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Abstract: A challenging and attractive task in computer vision is underwater object detection. Al-
though object detection techniques have achieved good performance in general datasets, problems of
low visibility and color bias in the complex underwater environment have led to generally poor image
quality; besides this, problems with small targets and target aggregation have led to less extractable
information, which makes it difficult to achieve satisfactory results. In past research of underwater
object detection based on deep learning, most studies have mainly focused on improving detection
accuracy by using large networks; the problem of marine underwater lightweight object detection has
rarely gotten attention, which has resulted in a large model size and slow detection speed; as such
the application of object detection technologies under marine environments needs better real-time
and lightweight performance. In view of this, a lightweight underwater object detection method
based on the MobileNet v2, You Only Look Once (YOLO) v4 algorithm and attentional feature fusion
has been proposed to address this problem, to produce a harmonious balance between accuracy and
speediness for target detection in marine environments. In our work, a combination of MobileNet
v2 and depth-wise separable convolution is proposed to reduce the number of model parameters
and the size of the model. The Modified Attentional Feature Fusion (AFFM) module aims to better
fuse semantic and scale-inconsistent features and to improve accuracy. Experiments indicate that the
proposed method obtained a mean average precision (mAP) of 81.67% and 92.65% on the PASCAL
VOC dataset and the brackish dataset, respectively, and reached a processing speed of 44.22 frame per
second (FPS) on the brackish dataset. Moreover, the number of model parameters and the model size
were compressed to 16.76% and 19.53% of YOLO v4, respectively, which achieved a good tradeoff
between time and accuracy for underwater object detection.

Keywords: YOLO; lightweight network; underwater object detection; attention mechanism

1. Introduction

The marine environment is a complicated system. As the underwater environment is
very different from the land environment, some techniques of remote sensing including
acoustic, magnetism [1], and 3D shallow seismic [2] sensing have achieved good perfor-
mance in the marine realm. With the development of computer vision, exploring the oceans
with computer vision technology has become a new avenue. As a basic task of computer vi-
sion, object detection based on optical imaging has become an absorbing work in the marine
realm. In recent years, many researchers have begun to study underwater object detection
based on optical imaging and have achieved great results. At present, underwater object
detection has many applications in the marine environment, including the study of marine
ecosystems, marine biological population estimation, marine species conservation, pelagic
fishery, underwater unexploded ordnance detection [3], underwater archaeology and many
other potential applications, providing an effective way to exploit marine resources.

Although object detectors based on deep convolutional neural networks (DCNN)
have performed well on general category datasets in recent years, it is not efficient to apply
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them directly to underwater scenarios due to the slow speed and large model size of large
networks. As the underwater scenery is more complex than the land scene, the image
samples obtained through underwater camera equipment are small and generally of low
quality. On the one hand, these images often suffer from high noise, low visibility, blurred
edges, low contrast and color cast. Moreover, underwater targets are usually clustered and
small, which brings additional challenges to studies involving underwater object detection.
On the other hand, underwater embedded devices have limited storage and computing
power, which makes large detection networks ineffective in underwater environments.
However, there is little research on lightweight underwater object detection. The approach
of focusing on improving the detection accuracy of underwater targets through large
networks could be revisited. Therefore, it is necessary to study a lightweight detector that
has a high detection accuracy and small model size for underwater object detection.

The detection of underwater small targets is a tough problem. Improving the detection
accuracy of small targets will make a great contribution to overall detection performance.
As it turns out, the feature information of small targets will gradually decrease or even
disappear in the process of down-sampling with the increasing of the network layers.
Many researchers have tried to extract more shallow features [4] or propose effective
feature fusion methods [5,6] to better detect targets of different scales. However, most
efforts have focused on constructing complex paths to combine features from different
convolutional kernels, groups, and layers. Current multi-scale feature fusion methods are
usually implemented by adding or concatenating features from different layers; they only
provide fixed linear aggregation of feature mapping, and they are context-independent.
Dai, Y et al. [7] proposed a multi-scale channel attention module (MS-CAM) to alleviate
the problems caused by scale variations and small targets, which can simultaneously
emphasize both large targets with more global distributions and small targets with more
local distributions. This module makes it better to identify targets on extreme scales.
However, this module cannot change the number of features, which is limited in embedding
different feature fusion structures. Therefore, the modified attentional feature fusion
(AFFM) module based on the attentional feature fusion (AFF) [7] module is designed by
adopting a 1× 1 convolution to expand the feature channels after fusing feature information
instead of using the adding method in AFF, which aims to not only enable cross-channel
information interactions but also to easily define the number of output features compared
to the AFF module. This module can be easily applied to different structures. Experiments
indicate that it can effectively improve accuracy after fusing multi-scale feature information.

