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Abstract: Seagrass meadows are one of the blue carbon ecosystems that continue to decline world-
wide. Frequent mapping is essential to monitor seagrass meadows for understanding change
processes including seasonal variations and influences of meteorological and oceanic events such as
typhoons and cyclones. Such mapping approaches may also enhance seagrass blue carbon strategy
and management practices. Although unmanned aerial vehicle (UAV) aerial photography has been
widely conducted for this purpose, there have been challenges in mapping accuracy, efficiency, and
applicability to subtidal water meadows. In this study, a novel method was developed for mapping
subtidal and intertidal seagrass meadows to overcome such challenges. Ground truth seagrass
orthophotos in four seasons were created from the Futtsu tidal flat of Tokyo Bay, Japan, using vertical
and oblique UAV photography. The feature pyramid network (FPN) was first applied for automated
seagrass classification by adjusting the spatial resolution and normalization parameters and by
considering the combinations of seasonal input data sets. The FPN classification results ensured high
performance with the validation metrics of 0.957 overall accuracy (OA), 0.895 precision, 0.942 recall,
0.918 F1-score, and 0.848 IoU, which outperformed the conventional U-Net results. The FPN classifi-
cation results highlighted seasonal variations in seagrass meadows, exhibiting an extension from
winter to summer and demonstrating a decline from summer to autumn. Recovery of the meadows
was also detected after the occurrence of Typhoon No. 19 in October 2019, a phenomenon which
mainly happened before summer 2020.

Keywords: feature pyramid network (FPN); U-Net; seasonal variation; drone; typhoon; submerged
aquatic vegetation (SAV); Futtsu tidal flat; Tokyo Bay

1. Introduction

Coastal blue carbon ecosystems, such as mangroves, salt marshes, and seagrass mead-
ows, play a crucial role in supplying environmental functions such as providing shelter
for fisheries, performing water purification, enhancing soil stability, decreasing coastal
erosion, supplementing nutrients, protecting coastlines [1], and mitigating climate change
by sequestering carbon from the atmosphere [2]. They are regarded as the most efficient
ecosystem for carbon storage but are also the most rapidly disappearing ecosystem world-
wide. Among them, seagrass meadows serve as habitats in subtidal and intertidal zones
and continue to decline due to the fact of environmental [3] and climate change [4]; episodic
events, including heatwaves [5], storms [6], and tsunamis [7]; anthropogenic activities [8].
Monitoring of seagrass meadows is essential for understanding the mechanism of their
changes and promoting the social implementation of its blue carbon policy [9].

Extensive efforts to monitor seagrass meadows have been engaged through in situ
surveys, including diving surveys [10] and sampling-based surveys [11], which are ac-
curate but laborious, costly, and time-consuming. Passive remote sensing (Quickbird-
2 [12], IKONOS [13], Landsat 5, and Landsat 7 [14]) and active remote sensing (side-scan
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sonar [15] and airborne Lidar [16]) have also been widely used to monitor seagrass mead-
ows; however, obtainment of frequent and high-resolution images that will contribute
toward understanding the processes of changes in seagrass meadows and will aid in the
promotion of blue carbon management may be costly; moreover, the thick cloud affects
the timely acquisition of satellite image resources. Recently, unmanned aerial vehicles
(UAVs), also known as drones, have attracted attention for application in coastal ecosystem
mapping [17]. Although unmanned aerial vehicles are restricted by the maximum distance
and flight time as well as policy restrictions in different regions, they can be used to acquire
high-quality orthophoto images in small areas with high resolution and high frequency
owing to their flexibility including avoiding the influence of cloud cover [18].

Collection and classification of seagrass images obtained using drones remain chal-
lenging. Duffy et al. [19] compared unsupervised and object-based image analysis (OBIA)
classification methods adopted for acquiring intertidal seagrass orthophotos. Although
these traditional machine learning methods yield high-accuracy, generalization ability
limitations lead to the achievement of unsatisfactory results when a trained model is ap-
plied to a new data set [20]. Deep learning methods have gained popularity for coping
with the generalization problem owing to their advantages in digging semantic values
after convolution. For example, Yamakita et al. [21] confirmed that a deep convolutional
generative adversarial network showed better results than the fully convolutional network
for classifying different objects, including seagrass, by using aerial and satellite images
(QuickBird). However, the deep convolutional generative adversarial network may exhibit
limitations, such as collapsing generators, and is highly sensitive to hyper-parameter selec-
tions [22]. Moniruzzaman et al. [23] demonstrated that a faster region-based convolutional
neural network yielded good results for classifying underwater video images of seagrass.
However, the approach of the faster region-based convolutional neural network depends
on a very time-consuming algorithm for object location assumption [24]. Recently, U-Net
has been applied for drone image classification because it requires fewer images and has
a simple stable structure. Hobley et al. [25] and Jeon et al. [26] applied U-Net to classify
intertidal seagrass orthophotos. Although their results were accurate for intertidal waters,
their applicability to subtidal water seagrass meadows posed challenges. U-Net is also
unsuitable for classifying small seagrass objects in the image [27]. The feature pyramid
network (FPN) was first introduced for object detection. It consists of a top-down pathway
that can be used to generate different resolution layers, and classification in these layers
helps classify small objects in the image. [28]. As studies have not been reported on the
application of FPN to classify seagrass images, this study aimed to evaluate its performance
compared with that of U-Net.

