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Abstract: Urban land cover (ULC) serves as fundamental environmental information for urban
studies, while accurate and timely ULC mapping remains challenging due to cloud contamination
in tropical and subtropical areas. Synthetic aperture radar (SAR) has excellent all-weather working
capability to overcome the challenge, while optical SAR data fusion is often required due to the limited
land surface information provided by SAR. However, the mechanism by which SAR can compensate
optical images, given the occurrence of clouds, in order to improve the ULC mapping, remains
unexplored. To address the issue, this study proposes a framework, through various sampling
strategies and three typical supervised classification methods, to quantify the ULC classification
accuracy using optical and SAR data with various cloud levels. The land cover confusions were
investigated in detail to understand the role of SAR in distinguishing land cover under different
types of cloud coverage. Several interesting experimental results were found. First, 50% cloud
coverage over the optical images decreased the overall accuracy by 10–20%, while the incorporation
of SAR images was able to improve the overall accuracy by approximately 4%, by increasing the
recognition of cloud-covered ULC information, particularly the water bodies. Second, if all the
training samples were not contaminated by clouds, the cloud coverage had a higher impact with a
reduction of 35% in the overall accuracy, whereas the incorporation of SAR data contributed to an
increase of approximately 5%. Third, the thickness of clouds also brought about different impacts
on the results, with an approximately 10% higher reduction from thick clouds compared with that
from thin clouds, indicating that certain spectral information might still be available in the areas
covered by thin clouds. These findings provide useful references for the accurate monitoring of ULC
over cloud-prone areas, such as tropical and subtropical cities, where cloud contamination is often
unavoidable.

Keywords: optical and SAR fusion; clouds; urban land cover

1. Introduction

Urban land cover (ULC) is a fundamental Earth observation parameter for understand-
ing the underlying environmental, ecological, and social processes in urban growth [1].
ULC dynamics are essential for understanding the structure and function of the Earth’s
ecosystem [2,3], providing vital information for numerous urban studies in urban envi-
ronmental monitoring, urban planning, and urban transport [4–6]. Owing to the rapid
development of Earth observation technologies, various remote sensing data with increas-
ing spatial and spectral resolutions have been widely used for ULC monitoring [7–9].
However, despite increasing satellite observations, one common problem in the optical
remote sensing domain, cloud cover, still hinders the effective application of continuous
and accurate urban land change monitoring. As optical remote sensing is a passive tech-
nique for Earth observation that relies on solar illumination, the spectral signatures of land
covers are affected by the incident component and the reflected component [10]. Therefore,
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clouds can easily interfere with the reflectance signals and block the view of the surface
underneath.

An analysis of over 12 years of continuous observations from the Moderate Resolution
Imaging Spectrometer (MODIS) showed that 67% of the Earth’s surface is covered by clouds
on average [11]. Cloudless remote sensing images are very scarce, especially in tropical
and subtropical areas that are cloudy and rainy. Therefore, some research focuses on cloud
removal, trying to recover the land surface under clouds [10,12], and most research ignores
the image regions covered by clouds by carrying out preprocessing of cloud masks [8,13,14],
which causes loss of information. However, a few studies have quantitatively explored
the influence of cloud cover on ULC classification [15] and the specific impacts of cloud
cover on recognizing the surface underneath, especially the confusion of different land
covers, which may help elucidate the impact of clouds and provide useful information for
subsequent processing of clouds.

On the other hand, synthetic aperture radar (SAR), with its all-weather and day-
and-night imaging capability, has become a useful supplement to optical remote sensing,
especially in cloudy areas. Researchers have proposed many methods for fusing optical
and SAR data, mainly conducted at three different levels: pixel level, feature level, and
decision level [16,17]. Pixel-level fusion refers to the pixel-level overlay of optical and SAR
data without performing the feature extraction. Some studies have claimed that optical and
SAR data are not suitable for fusion at the pixel level due to completely different imaging
mechanisms [18]. Feature-level fusion refers to the fusion of features extracted from optical
and SAR data. Due to the theoretical feasibility and relatively mature technology, most
existing studies are based on feature-level fusion. Methods usually adopted for feature-
level fusion include support vector machine (SVM) [19], random forest (RF) [20], and
deep network methods [21]. Decision-level fusion refers to land covers classification using
optical and SAR data, respectively, and then making decisions on classification results
from these two sources. Decision-level fusion of optical and SAR data mainly includes
voting, Dempster–Shafer theory, and RF [22–24]. However, it is tricky to determine which
source has the more reliable classification result and set a strategy for merging the two
classification results in the decision-level fusion. There are also some studies that conducted
SAR and optical data fusion for image classification or target recognition in cloudy areas,
and some have reported an improvement in accuracy compared with using single optical
data [15,25–29]. For example, Zhang et al. proposed to combine optical and SAR data for
classification in cloudy areas [15], Sun et al. proposed a crop classification method based on
optical and SAR response mechanism in cloudy and rainy areas [25], Yang et al. proposed an
object-based classification method for cloudy coastal areas using optical and SAR images for
vulnerability assessment of marine disaster [27], and Sharesha et al. combined topographic
parameters and SAR data to solve the problem of cloud cover in classification [28]. However,
a comprehensive study of the role of SAR in this process, i.e., the effect of SAR on different
cloud-contaminated optical images and its effect on distinguishing land covers under
different types of cloud coverage, still needs further exploration. In general, although it is
recognized that clouds can affect the ULC classification of optical images and the fusion
of SAR and optical images is beneficial to improve the accuracy of ULC classification,
how exactly do clouds affect land cover recognition? What is the quantitative relationship
between cloud content and the accuracy of ULC classification? How does SAR help to
identify land cover when the surface is covered by clouds? What is the difference between
the role of SAR when there is a cloud and when there is no cloud? These issues remain
to be further explored. Therefore, to fill the abovementioned research gap, this study
designs a “cloud impact” methodological framework to investigate the mechanism of
cloud impact on ULC classification and quantify the supplementary effect of SAR data on
the discrimination of land covers under different cloud covers.
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2. Study Area and Datasets
2.1. Study Area

