and Sentinel-2 images (with
Pléiades images as reference data) to detect forest areas attacked by bark beetles. To obtain
the precise locations of the attack, they conducted visual interpretations from bitemporal
data. Based on images from 2018, the attacked-tree crowns were visible as gray in R-G-B
(red-blue-green) and as green in IR-R-B (infrared-red-blue).

Within the Czech Republic, there has been an effort to conduct a systematic forest
health assessment. Since 2016, Sentinel-2 cloudless images have been used to produce leaf
area index (LAI) maps based on annual intervals. Forest health status is then assessed
based on LAI changes during the selected time interval [29,30]. To our knowledge, there
have been no previous studies that used UAV images as reference data together with a
variety of very-high-resolution satellite platforms and time series data for the detection of
European spruce bark beetle dispersal patterns. Additionally, this is the first study that
used tasseled cap transformation for the Pléiades 1B satellite platform. The main objectives
of this study were to test:

(1) The correlation between tree health status (standing and lying trees) and time series
remote sensing data using different processed layers;

(2) The best correlated layers between healthy and nonhealthy trees to investigate all
those significant differences in, for example, the amount of brightness, greenness, and
wetness, among other indicators that could lead to early detection of European spruce
bark beetle in healthy trees.
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This study aimed to create a blueprint for predicting potential dispersal patterns of
European spruce bark beetle from the unhealthy (attacked) to healthy trees, hoping that it
could lead to more efficient forest management strategies that provide increased protection
for the healthy trees.

2. Materials and Methods
2.1. Study Area

The study was conducted on the Czech side of the Smrčina Mountain; the nature
conservation area is located in the eastern portion of Šumava National Park (Figure 1a).
The park is part of the Natura 2000 network, which aims to protect the most endangered
species and habitats in the European Union. The peak of Smrčina Mountain (1333 a.s.l.)
and the saddle to Hraničník Mountain are populated by natural spruce forests that are
almost 250 years old, including Calamagrostio villosae-Piceetum and Athyrio alpestris-
Piceetum [31], which, at the time of study, were part of a nonintervention regime. The
broader area of Smrčina was subject to salvage logging after a serious bark beetle outbreak
that ended approximately 10 years ago. During the Herwart windstorm (28–29 October
2017), the forest stands in the Smrčina territory were heavily damaged, and the result
was several large windthrow areas. The downed spruce trees were quickly occupied by
bark beetles (dominantly Ips typographus L.), allowing the European spruce bark beetle
to increase its population density, which resulted in an outbreak. Due to the disturbance
event, large, patched mosaics of standing dead trees, lying dead trees, and snags remain in
the area (Figure 1b,c).

Figure 1. (a) The relative location of the study area in Šumava National Park, Czech Republic; (b) magnified area taken
from Pléiades 1B, showing the exact location of the study area; (c) unmanned aerial vehicle (UAV) orthomosaic of the study
area. The coordinate system used was WGS 1984 Web Mercator.

2.2. UAV Data Acquisition—Preprocessing and Sampling

We used the DJI Phantom 4 Pro quadcopter (Dá-Jiāng Innovations Science and Tech-
nology Co. Ltd., Shenzhen, China), which was equipped with an integrated R-G-B sensor
of 20 Mpix resolution, a sensor size of 1 inch, aperture f/2.8–f/11, mechanical shutter, and
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maximum ISO 12,800. For this study, Phantom 4 Pro offered two main advantages; first,
the mechanical shutter does not cause geometric distortions, and, second it provides image
acquisition with less noise and greater details. Both were significant advantages because
the UAV data, apart from being interpreted visually to provide reference data (Figure 2a,b),
also georeferenced the available satellite images (see details in Section 2.3).

Figure 2. Sample of the UAV R-G-B orthophoto images taken from the study area in Smrčina in June 2020, and a visual
assessment of the tree health status into four categories (two for downed trees and two for the standing trees). (a) The
yellow arrow shows an example of a tree with a green crown. These trees were attractive for bark beetle infestation in
spring 2020, labeled as “lying attractive” (LA). The blue arrow indicates a tree example with a rusty-colored or dry crown.
These trees were attacked during the previous swarming and labeled as “lying dead” (LD; dehydrated without any residual
glucose in the phloem). (b) The green arrow shows an example of a healthy standing tree, labeled as “standing healthy”
(SH), while the red arrow shows an example of a standing dead tree, labeled as “standing dead” (SD).