Preprocessing images, such as resolution adjustment, the normalization process, and
a combination of input data sets, is essential for increasing classification accuracy [29,30],
especially for submerged seagrass images with sun glint and scattering due to the presence
of waves. The noise induced by sun glint and scattering due to the fact of waves in
the original drone photos might lead to the information loss of submerged target objects.
Noises in images (i.e., glint, contrast, and compression) negatively affect the model learning
of the features of images [31]. Image normalization can help alleviate the brightness
difference attributable to changes in lighting conditions during a long-time mapping
mission [32]. Color calibration aids the unification of the features of images before the
mosaic of the images [33]; however, it may not be adequate to perform corrections for
brightness difference in subtidal and intertidal seagrass images. Hence, further image
normalization after mosaic is necessary, such as by using Gaussian blur [34], which is a
widely applied smoothing technology based on the Gaussian function. Depending on the
number of classification classes and the amount of data in each class of input training data,
the combination of different input data sets yields different classification accuracies [35].
To our knowledge, existing studies have not reported the assessment of the effect of such
aspects on the classification of subtidal and intertidal seagrass images, which we aimed to
discuss in the present study.
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The Futtsu tidal flat in Tokyo Bay, Japan, has been regarded as a study site for mon-
itoring seagrass meadows [36]. However, few studies have reported the identification
of seasonal variations and the influence of meteorological and oceanic events, including
typhoon impacts, using drone images. Typhoon Hagibis, one of the biggest typhoons
documented since 1977 in Japan [37], hit Tokyo Bay in October 2019; however, there was no
occurrence of a typhoon in Tokyo Bay in 2020. Therefore, during 2020, the Futtsu tidal flat
was a suitable study site for examining seagrass recovery after the occurrence of typhoons.

The objective of the present study was to develop a novel automated method for
mapping subtidal and intertidal seagrass meadows with high accuracy by applying FPN
to drone orthophotos. First, we generated ground truth polygons of subtidal and intertidal
seagrass meadows. Thereafter, we formulated an FPN application protocol for mapping
and evaluated its performance compared to that of U-Net-based classification. An investi-
gation on the influence of resolution, normalization, and a combination of data sets was
also performed to enhance classification accuracy. Finally, seasonal variations in seagrass
meadows were identified, and the influence of typhoons was assessed.

2. Materials and Methods

The present study comprised image collection, image classification, and variation
identification (see Figure 1).
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Figure 1. Workflow of seagrass classification and area evaluation.

2.1. Study Site

The Futtsu tidal flat is located in the middle of Tokyo Bay in Futtsu City, Chiba
Prefecture, Japan (Figure 2), and presents with the largest seagrass meadows in the bay.
Three seagrass species, namely, Zostera marina (eelgrass), Zostera caulescens, and Zostera
japonica (Japanese eelgrass), inhabit the meadows with eelgrass as the dominant species.
The study area was approximately 1.8 × 0.7 km with a water depth of 0–3 m [38] as shown
in Figure 2C.
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Figure 2. Location of the Futtsu tidal flat in Tokyo Bay. The study area (red box) extended from the observatory in the west
to the jetty in the east, and the mapping area (yellow box) was slightly larger than the study area. Other areas are restricted
by policy. The bathymetry is also shown here [38,39].

2.2. Seagrass Image Collection

We acquired aerial photos of seagrass meadows from January 2020 to March 2021
using a DJI Phantom 4 Pro drone. The seagrass was submerged underwater when the
images were collected. Vertical photos were acquired under conditions of cloudy, calm
wind speeds lower than 2 m/s and low tide conditions to obtain a clear image of subtidal
and intertidal seagrass meadows [40]. Oblique photos were occasionally obtained in the
case of a low solar zenith angle (less than 50◦) in sunny weather to avoid sun glint and
scattering due to the presence of waves [41,42] as shown in Figure 3. Detailed mapping
information is presented in Table 1. Notably, the generated orthophotos for each season
were based on photos collected on one or separate dates at the same water level; additional
images were collected during the same season to compensate for the missing details of the
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orthophotos. Drone images in the spring of 2020 could not be collected due to the outbreak
of COVID-19; thus, these images were collected in 2021.
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Figure 3. Schematic diagram of oblique photography. Half of the field of view (FOV/2) β, solar zenith angle γ, and tilted
camera degree θ should satisfy: 90◦ − γ > β − θ [43]. The flight direction and tilted camera degree should be adjusted
according to the sun direction to minimize the FOV/2. The tilted camera angle θ was 15◦, and the FOV/2 β was calculated
to be 37◦ [44]. The solar zenith angle γ was approximately 45◦ when mapping, avoiding sun glint.

Table 1. Photography specifications for seagrass meadows. Tidal level data at Kisarazu Port (Figure 2B) were obtained from
the Japan Meteorological Agency [45].

