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Abstract: Cloud contamination is a serious obstacle for the application of Landsat data. To popularize
the applications of Landsat data, each Landsat image includes the corresponding Quality Assessment
(QA) band, in which cloud and cloud shadow pixels have been flagged. However, previous studies
suggested that Landsat QA band still needs to be modified to fulfill the requirement of Landsat
data applications. In this study, we developed a Supplementary Module to improve the original QA
band (called QA_SM). On one hand, QA_SM extracts spectral and geometrical features in the target
Landsat cloud image from the original QA band. On the other, QA_SM incorporates the temporal
change characteristics of clouds and cloud shadows between the target and reference images. We
tested the new method at four local sites with different land covers and the Landsat-8 cloud cover
validation dataset (“L8_Biome”). The experimental results show that QA_SM performs better than
the original QA band and the multi-temporal method ATSA (Automatic Time-Series Analyses).
QA_SM decreases omission errors of clouds and shadows in the original QA band effectively but
meanwhile does not increase commission errors. Besides, the better performance of QA_SM is less
affected by the selections of reference images because QA_SM considers the temporal change of land
surface reflectance that is not caused by cloud contamination. By further designing a quantitative
assessment experiment, we found that the QA band generated by QA_SM improves cloud-removal
performance on Landsat cloud images, suggesting the benefits of the new method to advance the
applications of Landsat data.

Keywords: cloud detection; cloud removal; cloud simulation; cloud shadows; Landsat clouds

1. Introduction

Landsats provide the longest freely available time-series images with a medium
spatial resolution, which have been widely used in many applications (e.g., land cover
mapping, [1]). However, a serious obstacle for the applications of Landsat images is
frequent cloud contamination because approximately one-third area of the earth is covered
by clouds at any given time [2,3]. To use Landsat images more effectively, it is very
important to identify clouds and cloud shadows in Landsat cloud images [4].

A number of methods have been proposed to automatically detect clouds and cloud
shadows in optical satellite images, which can be roughly divided into two categories.
The first category is the single-image methods, which use the multispectral features in
the individual cloud image by assuming that clouds are generally brighter than other
land cover types at given bands whereas cloud shadows are darker [5–11]. Moreover,
some methods further include more other features, such as the lower temperature of
clouds estimated from the thermal infrared bands and the geometric relationship between
clouds and cloud shadows. Instead of using these well-defined cloud features, some recent
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studies employ machine-learning algorithms (e.g., deep learning models) to automatically
extract cloud and cloud shadow features [12–15]. The second category is the multi-temporal
methods, which employ the temporal information provided by the images acquired at other
times (called “reference images”) [16–21]. For example, several multi-temporal methods
use the time series of cloud-free Landsat data, such as the multiTemporal mask (Tmask) [21]
and the Automatic Time-Series Analyses (ATSA) [21]. They first fit the time series and
then compare model estimations with original data in the time series to determine whether
these data are cloud-contaminated. There are pros and cons between the single-image
methods and the multi-temporal methods. Although the temporal information provides an
additional complement to the spectral features for cloud detection, its usefulness depends
on the quality of reference images, e.g., the radiometric consistency between the cloud
image and reference images [22].

Currently, each Landsat reflectance image has included a Quality Assessment (QA)
band, in which cloud and cloud shadow pixels have been flagged. The U.S Geological
Survey (USGS) generated the QA band for Landsats 4–8 by using the Function of mask
(Fmask) algorithm (version 3.3) [10,11]. Fmask is a single-image method and is recognized
to be the most accurate cloud and cloud shadow detection algorithm among single-image
methods by testing a number of Landsat cloud images [23]. The objective to produce the
QA band is to popularize the application of Landsat data. Naturally, we may wonder
whether the Landsat QA band can fulfill the requirement of practical applications? A direct
application of the QA band is to reconstruct those cloud-contaminated pixels in the Landsat
cloud image [24,25]. Unfortunately, previous studies suggested that the Landsat QA band
still needs to be modified to fulfill the requirement of cloud-removal operations [26]. For
example, to reduce the influence of cloud omission error in the Landsat QA band on the
cloud-removal performance, Zhang et al. [26] conducted a dilation of two pixels around
cloud and cloud shadow edges in the Landsat QA band. This simple operation can reduce
the omission error to a certain extent because thin clouds are sometimes around thick
clouds but is likely to be omitted in the QA band [18]. However, it cannot identify those
cloud and cloud shadow patches that are entirely omitted in the QA band. Moreover,
it can be expected that the dilation operation may greatly increase commission error in
some cases, which is unacceptable particularly for the cloud images with limited cloud-free
pixels [10].

In this study, we proposed a simple method to modify the QA band to popularize
its application. Since multiple features in the individual Landsat cloud image have been
carefully considered in the Fmask algorithm, we assume that the original QA band may be
further improved if the new method employs additional temporal features and meanwhile
incorporates the information provided by the original QA band. Therefore, our method is
based on the original QA band and can be considered as a Supplementary Module to the
original QA band (called QA_SM). The use of the original QA band can greatly reduce the
complexity to generate cloud and cloud shadow masks. We compared QA_SM with the QA
band generated by two other methods, including the original QA band (called QA_original)
and the QA band generated by ATSA. ATSA is a state-of-the-art multi-temporal method
and was reported to perform better than Fmask particularly for the frequently cloudy
areas [20]. An improved QA band is assumed to benefit its practical applications. Taking
cloud removal on Landsat cloud images for example, we further quantitatively evaluated
the performance of cloud removal with the use of the three different QA bands. The rest of
this paper is arranged as follows: The details of QA_SM are described in Section 2. Section 3
provides the experimental designs regarding both cloud detection and the application of
cloud removal. The experimental results are given in Section 4 and discussions on the
strengths and limitations of the new method are summarized in Section 5.