UAV image acquisition was conducted during the period of 2018 to 2020, and included
12 flights in total, with 4 flights per year at a height of 100 m above the ground with
80% frontal overlap and 70% side overlap. The UAV data were acquired from May to
mid-June for 2018, and in June of 2019 and 2020. The following properties was used in
preprocessing of UAV data: alignment: high, 40,000 key points, 4000 tie points, medium-
quality dense cloud. The first alignment was refined using the optimize cameras method.
The spatial resolution for all UAV images was 3 cm. R-G-B aerial images from all years were
photogrammetrically processed using structure-from-motion (SfM) in Metashape (Agisoft
LLC: St. Petersburg, Russia). To optimize the final 3D models and before the alignment
process, we set the accuracy to high. The georeferencing of the point cloud was done
exclusively by the onboard global positioning system (GPS) sensor, which geotagged each
raster; the GPS signal had high accuracy given the mountaintop location of the study area.

The UAV orthomosaic images were used as reference data to create samples for the
years 2018, 2019, and 2020. The samples were selected based on visual interpretation, and
they were divided into four different feature classes including standing healthy, standing
dead, lying attractive, and lying dead (Figure 3). The primary reason for using visual
interpretation was that remotely sensed data are less costly and time consuming than
traditional methods. All samples were non-fixed-size polygons (Figure 3). Although
samples were randomly selected, we distributed them to cover the entire study area, and
the number of selected samples in each class was not fixed (see details in Table 1). After
the sample selection, we used the zonal statistics as table tool of ArcGIS Pro V2.7.2 (ESRI
Inc., Redlands, CA, USA) to extract the spectral information in each class to evaluate the
relationship between the spectral data and sample classes for each year.



Remote Sens. 2021, 13, 4953 5 of 30

Figure 3. Sample selection based on UAV data from 2018. LA: lying attractive, LD: lying dead,
SD: standing dead, and SH: standing healthy.

Table 1. Statistical summary table of the sample classes.

Year Classes Sample
Frequency Average Area (m2) Sum of Area (m2)

2018

1 LA 30 218.62 6558.69
1 LD 55 164.68 9057.24
1 SD 18 185.67 3342.04
1 SH 109 284.23 30,981.56

2019

1 LA 21 228.74 4803.56
1 LD 66 171.21 11,299.85
1 SD 19 168.38 3199.16
1 SH 106 289.03 30,636.98

2020

1 LA 10 349.22 3492.23
1 LD 89 185.08 16,471.75
1 SD 45 350.71 15,781.75
1 SH 68 208.73 14,193.81

1 LA: lying attractive, LD: lying dead, SD: standing dead, SH: standing healthy.
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2.3. Acquisition and Preprocessing of Satellite Imagery

We used seven satellite images, two by Pléiades 1B (April 2019 and September 2020),
three by SPOT-6 (September 2018, July 2019, and July 2020), and two by WorldView-2 (Au-
gust 2018 and September 2019); see Table 2 for a detailed description of the characteristics
of each satellite platform. Unfortunately, no data were found for the study area in 2018 for
Pléiades 1B and for 2020 from WorldView-2. To achieve accurate georeferencing for all the
satellite images, we used the mosaicked georeferenced image provided by the UAV with
an accuracy of 1 cm. In addition, an additional pan-sharpened frame of TripleSat from the
year 2018 was used, with an error of less than 25 cm. For georeferencing of Pléiades 1B
and WorldView-2, the total error was less than 1 m, while for SPOT-6 it was less than 3 m.
Radiometric evaluation for all satellite images was performed visually using a histogram
of values for each band. The entire process of satellite image preprocessing was conducted
in ArcGIS Pro V2.7.2 (ESRI Inc. Redlands, CA, USA).

Table 2. Specifications of all satellite platforms and their sensors used for this study.

Satellite Platform Imagery Products
Resolution Spectral Bands (nm) Image Location Accuracy

Pléiades 1B 2 m multispectral—0.50 m PAN

Red: 600–720

With 1 GPSs is 1 m;
without GPSs is 3 m (CE90)