No. Season Date Time (JST) Weather Sun Angle (◦) Tidal Level (cm)

1 Winter
10 January 2020 08:18~10:03 Cloudy - 113~154

14 February 2020 12:36~15:01 Cloudy - 64~117

2 Summer
18 June 2020 10:13~12:38 Cloudy - 48~108
3 July 2020 10:35~11:48 Cloudy - 34~65

3 Autumn

11 September 2020 9:15~11:22 Sunny 45~59 112~129
15 September 2020 9:10~10:51 Sunny 43~53 22~42
17 September 2020 9:12~9:51 Sunny 43~49 40~25
6 November 2020 10:00~11:26 Cloudy - 146~129

- Winter
11 December 2020 9:09~10:42 Cloudy - 92~126

17 January 2020 11:26~13:06 Cloudy - 116~96

4 Spring 5 March 2021 11:50~14:14 Cloudy - 104~53
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2.3. Generation of Ground Truth Data

It is essential to establish accurate ground truth data as a training data set for deep
learning. Nine ground control points (GCPs) were evenly set on semi-permanent marks,
and post-processed kinematic (PPK) was applied to obtain the accurate coordinates of the
GCPs (see Figure 4). Original photos were processed through the structure from motion
(SfM) using the photo mosaic software Metashape (Agisoft) [46] to generate orthopho-
tos. The same season additional photos replaced the photos with missing details when
generating the orthophotos. Many additional tie points were considered to aid relative geo-
referencing based on the spectral signature difference after the GCPs’ georeferencing [47].
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georeferencing work. The primary validation of the classification results was based on the raw photos obtained from the
drone with clear information.

We used the iterative self-organizing data analysis technique algorithm (ISODATA) to
classify seagrass meadows [48] and conducted visual interpretation to correct the classifica-
tion results, creating ground truth data for deep learning models. The entire orthophoto
was split into five parts, each of which was processed independently to enhance processing
speed (Figure 5 is presented to demonstrate the processing of part 4). Each part was first
resampled to a 0.5 m resolution to eliminate image noise, followed by pre-classification
into 40 categories after conducting unsupervised classification in a class size of 20 and
a sampling interval of 10 (one cell out of every ten blocks of cells was used in the clus-
ter calculation). According to the major color difference in the original photos (seagrass
meadows are indicated in green, and sediments are indicated in white), 40 pre-classified
categories were reclassified into seagrass and non-seagrass categories. As reclassification
results varied in different places in part 4, we further clipped the reclassification results
and separated them into newly created three layers in the contents table of ArcGIS. In layer
1 (Figure 5C–E), the majority filter was applied to improve the results by eliminating the
remaining noise, and visual interpretation was conducted to correct the detrital manually.
Following the same process, layer 2 (Figure 5F,G) and layer 3 (Figure 5H,I) were classified,
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and the three layers were merged to obtain the final classification results (Figure 5J). By
connecting the results of all five parts to obtain single ground truth data, ground truth
polygons and binary rasters for seagrass meadows were created. Following the procedures,
seasonal orthophotos with ground truth polygons and binary rasters were generated.
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Figure 5. The creation process of ground truth data. Part 4 is used for demonstrating the process: (A) clipped resample
orthophoto; (B) results after performing ISODATA; (C) layer 1: pre-classified into two categories (seagrass and non-
seagrass); (D) layer 1: results after the majority filter; (E) layer 1: results after manual correction; (F) layer 2: repeated
for pre-classification into two categories; (G) layer 2: results after the majority filter and manual correction; (H) layer
3: repeated for pre-classification into two categories; (I) layer 3: results after the majority filter and manual correction;
(J) merge classification results of E, G, and I (layers 1–3); (K) binary ground truth data.

The results were validated based on color and texture information of seagrass and
non-seagrass from the high-resolution raw photos obtained by the drone. In addition,
proximate photos of seagrass at 15 stations with location information were recorded in
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places accessible by foot using a waterproof camera with GPS (Nikon COOLPIX W300)
on 17 July and 23 April 2019 (see Figure 4). These camera photos were addressed on the
created ground truth data results for further validation.

2.4. Seagrass Classification
2.4.1. Segmentation Model

FPN was applied in the preprocessing and classification for the new data set of winter
of 2020. FPN comprised bottom-up and top-down pathways as shown in Figure 6 [49]. The
bottom-up pathway in the left is the normal network of convolution used to extract the
features of the original image with a 2 step scaling. As the bottom-up process continues,
the spatial resolution decreases, while the semantic value increases. As the low semantic
value and the high quality of the original photo reduce the speed of calculation, the original
high-quality image in the bottom layer was not used for semantic detection. FPN contains
another top-down pathway to compensate for the problem by generating high-quality
layers from the high semantic value layer. Although the regenerated layers presented with
high semantic values, the locations of the objects were not accurate. Thus, the top-down
pathway was combined with the same spatial size features from the bottom-up process. As
shown in the red, solid line box in Figure 6, the upsampling approach was considered using
nearest neighbor methods to change the spatial resolution twice, and a 1 × 1 convolution
layer was used to reduce the dimensions of the feature channel when the feature maps
in the two pathways were merged with element-wise addition. Thereafter, the feature
maps generated contained high-accuracy location information and high-quality semantic
features, which can help predict objects of different sizes in different layers by considering
the advantage of different resolution images and the semantic values of object features
in the original image. These multi-scale object detection and segmentation characteristics
were the main differences from those of U-Net. When deciding which layer the region of
interest should be assigned, the following equation was used [49]:

k =
⌊

k0 + log2

√
wh/244

⌋
(1)