The Pearl River Delta (PRD) in southern China was chosen as the study area. This
region, located downstream of the Pearl River, has undergone a dramatic urbanization
process in recent decades. However, increasing human activities have resulted in a series
of environmental problems in this area. As a critical indicator of urban development and
related environmental issues, the measurement of ULC is of great significance for environ-
mental studies of the PRD and has been given much attention by the local government.
However, the PRD region is located in the subtropical, humid climate belt, with a long
period of rainy and cloudy weather throughout the year, making land cover classification
using remote sensing images difficult [30]. From 2016 to 2021, acquisitions covering this
study area are 66, 86, 147, 97, 91, and 123, respectively. Among them, the number of
cloud-free images is 5, 9, 14, 13, 7, and 10, respectively, indicating that cloud-free images
account for about 7.6%, and most of them are between November and January. Therefore,
exploring the impact of clouds on ULC classification could be of high significance for
environmental studies of the PRD and could provide support for the necessity of the fusion
of optical data and SAR data in a cloud-covered situation. In this study, a study site located
on the southwest boundary of Shenzhen and the western part of Hong Kong, with an
approximate area of 750 km2, was selected. Figure 1 shows the study area (also with the
spatial distribution of labelled samples). The land covers in this region mainly include
vegetation, soil, bright impervious surfaces (newly built concrete roads and roofs), dark
impervious surfaces (asphalt roads, old concrete roads, and roofs), and water (rivers, lakes,
and seas) [31].
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Figure 1. The geographic location of the study area.

2.2. Satellite Data

In this study, one scene of the fully polarimetric PALSAR-2 Standard Product Level 1.1
image, acquired on 11 January 2017 with a 6 m resolution, was selected as the SAR data due
to its capability for fully polarimetric observation with finer spatial resolution and a wider
swath [32]. The full polarimetry mode of the PALSAR-2 sensor aboard the ALOS-2 satellite
transmits/receives two orthogonal linear polarizations, i.e., vertical (V)/horizontal (H). It
can measure all four polarimetry combinations (HH, HV, VV, and VH, where VH represents
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V transmission and H reception) and describe the complete polarimetric characteristics of
the ground [1].

For optical data, to explore the impacts of cloud cover, multiple images with different
cloud coverages were needed. To reduce the possible effects of land cover changes, the
selected optical data were required to have acquisition dates close to the ALOS-2 data.
With these two considerations, four scenes of Sentinel-2 images with cloud contents of
approximately 0, 6%, 30%, and 50% were downloaded from the United States Geologi-
cal Survey (USGS) Earth Explorer platform [33], with acquisition times of 31 December,
14 February, 2 October, and 25 May 2017. These images were in Level-1C processing
format, meaning they underwent geometric and radiometric correction but were not at-
mospherically corrected [34]. Therefore, the Sen2Cor (v2.8) toolbox was used to perform
atmospheric correction and convert the top-of-atmosphere reflectance Level-1C data to
a bottom-of-atmosphere (BOA) reflectance Level-2A product [35]. Among the original
13 bands of Sentinel-2, the SWIR-Cirrus band does not participate in atmospheric correction
by Sen2Cor, and it is not provided in the Level-2A product. Coupled with its poor quality
in Level-1C, it was not adopted. Finally, 12 optical band L2A level Sentinel-2 data with
spatial resolutions of 10, 20, and 60 m were obtained. Moreover, the pixel properties of
“cirrus clouds” and “clouds with high possibility” were identified in the quality bands of
the Sentinel-2 data and were used to identify whether a pixel was covered by clouds in this
study.

3. Methodology

To measure the influence of clouds on ULC classification and the enhancement effect
of SAR on ULC classification in the presence of clouds, a novel research framework is
designed in this paper. In this framework, a new sampling strategy is proposed to extract
samples with different cloud contents and construct a dataset to quantitatively quantify
the impact of cloud content. By using single-source or multisource data, considering cloud-
free or cloud-covered samples and cloud types, this paper further explores the influence
mechanism of clouds on ULC classification and the supplementary effect of SAR on land
cover recognition.