Green: 490–610
Blue: 430–550
NIR: 750–950
PAN: 480–830

WorldView-2 1.64 m multispectral—0.41 m PAN

Coastal blue: 400–450

≤3 m (using a GPS receiver, a gyroscope,
and a star tracker) without any GCPs

Blue: 450–510
Green: 510–580
Yellow: 585–625

Red: 630–690
Red edge: 705–745

NIR1: 770–895
NIR2: 860–1040
PAN: 450–800

SPOT-6 6 m multispectral—1.5 m PAN

Red: 620–690
35 m CE 90 without GCP within 30

viewing angle cone; 10 m CE90 for Ortho
where Reference3D is available

Blue: 450–520
Green: 530–600
NIR: 760–890
PAN: 450–750

1 GCPs: ground control points.

2.4. Processing of Spectral Satellite Data

To develop a deeper understanding of the spatiotemporal patterns related to the
European spruce bark beetle, several VIs (Table 3, see Appendix A), including various
wavelength bands (Table 2), were applied to evaluate the status of the vegetation cover
between the years 2018 and 2020. WorldView-2 contains a red-edge band; thus, we addi-
tionally applied the following vegetation indices (MCARI, NDRE, and PSRI; see details in
Table 3, see also Appendix B). Moreover, we used principal component analysis (PCA; see
Appendix C) [32] and tasseled cap transformation (Figures 4–8; see Appendix D) [33–37] to
convert image bands into secondary channels and enhance the spectral differences between
trees’ health statuses. For more efficient classification, tasseled cap was used to reduce the
multiband dataset to three channels (brightness, greenness, and wetness). Tasseled cap
transformation was conducted using Catalyst (PCI Geomatics, Markham, ON, Canada) for
all the images.
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Table 3. Reflectance indices for each satellite platform.

Satellite Platform Used Indices Formula Citation

Pléiades 1B
SPOT-6

Soil Adjusted Vegetation Index (SAVI) [1.5 × (NIR − Red)]/(NIR + Red + 0.5) Huete [38]
Normalized Difference Vegetation Index
(NDVI) (NIR − Red/NIR + Red) Rouse et al. [39]

Simple Ratio (SR) (NIR/Red) Birth and McVey [40]

Transformed Vegetation Index (TVI)
1 SQRT((NIR − Red)/(NIR + Red) +

0.5)
Deering et al. [41]

WorldView-2

Soil Adjusted Vegetation Index (SAVI) [1.5 × (NIR − Red)]/(NIR + Red + 0.5) Huete [38]
Normalized Difference Vegetation Index
(NDVI) (NIR − Red/NIR + Red) Rouse et al. [39]

Simple Ratio (SR) (NIR/Red) Birth and McVey [40]
Transformed Vegetation Index (TVI) SQRT((NIR − Red)/(NIR + Red) + 0.5) Deering et al. [41]
Modified Chlorophyll Absorption Ratio
Index (MCARI)

[(Red-edge − Red) − 0.2 × (Red-edge
− Green)] × (Red-edge/Red) Daughtry et al. [42]

Plant Senescence Reflectance Index
(PSRI) (Red − Green)/(Red-edge) Ren et al. [43]

Normalized Difference Red-edge Index
(NDRE) (NIR − Red-edge)/(NIR + Red-edge) Clarke et al. [44]

1 SQRT: square root.

Figure 4. Application of the tasseled cap transformation algorithm showing (a) greenness for 2018 and (b) greenness for
2019, as derived from WorldView-2.
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Figure 5. Application of the tasseled cap transformation algorithm showing (a) wetness for 2018 and (b) wetness for 2019,
as derived from WorldView-2.

Figure 6. Application of the tasseled cap transformation algorithm showing (a) greenness for 2019 and (b) greenness for
2020, as derived from Pléiades 1B.
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Figure 7. Application of the tasseled cap transformation algorithm showing (a) wetness for 2019 and (b) wetness for 2020,
as derived from Pléiades 1B.

Figure 8. Example of the tasseled cap transformation algorithm on (a) WorldView-2, (b) Pléiades 1B, and (c) SPOT-6 in 2019,
using all three channels (brightness, greenness, and wetness).
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2.5. Accuracy Assessment

SPSS Statistics V.24 (IBM Corporation, Armonk, NY, U.S.A), Statistica V.12 (Dell Inc.,
Round Rock, TX, USA), and MATLAB® R2017b professional edition (MathWorks, MA,
USA) were used for the statistical analyses and visualization of the collected data. Based on
Kolmogorov–Smirnov test results, our data were not normally distributed, thus Levene’s
test was used to assess the equality of variances for all the tested statistical variables for
each processed layer. The following descriptive statistics were calculated for each layer
within each sample polygon area: minimum and maximum values, range, mean, standard
deviation, sum, median, and variance.

To determine the strength of the association between the categorical (independent)
and numerical (dependent) variables, the Eta (η) coefficient was used (Equation (1)). Eta-
squared (η2) was calculated to measure the coefficient of determination (Equation (2)):

Eta (η) =

√
SSe f f ect

SStotal
(1)

Eta
(

η2
)
=

SSe f f ect

SStotal
(2)

where SSe f f ect is the sum-of-squares between the groups and SStotal is the total sum-of-
squares.

Dunnett’s T3 test was used to compare the means between the variables (Equation (3)).
Dunnett’s T3 test does not assume any equality of variance for analyzing the differences
between the groups. A significance level of 0.05 was used to determine whether the above
test was statistically significant.