where k0 is 4, w and h are the width and height of the region of interest, respectively, and the
whole calculation result is rounded down to obtain the k, which means that layer k in the
FPN is used to generate the feature patch. The particular structure of an FPN helps identify
the location of small objects in the image, which renders feasibility and convenience to
FPN training [50].
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U-Net was used to classify the same data set with similar preprocessing procedures as
FPN. U-Net consists of an encoder and decoder [51] (see Figure 7), which helps save the es-
sential features by reducing the dimensionality of the inputted orthophoto images in the left
part of the model and consists of five blocks for feature extraction (two 3 × 3 convolutions)
and downsampling (2 × 2 max-pooling after convolutions), wherein the base number of
kernels is determined in the first block. When feature extraction is finished in the last
block, the decoder acts in the opposite direction by increasing the dimensionality and by
transforming the high convolutional information into the original spatial information. The
decoder contains four blocks, each with 2 × 2 up-convolutions and 3 × 3 convolutions.
These two parts are then concatenated with the same feature map size; thus, the number
of feature channels is doubled, and low-level information is included to obtain deep fea-
tures. The model is suitable for classifying objects that are close to each other by using the
following loss function [51]:

E = ∑
x∈Ω

ω(x) log
(

pl(x)(x)
)

(2)

where pl(x) is the loss function of softmax, l is the true label of each pixel, and ω is a
weight map that assigns more weight to points near the boundary. The prediction is
commenced after the decoder process ends in the last block; this is regarded as the end-
to-end segmentation process of the original images [52]. Unlike FPN, U-Net only makes
predictions in the last layer.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 25 
 

 

segmentation process of the original images [52]. Unlike FPN, U-Net only makes predic-
tions in the last layer. 

 
Figure 7. The framework of U-Net. Images are imported into the encoder for convolution and max-
pooling and are then processed with copy and crop, up-convolution, and convolutions in the de-
coder to finish classification [51]. 

2.4.2. Input Data Preparation 
The orthophotos and ground truth binary rasters were processed with a random slid-

ing window into small images and corresponding binary rasters. The number of cropped 
images was the same throughout all seasonal data sets, and few images were presented 
with overlapping. Input data sets for the training process were generated as a combination 
of the training data set (80%), testing data set (10%), and validation data set (10% for self-
validation). The original images (resolution: 0.05 m) were resampled to 0.1, 0.2, 0.5, 1, 2, 
and 4 m to assess the influence of spatial resolution on the accuracy of seagrass classifica-
tion. The model was trained at each resolution, and the optimal resolution was selected in 
terms of the overall accuracy (OA, see Equation (3)) for the subsequent preprocessing step. 
These protocols were implemented for the subsequent preparation of the input data sets. 

The application of Gaussian blur is expected to enhance classification accuracy. The 
optimal Gaussian blur pixel radius was determined in terms of OA by conducting a series 
of experiments with different pixel radii of 1001, 901, 801, 701, 601, 501, and 401 (unit: 
pixel) along with a group without Gaussian blur application to orthophotos with the se-
lected resolution. 

We designed a series of experiments to examine the influence of combinations of in-
put data sets on the model’s generalized classification accuracy and implementation effi-
ciency. A total of 15 combinations (∑ 4, ) were obtained for the four seasonal data 
sets (see No.1–4 in Table 1). 

2.4.3. Hyper-Parameter Tuning 
We adopted a set of default hyper-parameters provided in pre-experiment for the 

FPN, as FPN problems are primarily attributed to the input data set rather than hyper-
parameter tuning [28], which was computationally extremely costly in the FPN. Hyper-
parameter tuning of U-Net was conducted in terms of three hyper-parameters of the batch 
size, base number of kernels, and learning rate using the prepared input data set. Previous 
studies have suggested that an orthogonal experimental design may help save computa-
tional resources by reducing experimental cases [53]. By adopting such a design (Table 2), 
the number of experiments (27; three factors each with three levels, 33 = 27) was reduced 
to nine, and such experiments were conducted in U-Net tuning. 

Figure 7. The framework of U-Net. Images are imported into the encoder for convolution and max-pooling and are then
processed with copy and crop, up-convolution, and convolutions in the decoder to finish classification [51].

2.4.2. Input Data Preparation

The orthophotos and ground truth binary rasters were processed with a random
sliding window into small images and corresponding binary rasters. The number of
cropped images was the same throughout all seasonal data sets, and few images were
presented with overlapping. Input data sets for the training process were generated as
a combination of the training data set (80%), testing data set (10%), and validation data
set (10% for self-validation). The original images (resolution: 0.05 m) were resampled to
0.1, 0.2, 0.5, 1, 2, and 4 m to assess the influence of spatial resolution on the accuracy of
seagrass classification. The model was trained at each resolution, and the optimal resolution
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was selected in terms of the overall accuracy (OA, see Equation (3)) for the subsequent
preprocessing step. These protocols were implemented for the subsequent preparation of
the input data sets.

The application of Gaussian blur is expected to enhance classification accuracy. The
optimal Gaussian blur pixel radius was determined in terms of OA by conducting a series
of experiments with different pixel radii of 1001, 901, 801, 701, 601, 501, and 401 (unit: pixel)
along with a group without Gaussian blur application to orthophotos with the selected
resolution.

We designed a series of experiments to examine the influence of combinations of input
data sets on the model’s generalized classification accuracy and implementation efficiency.
A total of 15 combinations (∑4

r=1 C(4, r)) were obtained for the four seasonal data sets (see
No.1–4 in Table 1).