The existing object detection algorithms can be divided into two categories: one-stage [4,8]
and two-stage [9–11] algorithms. The former is faster but has a lower accuracy, while the latter
is more accurate but slower. In order to ensure a sufficient real-time detection performance,
the framework of the YOLO v4 algorithm [12] has been adopted in our work. Although
the YOLO v4 algorithm has achieved excellent performance by using the stronger base of
CSPDarknet53 [13] with several amendments, it has the disadvantages of a huge number of
parameters and a large model size. It is not practical enough to directly apply the detectors
based on YOLO v4 in marine underwater environments. In order to address the problem
of building a lightweight underwater object detector while maintaining a relatively high
accuracy, a combination of a lightweight backbone, MobileNet v2 [14], and a depth-wise
separable convolution [15] has been proposed to significantly decrease the amount of network
parameters. Meanwhile, the attention mechanism has been introduced in our work to improve
the feature pyramid network (FPN) structure [5] used in YOLO v4, which has achieved
a higher accuracy. Experimentally, the proposed method achieved a mean average precision
(mAP) of 81.67% and 92.65% on the PASCAL VOC dataset [16] and the brackish dataset [17],
respectively, and the detection speed exceeded 44 frame per second (FPS), with the number of
model parameters and model size compressed to 16.76% and 19.53% of YOLO v4, respectively.

A few key points of our work are listed as follows.
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(1) Fewer parameters: Rebuilding of the network structure of YOLO v4 by combining
MobileNet v2 with depth-wise separable convolution, which obtained a faster detection
speed and greatly reduced the number of model parameters.

(2) Better feature fusion: AFFM was designed for the FPN structure to fuse and
enhance features at different scales with a small cost, which was beneficial to the detection
of underwater small targets.

(3) Multi-scale lightweight detector: Building of a multi-scale lightweight marine
underwater object detector that showed a great tradeoff between accuracy and speed.

2. Related Works
2.1. Object Detection

At present, although object detection has been successful for generic category datasets,
it is still an arduous challenge for the task of underwater object detection. In underwater
scenes, the quality of underwater images is greatly affected by illumination, which results
in low visibility, low contrast and color distortion. Meanwhile, the complex underwater
environment and the small underwater objects make the detection of underwater targets
more difficult.

Due to the differences between underwater and land-based optical imaging principles,
underwater object detection tasks are generally composed of image pre-processing and
object detection. Image pre-processing, i.e., image enhancement and restoration according
to the specific task, aims to improve image quality for the latter process. The object detection
framework includes four parts including: input, backbone, neck and head. The input is
where the input image is defogged, denoised, enhanced and normalized according to the
specific situation in order to enhance the features of the target of interest and to weaken
background features. The backbone is a kind of network that extracts features from objects
of interest in the input images, such as the classical AlexNet, VGGNet, GoogleNet and the
recent hotspots of ResNet [18] and DenseNet [19], as well as SqueezeNet [20], MobileNet
(V1, V2) [14,15], and ShuffleNet [21], etc., which are designed for light-weighting. The
necks are usually situated between the backbone networks and the output layers for specific
tasks, such as spatial pyramid pooling (SPP) [22], FPN [5], path aggregation networks
(PANets) [6], etc., which enhance feature maps that contain both rich semantic information
and deterministic location information. The head is the part that decodes and predicts the
feature maps obtained from the above networks at multiple scales, which can be generally
classified into anchor-based and anchor-free mechanisms in the two major representative
algorithms: one-stage and two-stage algorithms.