3.1. Framework of the Research

The general methodological framework is demonstrated in Figure 2. First, both the
optical and SAR images were preprocessed individually using corresponding processing
techniques before they were coregistered. After that, various features were extracted
from the coregistered optical and SAR data. Meanwhile, from labelled pixels, different
proportions of cloud-covered and cloud-free samples were randomly selected to construct
datasets with various levels of cloud coverage. Then, for each case of cloud coverage,
with the use of the corresponding dataset and inputting single optical features or fused
optical and SAR features, three representative classifiers were applied to conduct the ULC
classification. Finally, the results of validation and accuracy assessment were applied
to evaluate the impact of cloud cover and the supplementary effect of SAR data on the
discrimination of land covers under various proportions of cloud coverage.

3.2. Feature Extraction from Both Optical and SAR Images

In this section, the processes of feature extraction from both optical and SAR images
are elaborated. A series of preprocessing steps were conducted before the ALOS-2 data
were geocoded and coregistered with the Sentinel-2 data. First, a radiometric calibration
procedure was applied to the ALOS-2 data using SNAP software. Then, to reduce speckle
noise in SAR data, speckle filtering with an enhanced Lee filter was conducted, as it is more
suitable for preserving radiometric and textural information than other speckle filters [36].
Finally, the processed ALOS-2 data, together with the extracted polarimetric features, were
geocoded with a digital elevation model and coregistered with the four Sentinel-2 images
to a 10 × 10 m resolution under the georeferenced system WGS84 and UTM (Zone 49N).
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More than 20 ground control points were selected, and the root means square error (RMSE)
for the coregistration was less than one pixel.
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For optical features, the original spectral signatures in the optical satellite data are not
sufficient for the discrimination of different land covers due to their material diversity and
spectral confusion. The normalized difference vegetation index (NDVI) [37] and normal-
ized difference water index (NDWI) [38] were also used to describe the spectral features. In
addition, textual information can be used to provide complementary information, which
is essential for compensating for spectral information and reducing spectral confusion.
Therefore, the popular grey-level co-occurrence matrix (GLCM) approach [39] was utilized
to extract the four texture features in this study, including homogeneity, dissimilarity,
entropy, and angular second moment. After applying the GLCM texture extraction for
each spectral layer, 12×4 feature layers were obtained. The first four dimensions of these
features were extracted as the final texture features by dimensionality reduction using a
principal component analysis (PCA) technique to remove redundant information and keep
the most valuable information. In this way, optical features with 18 layers were extracted.

To further enhance the discrimination of different types of land cover, especially in
the case of cloud cover, features extracted from SAR data are also essential. Therefore, for
fully polarimetric SAR images (ALOS-2), six polarimetric features that have shown good
performance in other studies were extracted [31], including the backscattering coefficients
of the HH, HV, VH, and VV data, the polarization ratio, coherence coefficient, Freeman–
Durden decomposition parameters [40], Cloude–Pottier decomposition parameters [41],
and Yamaguchi four-component decomposition parameters [42]. Finally, by layer stacking
the 18-layer optical features and the 26-layer SAR features, the 44-dimensional feature was
obtained. With the layer-stacked optical and SAR data, normalization was then applied to
these features to avoid bias during the following processes.
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3.3. Urban Land Cover Classification

To evaluate the impact of cloud cover on the land cover classification, different classifi-
cation algorithms were employed for comparison. As typical supervised machine learning
methods, support vector machine (SVM) [19] and random forest (RF) [20] were selected
due to their stable performance in previous studies [43,44]. In addition, GoogLeNet [45]
was selected as the baseline deep convolutional network method due to its light size and
its proven effectiveness in previous studies [46–48]. This section provides descriptions of
the algorithms used in the land cover classification experiments.

3.3.1. Support Vector Machine (SVM)

SVM is a supervised machine learning method that has been widely employed in
various remote sensing applications. The SVM classifier uses a decision boundary to
separate classes. This decision boundary is referred to as the best separating hyperplane,
which maximizes the margin between two groups. The support vectors are the points
closest to the hyperplane. The algorithm finds the best hyperplane boundary in the n-
dimensional classification space by iteratively distinguishing patterns in the training data
and applying the same configuration to a separate evaluation dataset. In this study, the
dimension is the number of feature bands, and the vectors are individual pixels in a
multiband composite [49]. A detailed mathematical description of this algorithm can be
found in [19]. In the experiments of this study, an SVM classifier from the LIBSVM library
using the C-SVC type and the radial basis function (RBF) kernel was employed [50]. The
parameter gamma (G) in the kernel function and the optimal penalty (C) were chosen
using the grid-search method, setting them as 0.8 and 100. The model was executed in the
MATLAB R2020b development environment. Each experiment was repeated five times. All
processing was performed on a 20-core 2.40 GHz Xeon server with 32 GB of RAM running
on Windows 10 64-bit.