2. The QA_SM Method

The objective of QA_SM is to improve the original QA band. To acquire additional
temporal features, QA_SM employs one reference image that is cloud-free or is with small
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cloud coverages. To avoid an additional burden of data collections, QA_SM does not require
the thermal infrared band and the cirrus band because these bands are either unavailable
in Landsat 5 or are usually not collected when using the Landsat optical images.

QA_SM is performed on the Landsat surface reflectance cloud images. To illustrate the
method, we used the symbols PC and PCS to indicate the pixels that were flagged as cloud
pixels and cloud shadow pixels in the original QA band of the cloud image, respectively.
The other pixels were denoted as the symbol Pother. There are mainly four steps in QA_SM.

2.1. Step1: Identifying the Initial Cloud Pixels

Compared with other ground objects, clouds generally have higher reflectance values
in the short wavelengths (e.g., the blue band). Cloud pixels thus have large reflectance
changes at the blue band between the cloud image and the reference images. This feature
is described by:

ρblue(change) = max(ρblue(cloud) − ρblue(ref ′ ))− (ρblue(cloud) − ρblue(ref ′ )) (1)

where

ρblue(ref′ )= ρblue(ref) +
1
n

n

∑
i=1

(ρ i
blue(cloud) − ρi

blue(ref)), i ∈ PA
other (2)

ρi
blue(cloud) and ρi

blue(ref) are the reflectance values at the blue band for a pixel i in the
cloud image and the reference image, respectively. PA

other denotes the class A in Pother,
which was generated by using the k-means cluster. The number of classes was set to be 4–5
depending on the Land surface. Here, we employed Equation (2) to reduce the reflectance
difference between the cloud and reference images caused by land surface changes. The
item max(ρblue(cloud)− ρblue(ref ′ )) in Equation (1) represents the maximum value of
reflectance changes among the pixels in Pother. Those cloud pixels in PC with the reflectance
changes larger than this item are assumed to be the cloud pixels in the final cloud mask
(referred to as P1

C), and the other pixels in PC are referred to P2
C. Moreover, this item is

introduced to make the reflectance change value (ρblue(change)) larger than 0; meanwhile,
cloud pixels have smaller ρblue(change).

Another feature of cloud pixels is the relatively large reflectance at the blue band
in the cloud image. By combing both large values of ρblue(cloud) and small values of
ρblue(change) for cloud pixels, a cloud index (CI) is proposed as

CI =
ρblue(cloud) − ρblue(change)
ρblue(cloud) + ρblue(change)

+1 (3)

with the normalized form, CI has a value between 0 and 2 and is larger for cloud pixels.
We identified initial cloud pixels in Pother based on the following two criteria: (1) the
CI value of an initial cloud pixel i (denoted as CI(Pi

other)) should be larger than the median
CI value of P2

C, which can be considered to be an absolute threshold condition; (2) we
further employed the relative threshold to determine the initial cloud pixels in each class
separately. Taking one class as an example, the CI value of an initial cloud pixel i in the
class A (denoted as CI(Pi

other ∈ A)) must satisfy the following condition, expressed as:

CI
(

Pi
other ∈ A

)
> mean

(
CI
(

PA
other

))
+a × std

(
CI
(

PA
other

))
(4)

where mean(·) is the function of the mean value and std(·) is the function of the standard
deviation. The parameter a is the standard deviation multiplier. A smaller a would lead to
more initial cloud pixels, but meanwhile increase the risk of commission errors. We used a
value of 2.0 for this parameter (see Section 5).
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2.2. Step 2: Identifying the Initial Cloud Shadow Pixels

We proposed a cloud shadow index (CSI) to identify initial cloud shadow pixels. The
core idea to construct CSI is similar to that for CI. CSI considers the low reflectance values at
the near-infrared band (NIR) for cloud shadow pixels in the cloud image (i.e., ρnir(cloud)).
And meanwhile, CSI characterizes the decrease in NIR reflectance for cloud shadow pixels
between the reference and cloud images. CSI was expressed as:

CSI =
ρnir(cloud) − ρnir(change)
ρnir(cloud) + ρnir(change)

+1 (5)

where

ρnir(change) =(ρnir(ref ′ ) − ρnir(cloud)) −min(ρnir(ref ′ ) − ρnir(cloud)) (6)

ρnir(ref′ )= ρnir(ref) +
1
n

n

∑
i=1

(ρ i
nir(cloud) − ρi

nir(ref)), i ∈ PA
other (7)

min(·) is the function of the minimum value. Those cloud shadow pixels in PC with the
reflectance changes smaller than the item min(ρnir(ref ′ ) − ρnir(cloud)) are assumed to
be the cloud shadow pixels in the final cloud shadow mask (referred to as P1