In recent years, several outstanding achievements have been made by numerous
researchers in fields related to underwater object detection. In the study of underwater
image pre-processing, Wei-Hong Lin [23] et al. advanced an image enhancement algorithm
based on candidate frame fusion for underwater target detection. Pritish Uplavikar [24]
et al. put forward an underwater image enhancement algorithm using domain adversarial
learning, which provides underwater target detection algorithms with better learning data.
In research on underwater object detection algorithms, Xin Sun [25] et al. used transfer
learning to identify objects in low-quality underwater videos, which achieved an average
classification accuracy of 99.68% for 23 fish species and a video detection speed of 23 FPS.
Fengqiang Xu [26] and Tien-Szu Pan et al. [27] conducted research on the multi-scale
problem of underwater object detection by combining high-level semantic features with low-
level spatial features to detect objects at different scales; the former achieved 79.13% mAP
and 4 FPS on the PASCAL VOC, while the latter achieved 92.3% mAP and 23 FPS on the
Fish4Knowledge dataset [28]. Long Chen et al. proposed SWIPENet [29], a network for
underwater small sample detection. They used a sample re-weighting algorithm to reduce
the weight of lost targets, which resulted in reductions in the interference of these noisy
samples; Kai Hu et al. [30] put forward a sea urchin detection algorithm based on the SSD
algorithm for feature enhancement.
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As can be seen, underwater object detection is a very challenging task, but most
present studies of marine underwater object detection aim at improving detection accuracy
or image quality in complex marine environments. However, lightweight underwater
object detection has attracted little attention even though lightweight object detection is
successful in other fields. Lightweighting of underwater object detection is an interesting
direction because of its practical engineering value. Therefore, how to perform accurate, fast
and stable detection using lightweight framework in a complex underwater environment
is an issue well worth investigating.

2.2. Lightweight Networks

In recent years, DCNN have shown broad prospects for deep learning and have
achieved higher classification accuracies, and have been adopted in many tasks of com-
puter vision. However, the storage and computation of neural network models on mobile
and embedded devices remains a huge challenge due to the limitations of storage space and
computing power. Lightweight networks, which aim to reduce the number of model pa-
rameters and computation complexity while maintaining accuracy, have become a hotspot
in computer vision.

Current research on lightweighting of neural network models is divided into two main-
stream directions: designing lightweight networks and model compression. The former,
such as SqueezeNet, MobileNet (V1, V2) [14,15], ShuffleNet [21], Xception [31], etc., aims
to design different convolutional methods and structures to make convolution neural net-
works more lightweight. The latter compresses models by means of knowledge distillation
and pruning, etc. Geoffrey Hinton [32] et al. first introduced the concept of knowledge
distillation, where they attempted to distill knowledge from multiple models to a single
model in order to achieve knowledge migration and improve small model accuracy. Prun-
ing of trained models is currently the most used method in model compression, which is
usually used to find an effective criterion by which to judge the importance of parameters
and to reduce the redundancy of models by cutting out unimportant channels or kernels.

Nowadays, lightweight networks are very popular in general object detection tasks.
Take the MobileNet based SSD algorithms [15] for example, the general practice is to use
a lighter backbone in a large detection network. Changing the convolution method is also
a good way to reduce the number of model parameters [33,34].

Research into lightweight networks has a greater practical engineering value to some
extent. However, there are few studies in the field of lightweight underwater object
detection. Consequently, in this paper, we build a lightweight detector from the perspective
of designing lightweight networks by combining MobileNet v2 with depth-wise separable
convolution to better and more quickly detect underwater targets.

2.3. Multi-Scale Features Fusion for Small Object Detection

Early target detectors [8–11] tend to detect targets by utilizing features maps from the
last fully connected layer of the convolutional neural networks (CNN). The higher layer
features are usually more sensitive to large objects and have stronger semantics, but tend to
miss small targets. What is more, the algorithms based on DCNN use many combinations
of convolutions, followed by the pooling of layers in the hidden part of the networks,
which reduces the original image resolution to a very small resolution. Due to this fact, the
small target features they extract in the first layer, which are few to begin with, disappear
somewhere in the network and never really reach the detection and classification steps,
which makes it difficult to detect small targets. From this, Liu et al. [4] proposed to take
advantage of features in different layers of the VGG16 [35] network to detect objects of
different sizes, which makes it better at detecting small targets than YOLO v1 [8]. This
approach proved that it was more effective than networks that use last-layer features for
prediction in small target detection. It has been proven that shallow features are more
sensitive to small targets, and that deeper features contain better semantic information.
However, the semantic information of the shallow features extracted by SSD is not sufficient,
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and a structure that utilizes features from the forward position is needed. To make full
use of both shallow and high-level features, Tsung-Yi Lin et al. [5] proposed an effective
architecture, FPN, to fuse features from different layers. In contrast to the multiple feature
branches of SSD, the FPN structure has two differences: a top-down layer-by-layer up-
sampling operation and a lateral connection. The FPN structure creatively takes advantage
of both low-level and high-level features, which results in a feature map containing both
good spatial information and strong semantics, and which achieves excellent performance.
The way in which information is propagated through the neural network is important,
but the FPN structure has a large span of information paths between low-level and high-
level features. Building on this, PANet uses bottom-up path augmentation to shorten
information paths and enhance multi-scale fusion information.