2.4.3. Hyper-Parameter Tuning

We adopted a set of default hyper-parameters provided in pre-experiment for the FPN,
as FPN problems are primarily attributed to the input data set rather than hyper-parameter
tuning [28], which was computationally extremely costly in the FPN. Hyper-parameter
tuning of U-Net was conducted in terms of three hyper-parameters of the batch size, base
number of kernels, and learning rate using the prepared input data set. Previous studies
have suggested that an orthogonal experimental design may help save computational
resources by reducing experimental cases [53]. By adopting such a design (Table 2), the
number of experiments (27; three factors each with three levels, 33 = 27) was reduced to
nine, and such experiments were conducted in U-Net tuning.

Table 2. Orthogonal experimental design for hyper-parameter tuning in U-Net.

No. Learning Rate Batch Size Base Number of Kernels

T01 0.0002 16 12
T02 0.0002 32 48
T03 0.0002 64 24
T04 0.001 16 48
T05 0.001 32 24
T06 0.001 64 12
T07 0.005 16 24
T08 0.005 32 12
T09 0.005 64 48

2.5. Accuracy Assessment

OA is the criterion for selecting the input data set preparation and hyper-parameter
tuning [54]. The classification results of the final trained models were converted to a
confusion matrix, wherein each pixel in the images was classified into one of the four
principal terms of true positive (TP), false positive (FP), false negative (FN), and true
negative (TN), compared with the ground truth data. For evaluation, the following five
criteria were selected: OA, precision, recall, F1-score, and intersection over union (IoU),
defined by the following:

OA =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1− score =
2 × Precision × Recall

Precision + Recall
(6)

IoU =
TP

TP + FP + FN
(7)
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where their value range was between 0 and 1 [55].

3. Results
3.1. Verification of the Ground Truth Data

Five ground truth data in four seasons were established as shown in Figure 8. Seagrass
meadows were distributed inside green polygons. Figure 9 demonstrates the verification of
the ground truth data using high-resolution raw images obtained using drone photos and
camera photos. The created seagrass polygons were consistent with the boundary lines
between the seagrass and non-seagrass beds.

3.2. Seagrass Mapping Results
3.2.1. Selection Results of the Input Data Set

The influences of preprocessing levels in terms of image resolution and normalization
using Gaussian blur on the FPN classification are summarized by OA in Table 3. The OA
value increased with a decrease in the resolution from 0.05 to 2 m and then decreased, with
the highest OA value of 0.971 achieved at a 2 m resolution, a finding which is consistent
with the previous cognition for drone image classifications [56]. The highest OA value of
0.976 was achieved with a Gaussian blur radius of 901.

Table 3. Selection results for the input data set of resolution and normalization preprocess.

Item Different Preprocess Level

Resolution 0.05
m 0.1 m 0.2 m 0.5 m 1 m 2 m 4 m -

OA 0.817 0.923 0.947 0.956 0.965 0.971 0.963 -

Gaussian blur N/A 1001 901 801 701 601 501 401
OA 0.970 0.972 0.976 0.969 0.968 0.967 0.967 0.967

By selecting a spatial resolution of 2 m and Gaussian blur radius of 901, 15 experiments
(see Section 2.4.2) were conducted, and their results are summarized in Table 4. In principle,
the self-validation results (from the 10% validation data set), which represented the accurate
classification ability, increased as the class number decreased, while the cross-validation
results in each season, which represented the generalization ability, decreased as the class
number decreased. The mean OA value in the last column, which represents the average of
the self-validation and cross-validation results, revealed a balance between accuracy and
generalization ability. The mean OA also decreased with a decrease in the class number
of the data set. The optimum result was obtained in No. 1 using four seasons data set in
terms of OA (a mean value of 0.965) and applicability to any season, and this would be
the best combination, despite not being cost-effective. Number 15 showed relatively high
accuracy and generalization ability for using only one data set in the winter, and this may
be deemed an easy and inexpensive option.

The same experiments were conducted for U-Net, revealing that the experiment using
four seasons data set with a spatial resolution of 2 m and Gaussian blur radius of 701
showed the best mean OA of 0.956.

3.2.2. Hyper-Parameter Tuning for U-Net

The hyper-parameters of the FPN were set to default values as described in Section 2.4.3.
Tuning results for the hyper-parameters of U-Net demonstrated that T04 was the best com-
bination, as shown in Table 5, which was adopted in further applications.
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Table 4. Experimental results of the input data set adjustment.

Number Training Data Set Self-
Validation

Cross-Validation
Mean OA

Spring Summer Autumn Winter

1 Spring, summer, autumn, winter 0.973 0.966 0.963 0.973 0.957 0.965

2 Spring, summer, autumn 0.973 0.965 0.964 0.974 0.935 0.960
3 Spring, summer, winter 0.964 0.964 0.963 0.866 0.956 0.937
4 Spring, autumn, winter 0.964 0.965 0.865 0.973 0.959 0.941
5 Summer, autumn, winter 0.969 0.957 0.964 0.973 0.957 0.963

6 Spring, summer 0.974 0.968 0.963 0.865 0.929 0.931
7 Spring, autumn 0.972 0.964 0.753 0.967 0.901 0.896
8 Spring, winter 0.961 0.969 0.828 0.903 0.963 0.916
9 Summer, autumn 0.981 0.959 0.963 0.974 0.926 0.955
10 Summer, winter 0.972 0.896 0.959 0.840 0.935 0.907
11 Autumn, winter 0.971 0.961 0.847 0.971 0.959 0.935

12 Spring 0.962 0.968 0.764 0.841 0.908 0.870
13 Summer 0.981 0.852 0.955 0.742 0.903 0.863
14 Autumn 0.980 0.928 0.896 0.961 0.856 0.910
15 Winter 0.962 0.923 0.917 0.933 0.930 0.926

Table 5. Orthogonal experimental results for the hyper-parameter tuning of U-Net.