CS), and the
other pixels in PCS are referred to P2

CS. CSI has a value between 0 and 2, and is smaller for
cloud shadow pixels. A pixel i in Pother (denoted as CSI(Pi

other)) was identified to be an
initial cloud shadow pixel if the following two criteria were satisfied: (1) CI(Pi

other) should
be smaller than the median CSI value of P2

CS, which can be considered to be an absolute
threshold; (2) a relative threshold was employed to determine initial cloud shadow pixels
in each class separately. For example, the CSI value of an initial cloud shadow pixel i in
class A (denoted as CSI(Pi

otherA)) should follow the following equation:

CSI
(

Pi
other ∈ A

)
< mean

(
CSI

(
PA

other

))
− b × std

(
CSI

(
PA

other

))
(8)

where the parameter b is the standard deviation multiplier and was set to be 2.0 (see
Section 5).

2.3. Step 3: Matching the Initial Cloud and Cloud Shadow Pixels

Clouds always accompany cloud shadows. Therefore, we refined the initial cloud
and cloud shadow pixels by using the relationship of geometric locations among clouds,
cloud shadows, and the sun. Assuming an initial cloud pixel i is located at (x, y), the
corresponding cloud shadow pixel can be found at (x′,y′) according to the following
equations [27]

x′ = x − Hcloud_i × tan θ× sinφ (9)

y′ = y + Hcloud_i × tan θ× cosφ (10)

where θ is the solar zenith angle and φ is the solar azimuth angle, both of which are
provided by the image metadata file. Hcloud_i is the cloud height at the location (x, y). Some
previous methods estimated the height of each cloud patch based on lapse rates for air
temperature from land surface to clouds [6,10]. However, QA_SM did not employ the
thermal infrared band to estimate Hcloud_i. Those clouds that were omitted in the QA
band are normally thin. The brightness temperature of thin clouds is greatly affected by
the land surface. As a solution, QA_SM estimated a possible range of Hcloud_i based on
the original QA band. We assumed that Hcloud_i is within the range of cloud heights for
those cloud pixels that were flagged in the QA band. For this, we generated the cloud
patches and cloud shadow patches in the QA band according to the eight-neighborhood
connectedness. For a cloud patch j, its height (Hcloud_pj) can be estimated approximately
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from the horizontal distance between this cloud patch and its shadow patch (denoted as
DISpj), given by

Hcloud_pj =
DISpj√

(tan θ× sinφ)2+(tan θ× cosφ
)2

(11)

We estimated DISpj automatically by two steps (Figure 1). First, the shadow patch was
moved along the projected direction until the overlap area between the cloud and shadow
patches reaches one-third of the area of the shadow patch. The horizontal distance of
movement is assumed to be x1. The boundary of the cloud patch intercepted by the shadow
patch is denoted as the curve ab. In the second step, the curve ab was matched with the
corresponding boundary of the shadow patch (i.e., a′b′) based on the similar shapes of the
two curves. We enabled the two curves to have an identical length by linear interpolation
and calculated the correlation coefficient between them. We assumed a successful match
if the correlation coefficient is above 0.9. The horizontal distance between the two curves
is denoted as x2. Thus, DISpj is the sum of x1 and x2 (Figure 1). For some clouds such as
the ones with large vertical extents, their heights may not be estimated if the shapes of the
two curves are less similar (i.e., correlation coefficient < 0.9). Assuming that we estimated
the heights of n cloud patches in the QA band (i.e., {Hcloud_p1, . . . , Hcloud_pn}), the possible
range of Hcloud_i is thus estimated to be

min{Hcloud_p1, . . . , Hcloud_pn} ≤ Hcloud_i ≤ max{Hcloud_p1, . . . , Hcloud_pn} (12)
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Figure 1. An illustration showing the geometrical matching between the cloud patch and its shadow
patch. DISpj is the horizontal distance between a cloud patch j and its shadow patch.

We removed the maximum 1% values from {Hcloud_p1, . . . , Hcloud_pn} to make the
estimation of Hcloud_i less affected by outliers. QA_SM allowed the heights of the initial
cloud pixels can vary in the possible range, and thereby matched all initial cloud and cloud
shadow pixels by using different heights.

An initial cloud shadow pixel was preserved once its corresponding cloud pixel can
be found. For an initial cloud pixel, its projected pixel may be also covered by clouds
(e.g., large clouds). If so, QA_SM started with this projected pixel and determined the next
projected pixel. This process was continued until the projected pixel is a cloud shadow pixel
or a cloud-free pixel. If it is a cloud shadow pixel, this initial cloud pixel was preserved;
otherwise, this initial cloud pixel was removed.
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2.4. Step 4: Generating the Final QA Band

In the first three steps, we expected to reduce the omission error by detecting cloud
and cloud shadow pixels in Pother. In this step, we aim to reduce the commission er-
ror to some extent. We assumed that a cloud pixel in PC was flagged as cloud-free if
the CI value of this pixel was smaller than the median CI value of cloud-free pixels in
Pother. Similar operations were performed for cloud shadow pixels in PC by using the
CSI values. To further reduce commission error, we followed previous studies (e.g., [20])
to remove isolated cloud-contaminated pixels. Cloud patches and cloud shadow patches
in QA_SM were removed if they had much smaller sizes (i.e., <7 pixels by using the
eight-neighborhood connectedness).