3.3.2. Random Forest (RF)

The ensemble learning strategy of RF was proposed by Breiman in 2001 [20], which is
based on the idea that the combination of bootstrap aggregate classifiers performs better
than a single classifier. The bootstrap component means that to build each decision tree,
a set of training samples is left out by random selection, called out-of-bag samples [51].
These out-of-bag samples can then be used as testing data for the decision tree, which
helps to decorrelate the trees, thereby reducing multicollinearity. In this way, several
decision trees can be built on different groupings of the input data and used to construct
the random forest, which will be used as the classifier. Afterward, the resultant output will
be assigned as the majority votes of each class that are voted on by all decision trees. A
detailed mathematical description of RF can be found in [20]. The setting of RF included
two key parameters, the number of decision trees (T), and the number of variables (m), for
splitting each node. This study followed the recommendation that T should be larger than
20 and m should be determined by Equation (1):

m =
√

M + 1 (1)

where M is the total number of features for each sample [45]. The model was performed in
the MATLAB R2020b development environment in this study, with the setting of parame-
ters T and mm as 300 and 7, respectively.

3.3.3. GoogLeNet

GoogLeNet [45] is a popular pretrained deep convolutional neural network (CNN)
architecture with 22 layers developed by Google. It introduces the Inception architecture,
which is based on parallel convolutional layers with filters of different sizes. In the Inception
module, where input data are fed into multiple convolutions with multiple kernels and max-
pooling simultaneously, the network trains with optimal weights and more useful features.
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Inside, every inception layer encompasses within itself three independent convolution
layers with convolutional kernels of 1 × 1, 3 × 3, 5 × 5 to derive a variety of spatial
information of the input data and a 3× 3 max-pooling layer to capture more discriminative
features by reducing the channel and the size of the input data. Therefore, this adjustment
reduces the number of parameters used in GoogLeNet and makes it faster in terms of
calculation, lighter in size, and higher in performance compared to many other popular
architectures. The model was implemented by the TensorFlow open-source deep-learning
Python library [52], running on an NVIDIA GeForce RTX 3070 under Window 10 64-bit in
this study, with the learning rate set to 1 × 10-2, batch size set to 10, and epoch set to 20,
according to previous studies [53].

3.4. Sample Collection and Results Validation

In this study, datasets with different cloud contents were needed to explore the
performance of land cover classification under various levels of cloud coverage. Specifically,
to be consistent between the cloud content of the whole image and the proportion of cloud-
covered pixels among the labelled pixels in the image, a total of 43,665 pixels of five land
cover classes were carefully labelled with visual interpretation over the four images and
very high-resolution images from Google Earth near the acquisition date of the satellite
images, including 9520 pixels of vegetation (VEG), 6970 pixels of soil (SOI), 6228 pixels
of bright impervious surface (BIS), 10,969 pixels of dark impervious surface (DIS), and
9978 pixels of water (WAT). The spatial distribution of these labelled samples is shown
in Figure 1. Then, for each experiment with specific cloud coverage (0, 6%, 30%, and
50%), these 43,665 labelled pixels in the corresponding image were used to construct the
dataset, with cloud-covered samples accounting for the corresponding proportion. For the
image with 6% cloud content, there were 3038 cloud-covered samples and 40,627 cloud-free
samples, respectively. Among the cloud-covered samples, the number of samples in the five
categories of VEG, SOI, BIS, DIS, and WAT was 475, 379, 436, 694, and 1054, respectively. In
the cloud-free samples, the number of the five land covers was 9045, 6591, 5792, 10,275, and
8924, respectively. For the image with 30% cloud content, there were 14,276 cloud samples
and 29,389 cloud-free samples. The five land covers’ cloud-covered and cloud-free sample
sizes were [3282, 2728, 2762, 3616, 1888] and [6238, 4242, 3466, 7353, 8090]. For the image
with 50% cloud content, there were 21,382 cloud samples and 22,283 cloud-free samples,
respectively, with the cloud-covered and cloud-free sample sizes of the five land covers
as [5026, 3794, 3184, 7302, 2977] and [4494, 3176, 3044, 3667, 7001]. In each experiment of
specific cloud coverage, half of the samples were randomly selected as training samples,
and the other half were selected as testing samples.

To evaluate the results, apart from qualitative visual inspection, quantitative metrics
were also employed in this study, including the standard accuracy metrics of the overall
accuracy (OA), the confusion matrix, the producer’s accuracy (PA), and the user’s accuracy
(UA). The confusion matrix was also calculated by comparing predicted land covers against
ground truth land cover data, where the row entries represent the actual classes of the
testing data and the column entries represent the predicted classes from the classifier. The
OA, PA, and UA were calculated as follows:

OA =
∑

j
k=1 nkk

N
(2)

PA(k) =
nkk

nk+
(3)

UA(k) =
nkk

n+k
(4)

where k represents the kth category, j is the number of rows in the matrix, nkk is the number
of observations in row k and column k, n+k and nk+ are the marginal totals of row k and
column k, respectively, and N is the total number of observations.
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Moreover, two types of evaluation methods were employed to assess the impacts of
clouds on ULC classification. First, for each level of cloud coverage, OA was employed to
quantify the impacts of different levels of cloud coverage on ULC classification. Second, to
further investigate the impact of cloud cover on the five types of land cover, the confusion
of land covers under cloud-free and cloud-covered areas was evaluated. To achieve this, all
testing samples in the dataset with 0 cloud coverage and all cloud-covered testing samples
in the dataset with 50% cloud coverage were utilized as evaluation samples representing
cloud-free and cloud-covered areas, respectively. Then, the confusion matrices PA and UA
were calculated to reveal the confusion of land covers under cloud-free and cloud-covered
areas.