At present, these kinds of feature pyramid structures are widely used as a general
component in object detection tasks. In our work, in order to alleviate the drawback
of linear concatenation operations in FPN structures, the attention mechanism has been
introduced into the FPN architecture for better detection of targets of different sizes.

2.4. Activation Functions

Activation functions aim to add some non-linear elements into the CNN to improve
the expressive power of the model and to allow the neural network to better solve more
complex problems.

The rectified linear unit (ReLU) and the ReLU6 are widely used in CNN due to the
advantages of fast and simple calculations, which are formulated in Equations (1) and (2).
However, ReLU and ReLU6 functions are directly truncated at negative values, and the
gradient decline is not smooth enough. Diganta Misra et al. [36] proposed a new activation
function, Mish, which does not completely truncate at negative values, but allows for
a relatively small negative gradient inflow—thus ensuring information flow—and the Mish
function also guarantees smoothing at every point, which makes the gradient descend more
smoothly than in ReLU. The Mish function is formulated in Equation (3). A comparison of
ReLU, ReLU6 and Mish functions is shown in Figure 1. It can be seen that the ReLU6 func-
tion avoids the problem of infinite growth shown by the ReLU function, but might result
in saturation. Besides this, their derived functions are not smooth enough at every point,
or are even zero in some intervals, which prevents gradient updating of negative values.
This paper uses the Mish activation function to improve the ReLU6 activation function,
which is very effective in improving its accuracy, although it increases the computational
cost compared to ReLU6.

f1(x) = max( 0, x) , x ∈ R (1)

f2(x) = min(6, max(0, x)) , x ∈ R (2)

f3(x) = x ∗ tanh(ln(1 + ex)) , x ∈ R (3)
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3. Methodology

This section details the main methods of the proposed lightweight detector. Section 3.1
describes the improved network structure as a whole. Sections 3.2 and 3.3 introduce the
depth-wise separable convolution and the attentional feature fusion module, respectively.

3.1. Network Structure

The improved network structure can be divided into five parts: input, backbone, neck,
head and output. Figure 2 shows the improved network structure. The main improvements
of our work are in the parts of backbone, neck and head. In this paper, in order to achieve
the purpose of lightweighting, MobileNet v2 was finally chosen as the backbone network
because of its comprehensive performance after comparison to some other lightweight
backbone networks, instead of the large CSPDarknet53 backbone network used in YOLO
v4, and extracted features of three different scales to detect targets of different sizes. The
feature map at a small scale had the highest semantic information and contained the
weakest location information. The feature map at a large scale contained the richest location
information and contained the weakest semantic information. The feature map at the middle
scale contained medium location and semantic information in the three scales of extracted
features. The SPP module was utilized to enhance the receptive field. The three preliminary
feature maps were then enhanced by the FPN and the PANet structures for feature fusion.

In order to better fuse semantic and scale-inconsistent features, the AFFM was de-
signed for the FPN structure in order to solve the problem of the linear adding and
concatenation operations being context-independent and to enable cross-channel infor-
mation interactions. To further decrease the number of model parameters, the neck and
head structures were rebuilt with the depth-wise separable convolution, and finally the
enhanced features of the three scales were fed into the YOLO detection head for prediction.
Experiments show that the FPN structure increased the mAP by 1.08% on the PASCAL
VOC dataset after using attention module.
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3.2. Depth-Wise Separable Convolution

Depth-wise separable convolution divides ordinary convolution processes into two pro-
cesses of depth-wise convolution and point-wise convolution. The former first separates
the channels to make the number of convolution kernels and input channels equal; with
one convolution kernel only convolving one channel. The latter uses a 1 × 1 ×M (M is the
number of output channels in the previous layer) convolution kernel to blend the output
feature map of the previous step, which compensates for the former’s disadvantage of con-
volving each channel independently without using the information of different channels
at the same spatial location. The use of depth-wise separable convolution significantly re-
duces the computational cost. The ratio of computational overhead to normal convolution
was as shown in Formula (4):

DK·DK·M·DF·DF + M·N·DF·DF
DK·DK·M·N·DF·DF

=
1
N

+
1

D2
K

(4)

DK·DK denotes the convolution kernel size. M and N represent the input and output
channels, respectively. DF·DF is the size of feature map. It can be seen that the parameters
and computational cost of the network were significantly reduced.