QA_SM inherited the snow mask and the water mask in the original QA band because
of two reasons: first, Fmask is a sophisticated algorithm and identifies snow and water by
using multiple features (e.g., multi-band thresholds) and data sources (e.g., global water
map) [28]. QA_SM is based on the original QA band and thus does not include snow
and water detections, which substantially reduces the complexity of the supplementary
module. Second, QA_SM is developed to popularize the Landsat data application. We
indeed found that snow and clouds are sometimes confused in the original QA band, but
it may be unnecessary to distinguish the two types because both of them were usually
excluded from many practical applications such as vegetation studies.

3. Data and Experiments

We conducted two groups of experiments to evaluate QA_SM. In experiment I, we
tested QA_SM at four local test sites to answer three questions: first, whether the QA
band generated by QA_SM has higher accuracy than those generated by other methods;
Second, we took the cloud-removal application as the example to investigate whether
the improved QA band by QA_SM can really benefit the application of Landsat cloud
images; Third, since QA_SM uses a cloud-free reference image acquired at another time,
we investigated whether and to what extent the performance of QA_SM is affected by
the different selections of reference images. In the experiment II, we performed more
extensive evaluations for cloud detection by applying QA_SM to the Landsat-8 cloud cover
validation dataset (“L8_Biome”) [23].

3.1. Experiment I: Evaluations at Four Test Sites of China
3.1.1. Experiment I Design

We collected Landsat 8 Land surface reflectance images at four test sites in China.
Because geometrical error for Landsat reflectance data is normally within a pixel, we did
not perform additional registration. Table 1 summarized the image information at each
site. The first site is double-cropping cropland in the North China Plain where ground
reflectance values change rapidly. At this site, summer maize or soybean is normally
planted in mid-June after harvesting the winter wheat [29]. The second site is an evergreen
forest area in Southeastern China, which belongs to a subtropical monsoon climate with
frequent cloud contamination. The third site is urban Hangzhou, China. This urban site
is experiencing rapid urbanization and has a heterogeneous landscape. The fourth site
locates in the Tibetan Plateau with snow cover and complex terrain.

Firstly, we performed both the visual assessments and quantitative evaluations for the
cloud masks generated by different methods (i.e., QA_original, QA_SM, and ATSA) at the
four test sites. Three evaluation indices were adopted, including the Commission error,
Omission error, and F1-score of the mask, expressed as:

Commission = 1 − agreement of clouds and shadows
agreement of clouds and shadows+commission of clouds and shadows (13)

Omission = 1 − agreement of clouds and shadows
agreement of clouds and shadows+omission of clouds and shadows (14)

F1 =
2 × agreement of clouds and shadows

2 × agreement of clouds and shadows+omission of clouds and shadows+commission of clouds and shadows (15)
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Table 1. Upper: the Landsat 8 image information at the four test sites for the experiment of cloud detection (upper); Lower:
the cloud-simulated images for the quantitative assessments of cloud removal. SSIM: the Structure SIMilarity index.

Test Sites
(Path/Row)

North China Plain
(123/34)

Southeastern China
(126/44)

Hang Zhou
(119/39)

Tibetan Plateau
(138/39)

Cloud detection

Actual cloud
image 2017-05-23 2016-10-16 2016-04-22 2019-06-07

Reference image 1
(SSIM)

2017-05-07
(0.898)

2017-04-10
(0.678)

2015-10-13
(0.779)

2018-02-12
(0.641)

Reference image 2
(SSIM)

2018-04-08
(0.739)

2014-10-11
(0.656)

2017-05-27
(0.731)

2018-01-27
(0.599)

Image size 950× 950 1000× 1000 919× 921 1003× 1003

Cloud removal Cloud-simulated
image 2016-05-04 2017-05-28 2014-05-23 2016-11-21

The reference cloud masks were visually interpreted carefully by the independent
analysts. Considering that a satisfactory reference image may be unavailable in some
cases, we tested the performance of QA_SM by using different reference images. These
reference images have different similarities to the cloud image. The Structure SIMilarity
index (SSIM) [30] was calculated to measure the structural similarity between the cloud-free
areas in the cloud image and the corresponding areas in the reference image (Table 1).