No. OA No. OA No. OA

T01 0.957 T04 0.970 T07 0.704
T02 0.965 T05 0.967 T08 0.949
T03 0.954 T06 0.957 T09 Out of memory

3.2.3. Model Testing via Application to a New Data Set

For testing, the FPN and U-Net models were applied to classify seagrass meadows for
a new data set in winter 2021 (see Table 1), which was not used for model development.
We trained the models with four seasons input data set in 2 m resolution processed with
Gaussian blur in 901 radius (701 radius for U-Net). The results are presented in Table 6
and Figure 10. To verify the importance of every step of the preprocessing procedure,
FPN and U-Net models in every stage of the preprocessing were applied to the new
data set. The FPN model with original and adjusted resolutions yielded unsatisfactory
results (Figure 10A,B). When a suitable Gaussian blur was applied to the data set, the
FPN classification achieved the highest accuracy (Figure 10C). The U-Net model with the
original and proper spatial resolution also yielded unsatisfactory results (Figure 10D,E);
their accuracy was not significantly different from the FPN model’s results using the same
data set process procedures. When further preprocessed with Gaussian blur, the model
performance worsened (Figure 10F). When only the spatial resolution orthophoto was
adjusted, we obtained the highest classification results.

Table 6. Classification results for the new data set in winter 2021 obtained from different models.

Model Process Procedures Figure OA Precision Recall F1-Score IoU

FPN

Original resolution (0.5 m) Figure 10A 0.809 0.608 0.823 0.699 0.538
Adjusted resolution (2 m) Figure 10B 0.942 0.848 0.941 0.892 0.805

Gaussian blur application and
adjusted resolution Figure 10C 0.957 0.895 0.942 0.918 0.848

U-Net

Original resolution (0.5 m) Figure 10D 0.751 0.522 0.925 0.667 0.500
Adjusted resolution (2 m) Figure 10E 0.947 0.873 0.929 0.900 0.818

Gaussian blur application and
adjusted resolution Figure 10F 0.943 0.874 0.909 0.891 0.804
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Figure 10. Classification results in winter 2021: green, TP; blue, FP; red, FN; white, TN. (A) FPN (original resolution);
(B) FPN (adjusted resolution); (C) FPN (adjusted resolution and Gaussian blur); (D) U-Net (original resolution); (E) U-Net
(adjusted resolution); (F) U-Net (adjusted resolution and Gaussian blur).

The FPN with suitable preprocessing demonstrated higher accuracy for seagrass
classification than the U-Net. The U-Net model’s results are regarded as the baseline of
seagrass classification [26], and our results revealed that the FPN was more suitable for
subtidal and intertidal seagrass classification than U-Net.

The testing results for the new winter data set in 2021 using the three seasons and one
season data sets are shown in Tables 7 and 8, respectively. The same testing classification
work with data sets for three seasons, particularly the combination of spring, autumn, and
winter, led to comparable accuracy for the data set of the four seasons. For the one season
data set, the winter data set, considered as the training data set for the FPN, showed good
performance for the new winter data set.
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Table 7. Testing results for the new data set based on the input data set for four and three seasons.

Input Combination OA Precision Recall F1-Score IoU

Spring, summer, autumn, winter 0.957 0.895 0.942 0.918 0.848
Spring, summer, autumn 0.947 0.867 0.934 0.900 0.817
Spring, summer, winter 0.944 0.879 0.905 0.892 0.805
Spring, autumn, winter 0.955 0.893 0.936 0.914 0.842

Summer, autumn, winter 0.940 0.838 0.948 0.889 0.801

Table 8. Testing results for the new data set based on one season input data set.

Input Combination OA Precision Recall F1-Score IoU

Spring 0.793 0.864 0.23 0.363 0.222
Summer 0.848 0.859 0.484 0.619 0.449
Autumn 0.847 0.753 0.601 0.669 0.502
Winter 0.891 0.878 0.668 0.759 0.612

3.3. Seagrass Area Variation

The seasonal change in the seagrass bed area was estimated from the ground truth
data (Figure 11). The seagrass area significantly increased from winter to summer and
decreased from summer to autumn. Regarding seagrass recovery in the Futtsu tidal flat, a
comparison was performed between the data obtained for the winter of 2020 (3 months
after occurrence of the typhoon) and those obtained for the winter of 2021. The seagrass
recovered from 5.9 × 105 m2 to 6.4 × 105 m2 for one year (recovered by 8%, 5.0 × 104 m2),
which mainly happened before the summer of 2020 and after the occurrence of the typhoon.
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We compared seagrass meadow areas in winter 2021 derived from the application of
the FPN and U-Net models and ground truth data, which were estimated to be 6.6 × 105,
6.7× 105, and 6.4× 105 m2, respectively. The FPN results were found to be more consistent
with the ground truth data than the U-Net results.
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4. Discussion