DDunnett = tDunnett

√
2MSS/A

n
(3)

where tDunnett refers to the critical value in the Dunnett critical value table, 2MSS/A is
mean square within groups, and n is the sample size.

The feature selection tool was used in Statistica to calculate Cramer’s V, which was
used to understand the strength of the relationships between the tested variables. Cramer’s
V was calculated as:

V =

√
ϕ2

min(k − 1, r − 1)
=

√
x2/n

min(k − 1, r − 1)
(4)

where ϕ is the phi coefficient, x2 is derived from Pearson’s chi-squared test, n is the total
observations, k is the number of columns, and r is the number of rows.

3. Results

Spectral Analysis
(1). Eta-Squared (η2)
The results of Eta-squared (η2) showed that for the Pléiades images, although there

was a medium-size effect for the blue and red bands in 2020, in general, there was a low-
size effect for the Pléiades main bands (more details in Table S1). Our results showed a
moderate effect for the tasseled cap transformations derived from Pléiades in 2019 and a
low effect for Pléiades in 2020. In addition, a significant size effect (~30%) was detected
for VIs, including NDVI, SAVI, SR, and TVI, derived from Pléiades in 2019. Based on
Eta-squared (η2) results, SR in 2019 was the most important layer to predict the health
status classes for 2018, 2019, and 2020, with size effects of 38%, 38%, and 34%, respectively.
In general, Pléiades in 2019 performed better in predicting the health classes compared
with the data from 2020 (Table 4).



Remote Sens. 2021, 13, 4953 11 of 30

Table 4. Summary of the most important results from Eta-squared (η2), PHRB.

Satellite Year of
Imagery Band ETA-Squared

(2018)
ETA-Squared

(2019)
ETA-Squared

(2020)

PHRB
2019

NDVI (mean) 0.34 0.33 0.28
SAVI (mean) 0.34 0.33 0.28

SR (mean) 0.38 0.38 0.34
TVI (mean) 0.33 0.32 0.27

Wetness (mean) 0.21 0.18 0.15

2020 Greenness (mean) 0.12 0.14 0.04

Regarding WorldView-2, coastal blue, blue, green, and red bands had a very high
impact (>50%) in detection of health classes. The bands derived from WorldView-2 in
2019 had slightly better performance than in the 2018 image. Greenness derived from the
tasseled cap had a low impact on the health status, but contrary brightness (~26–38%) and
wetness (32–51%) showed high-size effects for all years (2018–2020). VIs, such as NDVI,
SR, TVI, and PSRI, had a moderate (WorldView-2 for 2018) and high (WorldView-2 for
2019) impact on predicting the health status classes for all years (2018–2020; more details in
Tables 5 and S1).

Table 5. Summary of the most important results from Eta-squared (η2), WV2.

Satellite Year of
Imagery Band ETA-Squared

(2018)
ETA-Squared

(2019)
ETA-Squared

(2020)

WV2

2018

Coastal Blue (mean) 0.37 0.36 0.36
Blue (mean) 0.36 0.34 0.35

Green (mean) 0.33 0.31 0.32
Yellow (mean) 0.42 0.40 0.40

Red (mean) 0.41 0.39 0.40
Brightness (mean) 0.36 0.38 0.28

Wetness (min) 0.30 0.30 0.36

2019

Coastal Blue (mean) 0.52 0.49 0.58
Blue (mean) 0.51 0.48 0.57

Green (mean) 0.45 0.43 0.49
Yellow (mean) 0.46 0.44 0.54

Red (mean) 0.48 0.46 0.60
PSRI 0.25 0.24 0.29

Wetness (min) 0.34 0.33 0.51

A low association impact was detected for PCA in all years (2018–2020) for Pléiades
and WorldView-2 images, and for SPOT-6 in 2020. For SPOT-6 (2018 and 2019), the PCA
results showed a moderate impact. In addition, R-G-B bands derived from SPOT-6 (2018
and 2019) had a significant impact on health status prediction, with an impact ranging
between 34 and 56%. A moderate impact was detected in the case of NIR bands. In
addition, the results showed that tasseled cap channels (from SPOT-6 in 2018 and 2019),
such as brightness and wetness, had significant importance in detecting health classes
(more details in Table S1).

For SPOT-6 (2018 and 2019), Vis, such as NDVI, SAVI, TVI, and SR, mainly had a
moderate to high importance in detecting health status, while for SPOT-6 2020, there was
no significant importance for these indices. However, there was a moderate impact for
R-G-B bands and the brightness channel derived from SPOT-6 in 2020. In general, SPOT-6
for 2018 and 2019 had much better performance in distinguishing the health classes than
2020 (see Tables 6 and S1).
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Table 6. Summary of the most important results from Eta-squared (η2), SPOT6.