4. Results and Discussion
4.1. Overview of the Impacts of Clouds

To understand the results of land cover classification under cloud cover in a qualitative
manner, the estimated land covers of the four images with different cloud content are
illustrated in Figures 3 and 4 (in detail). For each image with different cloud coverage
(0, 6%, 30%, and 50%), the first column in Figure 3 shows the original optical image, and
the second, third, and fourth columns represent the classification maps based on optical
images, SAR images, and fusion images, respectively.

First of all, from the third column, it could be found that in the general distribution of
the estimated land covers based on the SAR image close to the classification map of the
cloud-free image, there were serious category discontinuities which looked like a number
of spots, even though denoising had been performed in the image preprocessing. Therefore,
the classification results using only SAR were not ideal. Second, the first row in Figure
3 shows the classification results of the cloud-free image for reference. By comparing the
classification results based on the different cloud-covered optical images in the second
column, it could be found that the areas covered by clouds did have land cover confusion,
which looked like randomly distributed spots. However, the fourth column in Figure 3
shows that the confusion of land covers under clouds in optical images has been alleviated
to a certain extent by fusing optical and SAR data, for which more details are shown in
Figure 4.

In Figure 4, the first and second columns represent the cloud-free optical images
and their corresponding classification maps for reference, respectively. The third, fourth,
and fifth columns represent the cloud-covered optical images at the same location and
the corresponding classification maps based on single optical data and the fusion data,
respectively. The first row of Figure 4 shows that under cloud cover, land cover could be
confused: DIS is mistakenly identified as the BIS and WAT. However, through the fusion of
SAR data, part of the DIS and VEG could be accurately identified, and the misjudgment
of WAT could be eliminated. From the second row, it could be found that under the
cloud cover, WAT was also misjudged as other land covers, while the fusion of SAR data
significantly reduced the confusion and accurately identified most water bodies. In the
third row, it could be found that the cloud cover made it hard to identify the WAT, DIS,
and VEG accurately, but the SAR data helped to identify most of the VEG, and the river
was also roughly visible.

As the classification performance of SAR data itself is not perfect, the fusion of SAR
and cloud-covered optical images cannot achieve utterly correct recognition of the land
cover under cloud cover. However, what this study wants to explore is the following: in
cloudy areas or in the case of an emergency where available cloud-free optical data are
scarce, how clouds will affect the ULC classification and how to improve the classification
as much as possible to provide a reference for the distribution of land covers, instead of
achieving the same high classification accuracy as cloud-free images. Considering these,
the fusion of optical and SAR data is meaningful as it indeed achieves a considerable
improvement in the land cover classification compared to using cloud-covered optical or
SAR data alone. On the other hand, further study needs to be carried out to avoid the
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erroneous information of both parties when fusing optical and SAR data. Since the focus
of this study is not the fusion algorithm, a common feature-level fusion method of feature
layer overlay is conducted here.
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Figure 3. Land cover classification with different levels of cloud coverage. (a,e,i,m) are the cloud-
contaminated optical images with cloud coverage of 0, 6%, 30%, and 50%, respectively, (b,f,j,n) are
the land cover classification maps of single optical images, (c,g,k,o) are the land cover classification
maps of single SAR images, and (d,h,l,p) are the land cover classification maps of fused optical and
SAR images.
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cloud-covered images, (d,i,n,s) are the classification maps of the single cloud-covered images, and
(e,j,o,t) are the classification maps of fused optical and SAR images.

4.2. Quantifying the Impacts of Different Levels of Cloud Coverage

To explore the impact of cloud cover on the discrimination of different land covers,
classification experiments were conducted under different cloud covers to quantitatively
evaluate the impact of cloud cover on the land cover classification accuracy with optical
data, applying three different classification algorithms: SVM, RF, and GoogLeNet. Further-
more, to explore the relationship between cloud cover and the supplementary effect of SAR
data on land cover classification, for each classifier, two experiments with the combined
use of optical data and SAR data and with single optical data were performed. The overall
accuracy was calculated and is shown in Figure 5 to obtain a general understanding of the
results. “Sen2+ALOS2” means using the fused Sentinel-2 data and ALOS-2 data, which
are drawn with solid lines. “Sen2” means the use of the single Sentinel-2 data, which are
drawn with dashed lines. It is worth noting that since these images with different cloud
content were acquired on different dates, there may be differences in the classification of
the images themselves due to such factors as the different growth conditions of vegetation.
Therefore, the classification accuracy of the cloud-free samples under the SVM classifier for
each cloud content image was used as a reference to evaluate the impact of cloud content,
shown as the long dash line in Figure 5. It can be found that compared with the 0% cloud
content image, the classification accuracy of the cloud-free samples in other months was
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not much different but was relatively stable. The impact of clouds can be further analyzed
by comparing the classification accuracy of the cloud-free samples with the overall sample
classification accuracy for each cloud content image.
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data and combined optical and SAR data.