This study was conducted to assess FPN performance for classifying subtidal and
intertidal seagrass orthophotos by conducting various input data set preprocessing experi-
ments and by setting hyper-parameters; U-Net processed with the same procedures was
used for comparison. Seagrass is usually submerged in subtidal and intertidal areas; thus,
sun glint and scattering occurring due to the presence of waves serve as challenges. To
overcome such problems, preprocessing of input data sets, including adjustment of spatial
resolution, the normalization of parameters, a combination of input data sets, and the selec-
tion of a suitable classification model, is essential. In our study, the optimal 2 m resolution,
Gaussian blur radius of 901 (701 for U-Net), and data for the four seasons combination
were determined, and FPN was found to outperform U-Net in the classification of subtidal
and intertidal seagrass meadows.

The adjusted resolution images helped achieve better classification results than the
original resolution image, which might be attributed to sun glint and scattering noise.
Moreover, the computing time significantly increased with increasing image resolution. For
optimal resolution images, the noise in images is averaged and merged with the surround-
ing pixels, reducing the learning time and increasing classification efficiency. This finding is
consistent with that reported previously on image classification at different resolutions [57].
Under this condition, higher altitude drone missions and resampling of images into lower
resolution could increase the efficiency. The trained model was designed to classify sea-
grass objects of different sizes in the resampled image. Although high-resolution drone
photos were intended to obtain high-resolution seagrass mapping results automatically,
we sacrificed the resolution for automatic high-accuracy classification, which may have led
to information loss. For example, patches smaller than 2 m on the ground were averaged
by the surrounding objects and not identified when images were resampled to 2 m for
higher classification accuracy. Although they may not be essential in typical seagrass
meadow for large area estimation, if small patch seagrass classification is essential in some
case studies, we recommend compensating the FPN classification results by conducting
additional unsupervised classification for small patches. Application of an appropriate
Gaussian blur enables the achievement of higher classification accuracy. Gaussian blur
may help further average out the surrounding pixels with noise (noise-induced wrong
classification was reduced) and alleviate the brightness difference, increasing the texture
homogeneity of seagrass and sediments and enabling learning through model application
(wrong classification in sediments decreased). Application of Gaussian blur with an inap-
propriate radius may lead to the obtainment of different objects showing the same texture
information or result in unsolved noises in orthophotos (see Table 3).

The classification accuracy was related to the input data set combinations. The input
data set of the four seasons exhibited generalization ability and presented the most accurate
classification results for the new data set. Although the three seasons data set achieved the
same level of accuracy when applied to the new winter data set, because of the diversity of
features, the four seasons data set should be selected, as seagrass shows different texture
features in different seasons (Figure 12). Image texture could be identified and interpreted
by humans but not by traditional classification methods [19]. However, the convolutions
of the FPN extract the texture information automatically, and the training and classification
of the classifier rely more on texture information than on other automatically extracted
information [58,59]. Additionally, it is recommended that photos should be acquired under
the conditions of different water levels, as it may also increase the contrast of texture feature
difference.
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able to its learning for redundant features and ignoring of small objects [27,61]. Neverthe-
less, unsuccessful classification pixels existed in areas where a large brightness gradient 
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Figure 12. The texture and color information comparison depicted for every season in one specific area: (A) 10 January 2020
winter, (B) 18 June 2020 summer, (C) 17 September 2020 autumn, (D) 11 December 2020 winter, and (E) 5 March 2021 spring.

FPN was found to demonstrate better classification accuracy for the new data set
than U-Net when optimal preprocessing was conducted. The lower feature map of FPN
was designed for small object detection in the image; its multi-layer structure helped
efficiently classify objects of different sizes in different layers generated from the resampled
image [28]. Additionally, the ResNet used in the FPN structure circumvents the gradient
explosion, causing FPN to effectively learn the seagrass features even in deeper networks
and to yield better classification results [60]. The worse results of the U-Net might be
attributable to its learning for redundant features and ignoring of small objects [27,61].
Nevertheless, unsuccessful classification pixels existed in areas where a large brightness
gradient appeared (e.g., sun glint, see Figure 13C) or the texture information in non-seagrass
areas was similar to that in seagrass areas (Figure 13D). Successful classification results
are often obtained in areas with relatively homogeneous texture or those surrounded by
marked boundaries (Figure 13A,B). In addition, we found no significant difference in the
classification results of seagrasses in the deep and shallow subtidal zones (Figure 14A,C), as
the trained model might have learned adequate features to achieve highly accurate seagrass
classification in different water depths. Moreover, the classification results showed lower
accuracy for Z. japonica (Figure 14B) than for Z. marina (Figure 14A), possibly because of the
insufficient training data set for Z. japonica. Apart from that, the bed with a homogenous
texture yielded less wrong seagrass classification results than the bed with a heterogeneous
texture (Figure 14C–E). More data augmentation and preprocessing procedures in low-
accuracy areas may help improve classification accuracy.
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Figure 13. Comparison of the classification results in different texture information: green, TP; blue, FP; red, FN; white,
TN. (A) The clear boundary between seagrass and non-seagrass (high-accuracy classification). (B) The homogenous
texture inside the seagrass (high-accuracy classification). (C) The remarkable light changes are attributable to the sun glint
(low-accuracy classification). (D) The similar texture information for seagrass and non-seagrass (low-accuracy classification).