Satellite Year of
Imagery Band ETA-Squared

(2018)
ETA-Squared

(2019)
ETA-Squared

(2020)

SPOT6

2018

Blue (mean) 0.40 0.38 0.39
Green (mean) 0.38 0.37 0.39
Red (mean) 0.41 0.40 0.41

Brightness (mean) 0.36 0.36 0.28
Wetness (mean) 0.40 0.38 0.43

SR (mean) 0.21 0.21 0.26

2019

Blue (mean) 0.40 0.38 0.49
Green (mean) 0.41 0.40 0.43
Red (mean) 0.38 0.36 0.46

Brightness (mean) 0.58 0.58 0.42
Greenness(mean) 0.27 0.22 0.04
Wetness (median) 0.27 0.21 0.12

2020
Blue (min) 0.19 0.18 0.26

Green (min) 0.15 0.14 0.19

The R-G-B bands and most satellites were highly significant in the prediction of
health classes, most likely because the associated wavelengths were highly correlated with
photosynthetic activities. In addition, coastal blue derived from the WorldView-2 images
was crucial for health status assessment because it is absorbed by chlorophyll-a in healthy
plants, thus it is very effective when conducting vegetative analyses.

Between all the calculated descriptive statistics (mean, max, min, STD, etc.), mean
values were determined to be more promising in the prediction of classes (further details
in Table S1). Therefore, for further analyses, we only focused on the mean values. Figure 9
shows the differences in mean values for the calculated transformations and VIs from all
satellites.

Figure 9. Box plots displaying the differences in mean values for the tested transformations and vegetation indices (VIs)
from all satellites.

(2). Feature Selection
A feature selection algorithm was used to identify the most important layers in

the modeling process for each dependent variable separately (Table S2). The feature
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selection approach was in agreement with the Eta-squared (η2) results. Some of the main
influential layers for the classes in 2018 included: brightness SPOT-6 2019 (Cramer’s
V = 0.5453), coastal blue WorldView-2 2019 (Cramer’s V = 0.4962), blue WorldView-2 2019
(Cramer’s V = 0.4855), red WorldView-2 2018 (Cramer’s V = 0.4665), green WorldView-2
2019 (Cramer’s V = 0.4531), and red WordView-2 2019 (Cramer’s V = 0.4522). For the
classes in 2019: brightness SPOT-6 2019 (Cramer’s V = 0.5166), coastal blue WorldView-2
2019 (Cramer’s V = 0.4814), blue WorldView-2 2019 (Cramer’s V = 0.4709), brightness
WorldView-2 2018 (Cramer’s V = 0.4522), and red WorldView-2 2019 (Cramer’s V = 0.4515).
For the classes in 2020: red PHRB 2020 (Cramer’s V = 0.5655), red SPOT-6 2020 (Cramer’s
V = 0.5524), blue PHRB 2020 (Cramer’s V = 0.5379), green PHRB 2020 (Cramer’s V = 0.5368),
and coastal blue WorldView-2 2019 (Cramer’s V = 0.5063; further details in Table S2).

In general, WorldView-2 had better performance than the other two satellites for
predicting the health status classes in 2018 and 2019. For 2020, there was not a significant
difference between the satellites. The main bands (R-G-B and coastal blue) and tasseled
cap channels (brightness and wetness) had the highest significance and were the most
important layers in identifying the health status classes (see Table S2 for further details).

(3). Post Hoc Analysis
In most cases, the results of the multiple comparisons for all years showed that

there was a significant difference in the mean values between the health status classes.
In Figure 10, the results of Dunnett’s T3 are presented for some of the most important
layers according to the feature selection algorithm (Table S3), while Figure 11 shows
the bands that were helpful to differentiate all the classes from each other. Our results
demonstrated that it was generally easier to distinguish the healthy standing class from
the other classes; however, in some cases, it was difficult to distinguish the lying attractive
(LA) from standing healthy (SH). For example, the yellow band from WorldView-2 in 2018
could distinguish all the classes except the standing healthy (SH) and lying attractive (LA).
Similar to this were the red band from WorldView-2 in 2018, and the coastal blue, blue,
green, yellow, red, brightness from WorldView-2 in 2019. In addition, in Figure 10, it is
evident there were some challenges to identifying lying attractive (LA) from lying dead
(LD) trees. We attributed this to the nature of sample collection that caused a mixture of
values from the soil and leaves. Although prediction of all classes was not fulfilled in many
of the bands, several bands could separate the classes successfully (Figure 11).