Figure 3 gives the specific convolution process for ordinary convolution and depth-wise
separable convolution when the input shape is 5 × 5 × 3 and the convolution kernel size
is 3 × 3. For ordinary convolution, the N convolution kernels of size 3 × 3 × 3 are moved
3 × 3 times, so the computation of ordinary convolution is N × 3 × 3 × 3 × 3 × 3 = 243N
and the number of parameters is N× 3× 3× 3 = 27N. For depth-wise separable convolution,
the three 3 × 3 × 1 convolution kernels are moved 3 × 3 times during the depth-wise con-
volution process and the number of multiplications is 3 × 3 × 3 × 1 × 3 × 3; In point-wise
convolution, N convolution kernels of size 1× 1× 3 are moved 3× 3 times, and the number
of multiplications is N × 1 × 1 × 3 × 3 × 3 × 3. Therefore, the computation cost of depth-
wise separable convolution is 3 × 3 × 3 × 1 × 3 × 3 + N × 1 × 1 × 3 × 3 × 3 = 243 + 27N,
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and the number of parameters is 3 × 3 × 3 × 1 + N × 1 × 1 × 3 = 27 + 3N. Then, the ratio of
computation cost and the number of parameters is 243+27N

243N = 1
N + 1

9 and 27+3N
27N = 1

N + 1
9 , re-

spectively. If N = 128 in this case, then the computational cost and the number of parameters
of the depth-wise separable convolution is about 11.89% of the normal convolution, which
indicates that the depth-wise separable convolution significantly reduced the computation
cost and number of parameters. Figure 4 shows the convolution sequences of the depth-wise
separable convolution and the normal convolution in a standard layer.
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Rebuilding the neck and head parts with depth-wise separable convolution helped
to decrease the number of parameters to 10.47m, which is about 27.03% of YOLO v4 with
MobileNet v2 as the backbone, and 16.35% of original YOLO v4.

3.3. Attentional Feature Fusion
3.3.1. Multi-Scale Channel Attention Module

The MS-CAM makes use of two different branches to obtain channel attention weights.
One branch uses global average pooling to investigate global features, while the other
branch uses point-wise convolution to extract channel information for local features. Finally,
the two branches are fused to better combine features at different scales. Figure 5 shows
the structure of MS-CAM.

The refined features Y ∈ RC×H×W obtained by MS-CAM can be interpreted as Formula (5).
X ∈ RC×H×W is the output of a layer in CNN. C represents the number of channels. H×W is the
size of the feature map. G(X) and L(X) denote the global channel context and the local channel
context, respectively. g(X) represents the global average pooling. The G(X), L(X) and g(X) can be
explained as Formulas (6)–(8), respectively. B represents the batch normalization [37]. δ denotes
the ReLU function, and σ represents the sigmoid function. The sizes of PWConv1 and PWConv2
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are C
r × C× 1× 1 and C× C

r × 1× 1, respectively. MSCAM(X) ∈ RC×H×W represents the
attention weights obtained by the MS-CAM module. ⊕ represents the addition operation of the
broadcast mechanism and⊗ indicates the element-wise multiplication operation.

Y = X⊗MSCAM(X) = X⊗ σ(L(X)⊕ G(X)) (5)

L(X) = B(PWConv2(δ(B(PWConv1(X))))) (6)

g(X) =
1

H ×W

H

∑
i=1

W

∑
j=1

X[:, i, j] (7)

G(X) = B(PWConv2(δ(B(PWConv1(g(X)))))) (8)
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3.3.2. Modified Attentional Feature Fusion Module

In order to better combine the MS-CAM module and to expand the feature channels,
the AFFM is designed in this paper to better obtain contextual information from different
convolutional layers by fusing semantic and scale-inconsistent features. Figure 6 shows the
structure of the AFFM.