Secondly, we further quantitatively assessed the influence of different QA bands on
the cloud-removal performance. This experiment can be considered as an example of the
practical application of the QA band. Because the true reflectance values of cloud and
cloud shadow pixels are unknown, it is impossible to conduct this experiment on the
actual Landsat cloud images. We thus performed this experiment on the cloud-simulated
image at each site (see the last row in Table 1). Specifically, the cloud-simulated image
was generated based on a cloud-free image in two steps: first, we simulated the cloud and
cloud shadow masks on the cloud-simulated image by overlapping the reference mask of
an actual cloud image on the cloud-free image (see Figure 2A,B); Second, the reflectance
values of clouds and cloud shadows in the cloud-simulated image were simulated by
using the atmospheric radiative transfer code MODTRAN (version 5.2.2) [31], which is
demonstrated in detail in Section 3.1.2. For cloud removal on the cloud-simulated image,
we used the different QA bands of this actual cloud image (i.e., QA_original, QA_SM and
QA_ATSA of the actual cloud image). We employed two different cloud-removal methods
to reconstruct the cloud and cloud shadow pixels, including the local linear histogram
matching (LLHM) method [32] and the modified neighborhood similar pixel interpolator
(MNSPI) method [33]. LLHM reconstructs each cloud patch in the target cloud image by
using a linear transfer function, which is determined by performing histogram matching
for the neighboring pixels around each cloud patch between the target and the reference
images. MNSPI combines both spatial-based and temporal-based estimations to fill cloud-
induced missing reflectance. Two indices were adopted for quantitative assessments. The
first is the root mean square error (RMSE), which measures the difference between the
reconstructed reflectance values and the true values. Because the reconstructed pixels are
different for various QA bands, RMSE was calculated for the pixels in the union of the
three different QA bands (i.e., QA_original ∪ QA_SM ∪ ATSA). The second index is the
SSIM values [30], which measure the structural similarity between the reconstructed image
and the true image.
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Figure 2. An example showing the generation of the cloud-simulated image at the site of the North China Plain. (A) The
actual cloud image; (B) The reference mask of the actual cloud image was overlapped on a cloud-free image. The yellow
and blue polygons indicate the locations of clouds and cloud shadows; (C) The reflectance values of clouds and cloud
shadows in (B) were simulated by MODTRAN (For details, please refer to Section 3.1.2). Noted: the site of North China
Plain is covered by croplands (i.e., red color in (C)) and built-up regions (i.e., cyan color in (C)).

3.1.2. The Reflectance Values of Cloud and Cloud Shadow Pixels Simulated
by MODTRAN

The reflectance values of cloud and cloud shadow pixels were simulated by MOD-
TRAN (version 5.2.2). MODTRAN is a classic 1D model in which the atmosphere is
considered to be plane-parallel and vertically inhomogeneous. By assuming a Lambertian
surface, the reflectance at the top of the atmosphere (ρTOA) can be estimated from

ρTOA= ρ0 +
(Ts+ts)(T + t)ρ

1 − ρσ
(16)

where ρ is the ground reflectance. ρ0 is the path reflectance from the atmosphere. Ts and ts
are the direct and diffuse transmittance from the sun to the ground. T and t are the direct
and diffuse transmittance from ground to sensor. σ is the atmospheric spherical albedo. By
solving this equation inversely, we can acquire

ρ =
ρTOA − ρ0

(ρ a − ρ0)σ+(Ts +ts)(T + t)
(17)

Equations (16) and (17) are the basis of the simulations. For those pixels located in the
cloud mask (Figure 3A), we first transformed their ground reflectance to ρTOA based on
Equation (16). The atmospheric variables in Equation (16) (i.e., ρ0, Ts, ts, T, t, and σ) were
determined by running the cloud model in MODTRAN. We called this process “forward
simulation”. Next, we transformed the simulated ρTOA to the ground reflectance based on
Equation (17), but the atmospheric variables in Equation (17) were generated by running
the clear-sky model in MODTRAN. This process was called “backward simulation”, which
simulated the operation of atmospheric correction. We considered varying cloud thickness
for cloud pixels by using the haze optimal transformation (HOT) as an indicator of cloud
thickness [34]. The HOT values were calculated for those cloud pixels in the actual cloud
image and were converted to thickness by the simple linear function. The conversion
coefficients were tuned on the individual image.
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We simulated the reflectance values of cloud shadow pixels by assuming the partly
cloudy condition (Figure 3B). Likewise, both forward and backward simulations were
adopted. In the forward simulation, the cloud shadow pixel is illuminated by the at-
mospheric diffuse light and the direct light that is blocked by clouds. Given that the
atmospheric diffuse light may also be blocked by clouds to some extent, we incorporated
an adjusting factor (named Vf) into Equation (16), expressed as

ρTOA= ρ0 +
(Ts +Vfts)(T + V f t)ρ

1 − ρσ
(18)

Vf was employed to account for the effective cloud fraction, thereby having a value be-
tween 0–1. Vf was tuned on the individual image to reconcile the brightness of shadows
between the actual could image and the cloud-simulated image. For each shadow pixel,
the location of the corresponding cloud pixel was determined by the geometrical matching
(i.e., Equations (9) and (10)). Figure 2C shows the cloud-simulated image at the site of the
North China Plain (for the cloud-simulated images at all sites, please refer to Figure S1 in
the Supplementary Materials).

3.2. Experiment II: Tests on the Landsat 8 Cloud Cover Validation Dataset

In this experiment, we performed extensive tests for cloud detection on the Landsat-8
cloud cover validation dataset (“L8_Biome”) [23]. In L8_Biome, there are 32 Landsat 8
scenes with both manual cloud mask and cloud shadow mask. These images are globally
distributed and are covered by eight different biomes, i.e., forest, grass/crops, shrubland,
barren, urban, snow/ice, water and wetland. We excluded five images belonging to the
snow/ice biome because QA_SM inherited the snow/ice mask in the original QA band
and ATSA also does not include the snow/ice detection module. Besides, five images
with a cloud coverage of less than 1% were excluded because cloud commission error is
tolerable in these images. The 22 Landsat scenes employed for this experiment were shown
in Table 2.

Table 2. The image information of the 22 Landsat scenes in experiment II.