Figure 10. Post hoc analysis for vegetation indices (VIs) and transformations, showing the significant
difference between the mean values of the four categorical classes (LA: lying attractive, LD: lying
dead, SD: standing dead, SH: standing healthy). Letters (a–d) above and below the box plots were
used to denote significant differences between groups (p-value < 0.05).
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Figure 11. (a) Coastal blue mean values for WorldView-2 in 2018, (b) mean blue values for WorldView-
2 in 2018, and (c) mean blue values for SPOT-6 in 2018. These bands successfully separated all the
classes from each other (LA: lying attractive, LD: lying dead, SD: standing dead, SH: standing
healthy). Letters (a–d) above and below the box plots were used to denote significant differences
between groups (p-value < 0.05).

4. Discussion

Currently, there is a severe lack of knowledge about the role of the European spruce
bark beetle and its population dynamics via remote sensing, which is proving increasingly
useful for predicting forest health issues. This study evaluated the use of multisource
time series (2018–2020) remote sensing data; using different processed layers to predict the
potential spread of European spruce bark beetle in healthy trees, we investigated spectral
correlations between healthy and nonhealthy trees. The location of the study area was
ideal for such a study due to the continuous and severe disturbances caused by abiotic and
biotic factors during the period of interest of the study.

Notably, the date of image acquisition could significantly affect the image information
content for the investigation and analyses of spectral correlations between different datasets.
For example, in the image captured by Pléiades (acquired 25 April 2019), due to partial
presence of snow on the forest floor, which has different reflectance properties, Eta (η) and
Eta-squared (η2) had weaker association with the health classes compared to WorldView-
2 (acquired 4 September 2019), which, in terms of spatial resolution, is very similar to
Pléiades. In addition, unbalanced sample sizes resulted in insufficient information for
some classes (e.g., lying attractive (LA) trees), leading to poorer classification performance;
this result was in accordance with other similar studies [45,46].

Differences in the wavelengths of the same bands between different sensors (e.g.,
Pléiades blue band: 430–550 nm, WorldView-2 blue band: 450–510 nm, and SPOT-6:
blue band: 450–520 nm) may also help explain the weaker spectral correlations found
between the datasets. However, WorldView-2 has higher spectral resolution and provides
an additional band (coastal blue: 400–450 nm), which provided better overall performance.
More specifically, the coastal blue band was found to be crucial for tree health status
assessment because it is absorbed by chlorophyll-a in healthy plants and aids in conducting
effective vegetative analysis. As displayed in Figure 11, a higher amount of chlorophyll-a,b
in healthy trees resulted in a lower amount of reflectance in coastal blue and blue bands
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(higher absorption meant lower reflectance). As the density of chlorophyll decreased, the
reflectance of these bands increased proportionally. Essentially, changes in the amount of
chlorophyll result in changes in the amount of absorption of coastal blue, as well as other
bands in the visible spectrum [47].

The results revealed that spectral resolution was crucial for the early detection of
infestation. For example, Figure 11 presents three bands from two different satellites in
2018 that perfectly predicted the health status classes from 2020. During the early stages
of infestation, the density of leaf pigments changed; thus, it was more likely to detect
the health status using the wavelength absorbed by the chlorophyll-a,b and carotenoids.
Therefore, coastal blue and blue bands had much higher performance in tree health status
prediction. After the infestation, the cell structure of leaves changed; thus, health status
was detected using the wavelengths interacting with these properties (cell structure) [48,49].
NIR absorption/reflectance changed based on the cell structure of the vegetation. Therefore,
this band was helpful in distinguishing current health classes.

We determined that spatial resolution was not as crucial as spectral resolution. In this
study, SPOT-6 performed as well as Pléiades and WorldView-2. One reason for this finding
may be the nature of the sampling method. In this study, each sample polygon covered
several pixels, which led to mixed spectral values for each polygon. It can be assumed
that if the sample size were smaller and representative of just one pixel (e.g., 2 × 2 m), the
results may have been significantly different. Hypothetically speaking, in that case, SPOT-6
would not perform as well as the rest of the satellites due to the lower spatial resolution.

Issues differentiating between the lying attractive (LA) and standing healthy (SH)
may be attributable to the high amount of chlorophyll-a,b in the lying attractive (LA)
trees. Those trees were the result of windthrow, which meant that they were still alive
and potential candidates for future bark beetle attacks. Although the VIs were significant
for predicting health classes, and most of the VIs could distinguish healthy or green from
the dead trees, distinguishing between standing healthy (SH) and lying attractive (LA)
trees was challenging. This was likely due to the similar chlorophyll-a,b absorption and
reflectance properties of the cellular structure of the leaves, especially in the NIR band.
Our results were consistent with the results of several other studies that emphasized the
importance of VIs in predicting health status classes [27,45,46,50–53].