Figure 5 comprehensively illustrates the overall accuracy for land cover classification
under different cloud coverages with different classifiers and data. There were mainly
three interesting findings. First, it was obvious that in all cases, cloud cover could heavily
affect land cover classification accuracy, as OA gradually decreased with the increase in
cloud coverage, by approximately 20% in OA at most. This finding is consistent with previ-
ous studies proving that clouds can reduce the accuracy of land cover classification [15],
while this paper quantitatively measures the ULC classification accuracy under different
proportions of cloud coverage. In addition, although the accuracy decreased sharply with
increasing cloud coverage, all three classifiers could still achieve an OA accuracy of more
than 90% when the cloud coverage was less than 10%. This means that in some cases where
satellite data are scarce or for some applications that require time-series images, images
with cloud coverage below 10% still have a certain reference value, despite a small amount
of accuracy being lost.

Second, for all three classifiers, the combined use of SAR and optical data could
achieve higher classification accuracy than using optical data alone. This proved the
supplemental effect of SAR data on land cover classification, owing to the electromagnetic
characteristics of SAR data, which helped reduce the confusion of different land cover
types. These results are consistent with the findings in previous studies exploring the
effect of integrating SAR and optical data [15,17]. Furthermore, in the case of cloud cover,
the enhancement effect of combining SAR data on land cover classification was further
improved compared to the cloud-free case, which was obvious as the difference between
the “solid line” and “dash line” increased with the cloud coverage increasing, meaning
the gap between the two curves (Sen2+ALOS2 and Sen2) increased up to approximately
4% in OA when the cloud coverage reached 50%. This indicates that SAR data may help
discriminate land cover covered by clouds, thus reducing the impact of cloud cover on
land cover classification accuracy. For further analysis, an experiment using single SAR
data was also conducted in this study, which showed an OA of 82.51%. This indicated that
the classification accuracy of SAR itself was not so high. Therefore, the improvement of
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the classification accuracy of optical images was not enormous. However, it still provided
supplementary information for optical images and brought a noticeable improvement to
the cloud-covered optical images, which still supported the effectiveness of fusing optical
and SAR data. Although previous studies have shown the effectiveness of combining
cloud-free optical images and SAR images in improving classification accuracy [15,17], this
finding further demonstrates the effect of combining SAR data in the case of cloud cover.

Third, although GoogLeNet, as a deep learning method, is known for its outstanding
performance, which was indeed shown in the case of cloud-free data with an OA as high as
96.66%, its performance on land cover classification was not as good as SVM and RF in the
presence of clouds. The accuracy curves of GoogLeNet dropped sharply with increasing
cloud coverage and had obvious fluctuations, which might not be surprising since deep
learning models are easily influenced by input data [54,55]. In comparison, although the
performances of SVM and RF were not as good as GoogLeNet in the cloud-free case, they
had better robustness and could still achieve acceptable classification accuracy with higher
cloud coverage. On the other hand, regarding computational consumption, with the same
experimental setting in Section 3.3, the model training time for SVM, RF, and GoogLeNet
is 44.63 s, 69.87 s, and 7628 s. The time consumed for testing is 14.87 s, 1.09 s, and 328 s.
Therefore, although the accuracy of GoogLeNet is higher than that of SVM and RF when
there is no cloud, the trade-off between improved accuracy and higher computational
consumption is also an issue worth considering. When there is cloud cover, both SVM and
RF can achieve relatively stable performance, with the accuracy of SVM slightly higher,
while RF takes less time to classify the testing data.

4.3. Investigate the Mechanism of Cloud Impact during ULC Classification

To further investigate the impact of cloud cover on the five types of land cover and the
role of combining SAR data in distinguishing different land covers, the confusion matrices
with PA and UA are shown in Table 1. The four confusion matrices show the land cover
classification results of the cloud-free samples and the cloud-covered samples with single
optical data and combined optical and SAR data. The experiment was conducted on the
SVM classifier, as it showed the best performance.

Table 1. The confusion matrix of cloud-free samples and cloud-covered samples with single optical data and combined
optical and SAR data. Columns represent classification labels, and rows represent the actual labels of the testing data.

Cloud-Free Samples Cloud-Covered Samples

Sen2
+

ALOS2

VEG SOI BIS DIS WAT UA(%) VEG SOI BIS DIS WAT UA(%)
VEG 4632 61 13 77 19 96.46 VEG 1976 129 120 243 8 79.81
SOI 43 3215 77 56 0 94.81 SOI 97 1626 67 104 4 85.67
BIS 3 128 2918 94 0 92.84 BIS 58 76 1589 211 11 81.70
DIS 82 121 140 5227 3 93.79 DIS 232 137 154 2855 3 84.44

WAT 4 5 0 0 4915 99.82 WAT 10 3 5 8 1494 98.29
PA(%) 97.23 91.08 92.69 95.84 99.55 - PA(%) 83.27 82.50 82.12 83.46 98.29 -

OA: 95.76% OA: 85.03%

Sen2

VEG SOI BIS DIS WAT UA(%) VEG SOI BIS DIS WAT UA(%)
VEG 4626 67 12 80 19 96.29 VEG 1858 139 167 275 16 75.68
SOI 43 3206 142 71 0 92.61 SOI 82 1559 72 116 68 82.18
BIS 5 133 2850 77 0 92.99 BIS 109 64 1515 215 26 78.54
DIS 85 121 144 5226 4 93.66 DIS 284 168 158 2782 24 81.44