L8_Biome Site (Path/Row) Center
Latitude/Longitude Image Date Cloud Coverage

Barren_1 (P193/R45) 22◦4′ N/2◦2′ E 2013-05-06 64.06%
Barren_2 (P 164/R60) 15◦6′ N/45◦4′ E 2013-06-28 7.33%

Forest_1 (P175/R62) 1◦5′ S/25◦0′ E 2013-10-31 7.09%
Forest_2 (P131/R18) 61◦50′ N/111◦9′ E 2013-04-18 5.44%
Forest_3 (P20/R46) 21◦1′ N/90◦2′ W 2014-01-05 12.04%
Forest_4 (P16/R50) 15◦6′ N/85◦7′ W 2014-02-10 49.59%

Forest_5 (P229/R57) 5◦8′ N/56◦ W 2014-05-21 53.70%
Forest_6 (P07/R66) 7◦1′ S/76◦8′ W 2014-08-22 5.05%
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Table 2. Cont.

L8_Biome Site (Path/Row) Center
Latitude/Longitude Image Date Cloud Coverage

Grass/Crops_1 (P202/R52) 12◦9′ N/13◦7′ W 2013-05-21 17.15%
Grass/Crops_2 (P175/R51) 13◦9′ N/28◦6′ E 2013-07-27 58.97%
Grass/Crops_3 (P29/R37) 42◦4′ N/101◦3′ W 2013-09-14 32.41%
Grass/Crops_4 (P98/R71) 14◦4′ S/141◦0′ E 2014-01-24 33.01%

Shrubland_1 (P01/R73) 17◦9′ S/69◦0′ W 2013-04-19 6.71%
Shrubland_2 (P32/R38) 32◦3′ N/106◦9′ W 2013-10-05 2.65%

Shrubland_3 (P102/R80) 131◦9′ S/27◦3′ E 2014-04-10 76.28%

Urban_1 (P177/R26) 34◦3′ N/49◦9′ E 2013-09-11 3.70%
Urban_2 (P64/R45) 22◦8′ N/158◦0′ W 2014-02-10 3.06%
Urban_3 (P162/R43) 51◦0′ N/25◦0′ E 2014-03-13 20.29%

Water_1 (P215/R71) 14◦9′ S/39◦8′ W 2013-06-01 45.23%
Water_2 (P162/R58) 3◦2′ N/46◦0′ E 2014-04-14 6.57%
Water_3 (P113/R63) 3◦0′ S/120◦0′ E 2014-08-29 8.23%

Wetland_1 (P101/R14) 66◦7′ N/161◦6′ E 2014-07-08 64.93%

4. Results
4.1. Experiment I—Evaluations at the Four Test Sites of China
4.1.1. Assessments for Different QA Bands

Table 3 summarizes the quantitative assessments for the performance of cloud de-
tection at the four local test sites. Among all methods, QA_SM performed the best with
the highest F1-score values at all sites. Compared with the original QA band, QA_SM
decreased the omission error effectively but meanwhile, the commission error did not
increase even had an extent of decrease. For example, at the site of croplands in the North
China Plain, QA_SM decreased the omission error from 5.9% to 3.3% and the commission
error from 20.2% to 18.3%. At the urban site of Hangzhou, QA_SM decreased the omission
error and the commission error from 27.3% to 17.9% and from 18.9% to 16.3%, respectively.
Moreover, the performance of QA_SM was less affected by the different selections of ref-
erence images (see “reference 1” and “reference 2” for QA_SM in Table 3), which may be
because QA_SM considers the Land surface reflectance changes that are not caused by
cloud contamination (i.e., Equations (2) and (7)). Unsatisfactory reference images may be
encountered due to temporally continuous cloud contamination. This experiment suggests
that QA_SM can be applied to the areas with limited reference images. For the ATSA
method, it performed better than QA_original at the forest site in Southeastern China but
performed worse than QA_original at the other three sits, particularly at the urban site of
Hangzhou with extremely high commission error.

We further show the visual comparisons among different QA bands at the four test
sites (Figure 4). It can be seen that QA_original obviously omitted some clouds and
cloud shadows, such as the undetected cloud shadows around the edges of some cloud
shadow patches (see the enlarged view at the site of Southeastern China, Figure 4B) and
those isolated undetected clouds and cloud shadows (see the enlarged view at the site
of Hangzhou, Figure 4C). Apparently, the omission error in QA_original is difficult to
be corrected by the dilation operations adopted by previous studies. Consistent with
the quantitative assessments, QA_SM detected those omitted clouds and cloud shadows
effectively even for those small cloud and cloud shadow patches. The performance of
ATSA is not stable. Obvious overdetection of clouds and cloud shadows exists at the sites
of North China Plain and Hangzhou (Figure 4A,C).
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Table 3. The commission error, omission error, and F1-score for the detection of cloud-contaminated
pixels (clouds and shadows) by different methods at the four sites of China. “Reference 1” and
“Reference 2” indicate the different reference images used by QA_SM (see Table 1).