In this study, the difficulties in separating the lying dead (LD) and lying attractive (LA)
trees were attributed. Mixed values of soil, branches, and leaves caused this uncertainty
in the samples, which resulted in the model being unable to distinguish between these
two classes. Based on the visual interpretation of the 2018 UAV images, a large part of
the study area was covered by lying attractive (LA) trees related to the recent windthrow,
which were then defenseless against the European spruce bark beetle and were potentially
a very good food resource and habitat for their propagation. In 2019, the potential food
resources decreased, but it seems that they were still sufficient for the European spruce
bark beetle regeneration. That is why approximately only 3% of the standing healthy (SH)
trees turned to standing dead (SD).

After two years of exponential procreation (each beetle: 253; meaning that one bark
beetle could procreate at least 15,000 beetles per year), the number of beetles in this area
increased to some millions, and, because the available food resources were insufficient
as food supply, this meant most of the lying attractive (LA) trees had transitioned to
lying dead (LD) trees in 2019; thus, by 2020, the beetles infested the healthy trees. In
2020, approximately 28% of the standing healthy (SH) trees turned to standing dead (SD;
Table 1). It can be assumed that the number of the attacked trees was higher, but ~28%
could not resist the massive outbreak, which may have occurred due to the health condition
of these trees. The results showed a significant difference between these trees (~28%) and
the remaining standing healthy (SH) trees, even two years before the European bark beetle
attack. To summarize, we surmised that these trees had some health status issues that
could not survive the bark beetle attack; the findings of WorldView-2 coastal blue and blue
bands from 2018, and the SPOT-6 blue band in 2018 (Figure 11), detected photosynthetic
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differences between the standing healthy (SH) and standing dead (SD) trees in 2020. It
should also be noted that both classes were standing healthy (SH) in 2018. Alternatively,
another possible scenario is that these trees in the study area were already under attack
(the ~28%) and could be seen in the reflectance, but not phenotypically (after two years,
they dried out).

Furthermore, this study showed that a single spectral band could distinguish among
some or all of the health status classes. Conclusively, a single band (coastal blue, bright-
ness, wetness, etc.) can be used to successfully detect early European spruce bark beetle
spreading. In a study by Liu and Liu [54], multidate images were used to detect dead
Robinia pseudoacacia L. plantations using the tasseled cap transformation algorithm. Their
results, which correspond with our results, showed that tasseled cap can be efficiently used
to monitor forest health status. The findings of this paper also were in line with another
study conducted by Erener [55], who also highlighted the importance of tasseled cap for
monitoring and health status assessment in a case study of the Seyitömer Lignite Enterprise
in Kütahya, Turkey.

We expect that soon, most forest managers will be able to operate all types of UAV
platforms that will allow for rapid data collection and real-time data streaming over large
forested areas. Such qualitative data could be then used in combination with advanced
satellite data to support innovative methods for early detection of European spruce bark
beetle spreads into healthy trees.

5. Conclusions

Early detection of bark beetle spreading in healthy trees is of great importance for
the effectiveness of forest management strategies and policies. Our study showed that
annual index changes from very high and high spatial and spectral image resolutions can
effectively be used to detect European spruce bark beetle spreading trends to healthy trees
in advance. This new information is of practical value for monitoring purposes, because it
can predict a priori European spruce bark beetle outbreaks in healthy trees over large forest
areas. A single spectral band can distinguish some or all of the health status classes from
each other. Conclusively, a single band can be used successfully for the early detection of
European spruce bark beetle spreads. We determined that spectral resolution was more
important than spatial resolution for detecting health status classes. Therefore, identifying
physiological stress in earlier stages or detecting smaller spectral differences could be more
feasible, with higher reliability and accuracy, using hyperspectral sensors in wavelengths
that multispectral sensors cannot cover. Different stages of an infestation can change the
absorption/reflectance in different wavelengths. Changes in chlorophyll activities result
in different absorption/reflectance between the range of 400 to 700 nm. In addition, for
trees that are dehydrated or afflicted with a disease, spongy layers within the leaf surface
become deteriorated; thus, those trees absorb more NIR than healthy trees do.