The seagrass area decreased significantly from summer to autumn, and it significantly
increased from winter to summer. The information gap of the seagrass recovery after the
typhoon was also filled, and 8% of the seagrass area recovered. The decrease in seagrass
meadows may be related to the high sea surface temperature [62] and rapid temperature
fluctuation [63]. The light intensity causes a seagrass net photosynthesis peak in spring,
which promotes seagrass growth [64]. In addition, water depth [65], species [66], and
meadow size [67] affect the variation, and the recovery process may be related to the
stability of seagrass. To observe the differences in spatiotemporal variation and recovery
among seagrass meadows, we selected three typical meadow size areas (areas 1, 2, and 3)
according to the seagrass species, water depth, and meadow size (see Figure 15). Area 1
was occupied by large meadows in the deep subtidal zone, where the seagrass distribution
was stable; area 2 was occupied by small Z. marina meadows in shallow subtidal zone;
area 3 contained small Z. japonica meadows in the shallow subtidal zone, where significant
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variations were identified. For the three selected sites, the seagrass cover increased by 1%
in area 1, 58% in area 2, and 30% in area 3 from winter 2020 to winter 2021. This result is
consistent with that of a previous study showing that the asynchronous local dynamics of
seagrass contribute to its stability [38].
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Figure 14. Comparison of classification results at different depths and environments: green, TP; blue, FP; red, FN; white,
TN. (A) The classification results for Z. marina (eelgrass) in the shallow subtidal zone (high-accuracy classification). (B) The
classification results for Z. japonica (Japanese eelgrass) in the shallow subtidal zone (low-accuracy classification). (C) The
classification results in the deep subtidal zone (high-accuracy classification). (D,F) The worse seagrass classification results
in heterogeneous texture beds. (E) The less wrong seagrass classification results in the homogenous texture beds.
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To apply the model for classification in a new environment, such as the blue carbon
assessment, annual monitoring in the most prosperous season (early summer at the study
site) for seagrass is necessary, and our FPN model with the four seasons data set may be
applicable for each new site without further tuning [68]. However, if the classification
accuracy in a new environment is lower than expected, we recommend implementing
transfer learning based on our tuned FPN model or collecting a new data set during an
appropriate season. Establishment of a new FPN model using only the newly collected
one-season data set with the same preprocessing procedures as our model may also be
applicable for annual monitoring purposes. The results in Table 8 indicate that the trained
FPN model based on a sufficient one season data set can be applied to the same season
data set for annual monitoring with high classification accuracy.

Our trained model and proposed framework will facilitate classification of areas dom-
inated by seagrass to obtain high-accuracy seagrass mapping results, which will help the
observation of seasonal and unexpected event (typhoons or tsunamis)-induced variations
in seagrass. Except for seagrass vegetation classification, this framework may also be appli-
cable for classifying algae, rocks, and sediments. The training data set can be collected in
cloudy or sunny weather with oblique photogrammetry and then processed using the same
preprocessing to obtain the trained model for different targets. The collection frequency
and time depend on whether the target varies in different seasons. In addition, the easily
applied framework, including photo collection and classification procedures using FPN,
can be helpful for the local coastal management office or NPO, who have limited access to
the hyper-spectral or multi-spectral cameras for monitoring variations in benthic targets.
The low cost of the equipment and lower computational resource consumption are other
benefits for applying this framework in similar places.

5. Conclusions

We established an FPN-based classification method for drone photos of subtidal and
intertidal seagrass meadows in the Futtsu tidal flat of Tokyo Bay, which demonstrated the
first application of FPN for submerged seagrass classification. During model development,
we considered the spatial resolution, normalization preprocessing, and suitable combi-
nation of seasonal input data sets. Using the four seasons data set with a 2 m resolution
and processing with a Gaussian blur radius of 901, the FPN model achieved the highest
accuracy with an OA of 0.957, precision of 0.895, recall of 0.942, F1-score of 0.918, and IoU of
0.848, ultimately outperforming the accuracy of the conventional U-Net-based model. Our
method also overcame the difficulty of classifying submerged seagrass meadows under the
influence of scattering due to the fact of waves and sun glint. As the model demonstrates a
high generalization ability, it may be applicable to a new site without further tuning. The
implementation of transfer learning or training of a new FPN model using an appropriate
seasonal data set in a new site may be considered an option when the accuracy of the direct
application of our FPN is insufficient. Thus, our model will contribute toward blue carbon
assessment of local seagrass meadows. Our model and framework may facilitate seagrass
classification in new areas. Applying the model to other submerged targets (e.g., algae,
rocks, and sediments) may also be feasible.

The classification results of seagrass meadows in the Futtsu tidal flat of Tokyo Bay
revealed seasonal changes in the detailed spatial distribution of the meadows. The seagrass
area recovered by 8% after the occurrence of Typhoon No. 19 in 2019. This finding indicates
that the proposed model is useful for understanding detailed spatiotemporal variations in
seagrass meadows, which will help local management associations in assessing the blue
carbon and devising effective management strategies, particularly for those associations
that have limited access to hyper-spectral and multi-spectral equipment.
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