Given two features X, Y ∈ RC×H×W , the AFFM can be represented as shown in
Formula (9). The symbol ] denotes the initial feature fusion using the operation of sum-
ming the corresponding elements. The sequence of 1 × 1 convolution, batch normalization
and ReLU6 are denoted as CBR.

Z = CBR(MSCAM(X ]Y)⊗ X + (1−MSCAM(X ]Y))⊗Y) (9)

The redesigned AFFM aims to improve the FPN structure. Unlike the linear concatena-
tion operation used in YOLO v4, the AFFM improved the generalization capability of the
model by introducing non-linear operations for better fusion of semantic and scale-inconsistent
features. The FPN with the AFFM (FPN-AFFM) structure is shown in Figure 7.



Remote Sens. 2021, 13, 4706 10 of 22Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. The main structure of the AFFM. 

Given two features 𝑋, 𝑌 ∈ 𝑅 × × , the AFFM can be represented as shown in For-
mula (9). The symbol ⊎ denotes the initial feature fusion using the operation of summing 
the corresponding elements. The sequence of 1 × 1 convolution, batch normalization and 
ReLU6 are denoted as CBR. 𝑍 = 𝐶𝐵𝑅 𝑀𝑆𝐶𝐴𝑀(𝑋 ⊎ 𝑌)⨂𝑋 + 1 − 𝑀𝑆𝐶𝐴𝑀(𝑋 ⊎ 𝑌) ⨂𝑌  (9)

The redesigned AFFM aims to improve the FPN structure. Unlike the linear concat-
enation operation used in YOLO v4, the AFFM improved the generalization capability of 
the model by introducing non-linear operations for better fusion of semantic and scale-
inconsistent features. The FPN with the AFFM (FPN-AFFM) structure is shown in Figure 
7. 

 
Figure 7. The main structure of FPN-AFFM. 

Figure 6. The main structure of the AFFM.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. The main structure of the AFFM. 

Given two features 𝑋, 𝑌 ∈ 𝑅 × × , the AFFM can be represented as shown in For-
mula (9). The symbol ⊎ denotes the initial feature fusion using the operation of summing 
the corresponding elements. The sequence of 1 × 1 convolution, batch normalization and 
ReLU6 are denoted as CBR. 𝑍 = 𝐶𝐵𝑅 𝑀𝑆𝐶𝐴𝑀(𝑋 ⊎ 𝑌)⨂𝑋 + 1 − 𝑀𝑆𝐶𝐴𝑀(𝑋 ⊎ 𝑌) ⨂𝑌  (9)

The redesigned AFFM aims to improve the FPN structure. Unlike the linear concat-
enation operation used in YOLO v4, the AFFM improved the generalization capability of 
the model by introducing non-linear operations for better fusion of semantic and scale-
inconsistent features. The FPN with the AFFM (FPN-AFFM) structure is shown in Figure 
7. 

 
Figure 7. The main structure of FPN-AFFM. Figure 7. The main structure of FPN-AFFM.

The experiments show that the model has achieved a better detection performance
by using the proposed AFFM, with an improvement of 0.78% mAP on the PASCAL
VOC dataset compared with the YOLO v4 algorithm using MobileNet v2 and depth-wise
separable convolution. At a very small cost, this method only has increased a small number
of parameters and decreased by about 3.8 FPS in detection speed.

4. Experiments and Results
4.1. General Datasets and Underwater Image Datasets
4.1.1. PASCAL VOC Dataset

The PASCAL VOC dataset is a generic target detection dataset that has served as
a standard dataset for measuring the performance of target detection algorithms over a
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long period of time. As this method is used for underwater scenes, the PASCAL VOC
served as a pre-trained auxiliary dataset; it has VOC2007 and VOC2012, with a total of
20 common object classes.

In this paper, the transfer learning idea was adopted to pre-train the model on the
PASCAL VOC2007 and VOC2012 datasets. The training-validation datasets of VOC2007
and VOC2012 were firstly mixed, containing 16,551 images in total, and then were divided
into training and validation sets with a ratio of 9:1, and the test dataset of VOC2007
(4952 images in total) was used for testing. Finally, the pre-trained model was migrated to
the underwater image dataset for later training.

4.1.2. Brackish Dataset

The brackish dataset [17] is an open-source underwater dataset that was created in
2019. This dataset is annotated based on real filmed underwater videos, which contain
a total of six categories of underwater organisms: large fish, crabs, jellyfish, shrimps, small
fish and starfish. The specific annotation information statistics are shown in Table 1. The
visualization annotation of the images is shown in Figure 8.