Unfortunately, the cloudiness of the Šumava region due to its specific microclimate,
made it difficult to obtain clear images over short time intervals. Satellite images with
higher temporal resolution (e.g., Sentinels) can potentially increase image capturing during
cloud-free days. However, the main disadvantage of these satellites is the lower spatial
resolution that would not be suitable for our study due to the size of our samples. Limita-
tions in sampling from certain classes with multispectral sensors (e.g., lying attractive (LA)
from 2019 and 2020 and standing dead (SD) from 2018 and 2019) accounted for some of
the uncertainties associated with our proposed approach. We believe that thermal sensors
could improve the classification of different tree health statuses. Finally, we assume that
the composition of several bands using parametric or nonparametric algorithms can lead
to early detection of tree health status with high accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13234953/s1, Tables S1/S2/S3: Table S1: Eta values. Table S2: Feature selection. Table S3:
Post hoc analysis.
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Appendix A

Figure A1. Application of the SAVI vegetation index (VI) in: (a) WorldView-2 2018; (b) SPOT-6 2018.
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Figure A2. Application of the SAVI vegetation index (VI) in: (a) WorldView-2 2019; (b) Pléiades 1B 2019; (c) SPOT-6 2019.

Figure A3. Application of the SAVI vegetation index (VI) in: (a) Pléiades 1B 2020; (b) SPOT-6 2020.



Remote Sens. 2021, 13, 4953 19 of 30

Figure A4. Application of the NDVI vegetation index (VI) in: (a) WorldView-2 2018; (b) SPOT-6 2018.

Figure A5. Application of the NDVI vegetation index (VI) in: (a) WorldView-2 2019; (b) Pléiades 1B 2019; (c) SPOT-6 2019.
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Figure A6. Application of the NDVI vegetation index (VI) in: (a) Pléiades 1B 2020; (b) SPOT-6 2020.

Figure A7. Application of the SR vegetation index (VI) in: (a) WorldView-2 2018; (b) SPOT-6 2018.



Remote Sens. 2021, 13, 4953 21 of 30

Figure A8. Application of the SR vegetation index (VI) in: (a) WorldView-2 2019; (b) Pléiades 1B 2019; (c) SPOT-6 2019.

Figure A9. Application of the SR vegetation index (VI) in: (a) Pléiades 1B 2020; (b) SPOT-6 2020.
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Figure A10. Application of the TVI vegetation index (VI) in: (a) WorldView-2 2018; (b) SPOT-6 2018.

Figure A11. Application of the TVI vegetation index (VI) in: (a) WorldView-2 2019; (b) Pléiades 1B 2019; (c) SPOT-6 2019.
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Figure A12. Application of the TVI vegetation index (VI) in: (a) Pléiades 1B 2020; (b) SPOT-6 2020.

Appendix B

Figure A13. Application of the MCARI vegetation index (VI) in: (a) WorldView-2 2018; (b) WorldView-2 2019.
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Figure A14. Application of the PSRI vegetation index (VI) in: (a) WorldView-2 2018; (b) WorldView-2 2018.

Figure A15. Application of the NDRE vegetation index (VI) in: (a) WorldView-2 2018; (b) WorldView-2 2019.
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Appendix C

Figure A16. Application of the of the PCA transformation algorithm in: (a) WorldView-2 2018; (b) SPOT-6 2018.

Figure A17. Application of the of the PCA transformation algorithm in: (a) WorldView-2 2019; (b) Pléiades 1B 2019;
(c) SPOT-6 2019.
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Figure A18. Application of the of the PCA transformation algorithm in: (a) Pléiades 1B 2020; (b) SPOT-6 2020.

Appendix D

Figure A19. Application of the of the tasseled cap transformation algorithm showing (a) brightness for 2018 and
(b) brightness 2019, as derived from WorldView-2.
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Figure A20. Application of the of the tasseled cap transformation algorithm showing (a) brightness for 2019 and
(b) brightness 2020, as derived from Pléiades 1B.

Figure A21. Example of the tasseled cap transformation algorithm on (a) WorldView-2 2018 and (b) SPOT-6 in 2018, using
all three channels (brightness, greenness, and wetness).
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Figure A22. Example of the tasseled cap transformation algorithm on (a) Pléiades 1B 2020 and (b) SPOT-6 in 2020, using all
three channels (brightness, greenness, and wetness).
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7. Brázdil, R.; Stucki, P.; Szabó, P.; Řezníčková, L.; Dolák, L.; Dobrovolný, P.; Tolasz, R.; Kotyza, O.; Chromá, K.; Suchánková, S.
Windstorms and Forest Disturbances in the Czech Lands: 1801–2015. Agric. For. Meteorol. 2018, 250, 47–63. [CrossRef]

8. Jakoby, O.; Lischke, H.; Wermelinger, B. Climate change alters elevational phenology patterns of the European spruce bark beetle
(Ips typographus). Glob. Change Biol. 2019, 25, 4048–4063. [CrossRef]

9. Modlinger, R.; Novotný, P. Quantification of time delay between damages caused by windstorms and by Ips typographus. For. J.
2015, 61, 221–231. [CrossRef]
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