WAT 5 3 0 0 4914 99.84 WAT 40 41 23 33 1386 91.00
PA(%) 97.10 90.82 90.53 95.82 99.53 - PA(%) 78.30 79.10 78.29 81.32 91.18 -

OA: 95.37% OA: 81.11%

In general, two important conclusions could be drawn from the results. First, the
impacts of clouds on land cover classification could be verified by the sharp decreases in UA,
PA, and OA, both with single optical data and fused optical data and SAR data. The results
with Sentinel-2 images in Table 1 show that the overall classification accuracy extracted
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from the cloud-covered samples was 81.11%, significantly less than that quantified from the
cloud-free samples, with 95.45% OA. Additionally, the two confusion matrices of “Sen2” in
Table 1 show that the confusion between different land covers has been greatly intensified,
with sharp reduction of PA and UA for all five land covers. This is because the ground
surface is blocked by clouds, and the original unique spectral reflections of different land
covers are replaced by similar high reflections of the clouds, making the underlying surface
hard to distinguish. To further explore this issue, spectral values of the five cloud-free and
cloud-covered land cover samples in 12 bands were plotted in Figure 6. In the absence
of clouds, the spectral characteristics of VEG, DIS, and WAT were relatively unique, so
they were easier to distinguish from other categories. In contrast, the spectral curves of
BIS and SOI had more overlap, so they were more likely to be confused, which is also
shown in Table 1. This finding that BIS and SOI are more likely to be confused could also
be found in other studies [17,56]. In the presence of clouds, due to the blocking of clouds,
different land covers showed similar high reflections, which make it difficult to distinguish
them. This was also shown in Table 1, with sharp decreases in PA and UA. However, there
might be an exception here—water. The WAT achieved the highest recognition accuracy
among the five land covers and still had a high OA of up to 90%. One possible reason
was the unique spectral characteristics of WAT compared to other land covers. Another
reason could be identified from Figure 6—the spectral value of water seemed to be more
distinguished than other land covers. This might be because most of the water samples
were labelled on the sea area, while in our satellite image (Figure 3 (m)), the clouds on the
sea were relatively thin, which may result in spectral reflectance over the water samples
being slightly different.
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Second, the effectiveness of combining the optical and SAR images could be further
confirmed with the increase of the four different evaluation indicators, especially in the
case of cloud cover, with approximately 4% in OA. In the cloud-free case, the PA and UA of
these land covers were slightly improved with the supplementation of SAR data. TheUA
of the SOI and PA of the BIS increased by approximately 2% with the fusion of SAR data,
resulting in less BIS misclassified as SOI. While in the case of cloud cover, there were two
main findings. First, after combining optical and SAR data, both the UA and PA of water
greatly increased by approximately 7%, reaching a relatively high value, with PA and UA
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of 98.29%, which fully verified the supplementary effect of SAR on the optical data under
cloud cover. This considerable gain might be due to the unique radiation characteristics of
water, which help to correctly distinguish water from other land covers when its spectral
features are affected by clouds. The effectiveness of SAR in distinguishing water can also be
found in previous works [17,24]. Although the gain effect of SAR data was not as apparent
in the absence of clouds since the recognition of water can already achieve high accuracy
with single optical data, in the case of cloud cover, the role of SAR data was noticeable. This
finding might also provide support for water-related studies by showing that combining
optical and SAR data is an effective means to deal with cloud cover cases and can still
achieve acceptable high accuracy even when covered by clouds. Second, for soil, bright and
dark impervious surfaces, and vegetation, the combined use of optical and SAR data also
reduced the misidentified samples from other types of land cover. Although vegetation
was badly affected by cloud cover, the supplementary effect of combining optical and SAR
data was noticeable, as 120 more samples were correctly identified compared with single
optical data. This may be because SAR is sensitive to surface roughness and moisture,
which makes the combined use of SAR images more accessible to separate vegetation
from other land covers than the use of single optical data, which suffers from spectral
signals interfering with clouds. In general, the confusion of all five land covers greatly
increased under cloud cover, but the combined use of optical and SAR data could reduce
the confusion, especially for vegetation and water.

For further comparison, the confusion matrix of testing samples with single SAR
features is also shown in Table 2. It could be found that the water body is still the land
cover with the highest recognition accuracy. Compared to only using cloud-covered
optical data shown in Table 1, SAR has a stronger ability to recognize land covers in some
cases, such as vegetation and water bodies. However, the accuracy of SAR itself was not
exceptionally high, and the fusion of optical and SAR data achieved better performance
in ULC classification than using cloud-covered optical or SAR data alone, which was also
consistent with the findings in Figure 3.

Table 2. The confusion matrix of testing samples with single SAR features. Columns represent
classification labels, and rows represent the actual labels of the testing data.