Sites QA Band Commission
Error (%)

Omission
Error (%) F1-Score

North China Plain

QA_original 20.2% 5.9% 86.3%
ATSA 24.2% 1.6% 85.6%

QA_SM (Reference 1) 18.3% 3.3% 88.6%
QA_SM (Reference 2) 18.2% 3.5% 88.6%

Southeastern China

QA_original 10.6% 8.1% 90.6%
ATSA 11.8% 3.0% 92.4%

QA_SM (Reference 1) 9.4% 4.2% 93.2%
QA_SM (Reference 2) 9.6% 4.4% 92.9%

Hang Zhou

QA_original 18.9% 27.3% 76.7%
ATSA 62.8% 4.6% 53.5%

QA_SM (Reference 1) 16.3% 17.9% 82.9%
QA_SM (Reference 2) 16.3% 18.0% 82.8%

Tibetan Plateau

QA_original 11.3% 5.0% 91.7%
ATSA 5.3% 20.0% 86.7%

QA_SM (Reference 1) 11.4% 3.4% 92.4%
QA_SM (Reference 2) 11.4% 3.3% 92.4%

4.1.2. Quantitative Assessments for Cloud Removal by Using Different QA Bands

To test whether the improvement of the QA band can really improve its applica-
tions, we performed quantitative assessments for the performance of cloud removal by
using different QA bands. The assessments were conducted in six bands, including the
blue, green, red, near-infrared, and two short-wave infrared bands (i.e., the bands 2–7 in
Landsat 8). Figure 5 shows the RMSE and SSIM values averaged over the six bands when
using the LLHM and MNSPI methods to reconstruct cloud-contaminated pixels. In general,
QA_SM performed better than QA_original and ATSA with the smallest RMSE values
and the highest SSIM values for the reconstructed images. Compared with QA_original,
ATSA-derived cloud masks do not always improve the performance of cloud removal.
For example, ATSA performed better than the QA_original at the site in the North China
Plain whereas performed worse than QA_original at the site in Hangzhou when using
MNSPI for cloud removal (Figure 5). At both sites, ATSA decreased the omission error in
the cloud mask but has a higher commission error than QA_original, particularly at the
site in Hangzhou where the commission error is very high in ATSA (Table 3). This may
account for the unstable performance of cloud removal based on the cloud mask of ATSA.
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4.2. Experiment II—Evaluations on the Landsat 8 Cloud Cover Validation Dataset

An extensive evaluation was performed on L8_Biome. For intuitive comparisons,
Figure 6 highlights the difference in the cloud detection performance between QA_SM
and QA_original and that between ATSA and QA_original. Due to page limitations, the
detailed evaluation indices at each scene were summarized in Table S1. It can be seen
that QA_SM achieved a higher F1-score than QA_original at almost all Landsat scenes.
The amplitude of the improvement by QA_SM depends on specific scenes, ranging from
0%–5% in the F1-score (see blue bars in Figure 6). In contrast, ATSA performed worse
than QA_original at most scenes (see orange bars in Figure 6). ATSA includes a standard
deviation multiplier, a key parameter controlling the balance between commission and
omission error (see Equation (6) in [20]). We adopted the recommended value for the
standard deviation multiplier in ATSA, but the unstable performance of ATSA may not
be due to this parameter setting because ATSA did not show consistent large commission
or omission error on L8_Biome (Table S1). In other words, ATSA had a large commission
error at some scenes but a large omission error at some other scenes. Regarding the
computational efficiency of QA_SM, it took about 10–40 min, depending on the percent
of cloud coverage, to detect clouds and cloud shadows for each scene in L8_Biome on a
personal computer (CPU: 4-processors with frequency 3.3 GHz).

Figures 7–10 show the examples for the visual comparisons between the reference
mask and different QA bands. Because of the generally poor performance of ATSA
(Figure 6), we excluded the visual comparisons for ATSA. We found that QA_SM effectively
identified those omitted clouds and cloud shadows around the edges of the original patches
(Figure 7) and those isolated clouds and cloud shadows (Figures 8–10). Particularly, there
may be a large number of clouds and cloud shadows omitted in QA_original in some cases
(e.g., see the enlarged view in Figure 9). Such detection errors can be corrected by QA_SM.
Interestingly, we found that the reference cloud masks have little commission error but the
obvious omission of clouds and cloud shadows in some cases. For example, in the Forest_1
scene, the bare land was incorrectly flagged as clouds (see the panels in the middle row
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of Figure 8). For the Grass/Crops_1 scene, thin clouds in a large area were not flagged
(Figure 9), which could lead to large commission errors for both QA_original and QA_SM.
It is worth noting that the generation of manual cloud masks may have a certain subjec-
tivity, particularly for the determination of thin clouds [35]. We suggest further reducing
those omitted clouds and cloud shadows in the reference mask by independent analysts.
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5. Discussion

Generating cloud and cloud shadow masks are crucial for the applications of various
satellite data [36,37]. Landsat QA band still needs to be modified to fulfill the requirement of
Landsat image practical applications, such as the reduction of omission error in Landsat QA
band for cloud removal in Landsat cloud images [26]. We thus developed a supplementary
module to process the original QA band (called QA_SM). Our experiments suggest the
effectiveness of the new method. Compared with QA_original (single-temporal method)
and ATSA (multi-temporal method), QA_SM performed the best in terms of both visual
assessments and quantitative evaluations (Figures 4–10).