ALOS-2

VEG SOI BIS DIS WAT UA(%)
VEG 3836 339 136 393 93 79.97
SOI 410 2629 61 191 89 77.78
BIS 208 98 2303 626 34 70.45
DIS 329 78 474 4442 43 82.78

WAT 66 91 17 42 4805 95.70
PA(%) 79.11 81.27 77.00 78.01 94.89 -

OA: 82.51%

4.4. Further Exploration of the Impacts of Clouds
4.4.1. The Impact of Training Samples

In this study, the experimental samples were labelled with visual interpretation over
the four coregistered Sentinel-2 images and very high-resolution images from Google
Earth. The four images used the same set of geographic locations to extract corresponding
samples and construct datasets with different cloud contents as they had been coregistered.
Therefore, even if one sample is covered by clouds in a certain image, its category is still
known, as it may be cloud-free in other images. In the experiments, for datasets with
different cloud contents, half of the samples were used for training and the other half for
testing, which means that the samples covered by clouds also participated in the training
process. Based on the previous discussion in Figure 6, some samples covered by clouds may
still be distinguishable. Therefore, these cloud-covered samples participating in training
might help to identify similar samples in the testing set. However, in general, when there is
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only one image, sample labelling is often performed on land covers that are not covered by
clouds, as it is difficult to identify the category of land covers under clouds. Taking these
factors into consideration, another experiment was conducted using the same training set
and testing set in Section 4.2, with SVM as the classifier, except that the cloud-covered
samples were removed from the training set. The results are shown in Figure 7, with
cloud-covered samples participating in the training as a comparison.
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Obviously, when cloud-covered samples did not participate in training, the OA was
greatly reduced. It dropped sharply with the increase in cloud coverage and only achieved
approximately 60% overall accuracy when the cloud coverage reached 50%, where the
improvement effect of cloud-covered samples participating in the training was as high as
25–28%. This is quite a valuable finding. It indicates that although cloud cover prevents
accurate land cover classification, if some cloud-covered samples with category labels can
be obtained and are input into the training process, the land cover classification accuracy
can be greatly improved. In addition, it is also worth noting that the supplementary effect
of SAR is even more significant (with an approximate 5% increase in OA) when training
with pure cloud-free samples due to the lack of effective optical information identifying
cloud-covered testing samples. However, since the classification accuracy is much lower
than the 82.51% classification accuracy of the SAR itself in this situation, whether or not to
use optical data and fusion data still needs to be considered according to practical needs.
Taking this into consideration, under cloud coverage, the strategy of acquiring class labels
of the land covers under the cloud and adding these cloud-covered samples into model
training may bring about more significant accuracy improvements than simply fusing
optical and SAR data.

4.4.2. The Impacts of Cloud Types

This section further explores the influence of cloud types. The cloud types were
roughly divided through the quality band of Sentinel-2. In this section, we simply consid-
ered two types of “thin cirrus” and “high-probability clouds”, which were usually thicker
clouds. With the same experimental setup and dataset as in Section 4.3, in cloud-covered
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samples of the 50% cloud coverage image, for “thin cirrus” in the testing samples, there
were 71 VEG, 64 SOI, 55 BIS, 79 DIS, and 169 WAT, respectively. For “high-probability
clouds” in the testing samples, there were 1526 VEG, 1281 SOI, 1266 BIS, 2060 DIS, and
782 WAT, respectively. The classification results of the test samples covered by these
two kinds of clouds were extracted and compared with the ground truth. The results
showed that although the classification accuracy of samples covered by thick clouds was
only 84.76%, which was similar to the results in Table 1, the classification accuracy of
samples covered by thin clouds was as high as 95.89%. The spectral values of the five land
cover samples covered by these two kinds of clouds in 12 bands are plotted in Figure 8,
with the solid line representing samples covering “high-probability clouds” and the dashed
line representing “thin cirrus”. Under the occlusion of thick clouds, the spectral values of
different land covers were very similar. Under the occlusion of thin clouds, although the
spectral values of the land covers were also affected, they were still quite distinguishable.
Hence, the data provided valuable information—although it was recognized that cloud
obstruction would affect the accuracy of ULC classification, it was highly related to the
type of cloud. For some studies where it was difficult to find cloud-free images, using
images covered by thin clouds might also obtain relatively satisfactory results. Of course,
the current research on satellite image cloud type recognition is still not well developed,
which is worth further exploring.
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5. Conclusions

This work proposes a research framework for studying the impact of clouds and the
effect of polarimetric SAR images on ULC classification in cloud-prone areas. Through a
designed sampling strategy, a quantitative assessment of the impact of clouds on ULC clas-
sification was carried out, and the effect of SAR on cloud-contaminated areas was further
explored. Experiments found that ULC classification accuracy decreases with increasing
cloud content, cloud cover greatly increases the confusion of land covers, and water is less
likely to be confused than other land covers. The fusion of SAR and cloud-contaminated op-
tical data could help reduce confusion between land covers under clouds, and improve the
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ULC classification accuracy of cloud-covered areas, especially for vegetation and water. In
addition, SVM and RF show more robustness and less time consumption than GoogLeNet,
while GoogLeNet performs best in cloud-free areas. Finally, through the analysis of training
samples and cloud type, it is further found that the participation of cloud-covered samples
in the training process could significantly improve ULC classification accuracy, and ULC
classification accuracy is related to the type of clouds. In the case of thin-cloud cover, ULC
classification may still achieve reliable accuracy. Future research on distinguishing cloud
types may help further elucidate this issue.
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