Two reasons may explain the improvement of the original QA band by QA_SM. First,
the original QA band, produced by the Fmask method, is generated by using the single
cloud image only. In contrast, to detect cloud pixels, QA_SM considers the high reflectance
in the cloud image as well as the reflectance increase between the reference image and the
cloud image. Both features of cloud pixels have been quantified by the proposed cloud
index (Equation (3)). Similar ideas are adopted by the cloud shadow index in QA_SM for
shadows detection (Equation (5)). Compared with those multi-temporal methods based on
time-series images, the use of one reference image in QA_SM does not increase more the
burden of image collections. Second, considering that Fmask is one of the most accurate
single-temporal cloud detection algorithms, QA_SM works based on the original QA band,
which not only reduces complexity but improves the robustness of the new method. For
example, to reduce the risk of commission error, QA_SM estimated absolute thresholds for
clouds and shadows from the original QA band in each Landsat cloud image. Some other
operations were also adopted to reduce commission error, such as the geometrical matching
between clouds and cloud shadows and the removal of isolated cloud and shadow patches
with many small sizes (e.g., <7 pixels). Our results confirmed that QA_SM decreases
omission error but meanwhile does not increase commission error in cloud detections,
which benefits applications of Landsat cloud images (e.g., cloud removal in Figure 5).

The standard deviation multiplier (i.e., a in Equation (4) and b in Equation (8)) is
needed to be determined in QA_SM. Smaller values would be able to detect thinner clouds
and lighter cloud shadows. We have tested the parameters at the four experiment sites by
varying the values from 1.5 to 2.5 at a step of 0.1. Figure 11 shows the receiver operating
characteristic (ROC) curves for the performance of cloud detection. According to the result,
we determined this value to be 2.0 by considering the balance between the true positive
rate and the false positive rate. Users can tune this value according to different applications.
For example, using smaller values to reduce omission errors is expected for the application
of cloud removal.

We recognize that some uncertainties remain in our analyses. First, the new version
Fmask 4.0 has been developed recently [28], although Landsat QA band is generated by
Fmask 3.3. One may wonder whether QA_SM is still useful if Landsat QA band is updated
by using Fmask 4.0 in the future. To address this concern, we performed evaluations on
L8-Biome again but using Fmask 4.0 to generate the original QA band. Results show that
QA_SM still improves the accuracy of the original QA band at most scenes (Figure S2),
suggesting the usefulness of QA_SM even if the Landsat QA band is updated by using
Fmask 4.0. Second, as a supplementary module to process the original band, QA_SM
was compared with the single-temporal method Fmask and the multi-temporal method
ATSA. We noted that a large number of methods have been proposed for cloud detection.
Till now, Landsat QA band is produced by using Fmask. If the original QA band was
produced by using other methods, the effectiveness of QA_SM may be further tested
in the future. Third, the requirement of a reference image is likely a limiting factor for
the application of the new method. In some regions, such as tropical areas, it may be a
challenging task to collect an ideal cloud-free reference image due to temporally continuous
cloud contamination. Fourth, to quantitatively evaluate the improvement in the cloud-
removal performance by using QA_SM, we simulated reflectance values for clouds and
cloud shadows by using MODTRAN. We admit that simulated reflectance values are only
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the approximations of actual values. However, such simulations are acceptable because
locations of clouds and cloud shadows were extracted from another actual Landsat cloud
image and MODTRAN was only used for reflectance simulations. Fifth, we employed
two cloud-removal methods only (i.e., LLHM and MNSPI) to investigate the influence of
cloud detection on the application of cloud removal. However, different cloud-removal
methods may have different sensitivity to the quality of the QA band. Such an issue was
less considered in previous cloud-removal studies [24]. We recommend taking the quality
of the QA band into account when performing comparisons among different cloud-removal
methods. Our experimental design based on atmospheric radiative transfer simulation
provides a solution to achieve this goal.
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6. Conclusions

In this study, we developed a simple method QA_SM to improve the original QA
band in the Landsat cloud image. QA_SM combines spectral and geometrical features in
the single Landsat cloud image with the temporal change characteristics of clouds and
cloud shadows. We compared QA_SM with the single-temporal method Fmask and the
multi-temporal method ATSA at four sites of China with different land covers and the
Landsat-8 cloud cover validation dataset (“L8_Biome”). By using MODTRAN to simulate
reflectance values for clouds and cloud shadows, we further evaluated the performance
of cloud removal by using the QA bands generated by different methods. The following
conclusions are reached: (1) QA_SM performs better than the Landsat original band and
ATSA on both local test sites and L8_Biome with generally higher F1-score values; (2) The
better performance of QA_SM is less affected by the selections of reference images. The
proposed cloud and cloud shadow indices in QA_SM consider the temporal changes of
land surface reflectance that are not caused by cloud contamination; (3) Cloud-removal
performance is improved by using QA_SM to process the original QA band, suggesting
benefits of QA_SM to advance the applications of Landsat cloud images.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13234947/s1. Figure S1: The generation of the cloud-simulated images at the four local
sites of China. In each row from left to right panels are the actual cloud image, the reference mask
of the actual cloud image that was overlapped on a cloud-free image, and the reflectance values of
clouds and cloud shadows in (B) that were simulated by MODTRAN (For details, please refer to
Section 3.1.2). Figure S2: The difference of F1-score between QA_SM and QA_original (blue color)
and between ATSA and QA_original (orange color) at each L8_Biome scene. A negative (positive)
value suggests worse (better) performance of the method than QA_original. Table S1: The RMSE and
SSIM values for cloud removal at each band in experiment II by using different QA bands.
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