Table 1. Category annotation number of the brackish dataset.

Species Category Annotations Video Occurrences

Big fish 3241 30
Crab 6538 29

Jellyfish 637 12
Shrimp 548 8

Small fish 9556 26
Starfish 5093 30
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4.1.3. URPC Dataset

The original 2020 Underwater Robot Picking Contest (URPC) dataset includes five cat-
egories: echinus, holothurian, scallop, starfish and waterweeds, and contains 5543 training
images. The waterweeds are annotated as a negligible category, which only contains 82 tar-
gets. Therefore, the waterweeds and unmarked images were removed. The final dataset
used in this paper contained 5455 images and four categories, which were split up into
a training set and a test set at a ratio of 9:1, because the test dataset of the URPC was not
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available. It is worth mentioning that the input resolution and category samples of this
dataset are extremely unbalanced, which brings challenges in the training of the model. The
annotation information statistics of the URPC 2020 dataset are shown in Table 2. Figure 9
shows the training images of the URPC 2020.

Table 2. Category annotation number of the URPC 2020 dataset.

Species Category Annotations

Holothurian 5537
Echinus 22343
Starfish 6841
Scallop 6720
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4.2. Experimental Setup
4.2.1. Experimental Environment

The experimental environment is shown in Table 3. The hardware used for this
experiment was an Intel(R) Xeon(R) Gold 6130 CPU, 2.10GHz; NVIDIA RTX 2080ti graphics
card, single GPU, 11G memory; Ubuntu 16.04 operating system; CUDA version 10.2;
PyTorch version 1.2.0. The compiled virtual environment of Python was v3.6.

Table 3. The environment for the experiments.

Environment Versions or Model Number

CPU Intel(R) Xeon(R) Gold 6130, 2.10 GHz
GPU NVIDIA RTX 2080ti, Single GPU, Memory of 11G
OS Ubuntu 16.04

CUDA V 10.2
PyTorch V 1.2.0
Python V 3.6

4.2.2. Training Parameter Settings

In order to ensure fairness of the experiments, the same initial training parameters
were set for each group of experiments. The input resolution was uniformly resized to
416 × 416. To prevent the initial backbone weights from being destroyed in the early stage
of training, the method of freezing certain layers was used for training. In the process of
freezing training, the gradients of the backbone network are not updated, and the training
batchsize and epoch are set to 32 and 50, respectively. In the process of unfreezing training,
the gradients of the whole network are all updated, and the batchsize and epoch are set to 16
and 150, respectively. The Adam algorithm [38] was adopted to optimize the loss function.
The parameter settings in the Adam optimizer determined the training results. The weight
decay coefficient was set to 5 × 10−4. The initial learning rate was set to 1 × 10−3, and the
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learning rate after unfreezing was set to 1 × 10−4. Additional steps such as cosine annealing
scheduling [39], mosaic data augmentation [12] and label smoothing were not used in our
experiments, and were set to false. All other parameters were kept the same as in YOLO v4.

4.2.3. Testing Parameter Settings

The input resolution was uniformly resized to 416× 416. The confidence threshold was
set to 0.5 and the IOU threshold was set to 0.3. In the process of the speed test, just one GPU
was used. The batchsize was set to 1, which means that only one image was processed at
a time. The model inference time consisted of the processes of network inference, score
screening and non-maximum suppression, and an average of 100 test times were taken as
the final prediction time.

4.3. Experimental Results
4.3.1. Ablation Experiments

The model was trained and tested using the PASCAL VOC dataset. The mAP, a com-
mon index used in target detection, served as the evaluation criterion of accuracy. The
evaluation criterion of model inference speed was FPS. Since this paper is about a study
for model lightweighting, the number of network parameters and model size are also
considered as the evaluation criterions.

To verify the effectiveness of the different submodules or means, ablation experiments
were conducted in this paper. The main framework of the reimplemented YOLO v4
algorithm was used and the backbone network of YOLOv4 was replaced by MobileNet v2
at the same time. The rest network structures were consistent with YOLO v4.

Table 4 shows the results of the ablation experiments performed on MobileNet v2. The
symbol (*, *) denotes the comparison of the gains based on baseline (the YOLO v4 that used
the backbone of MobileNet v2.) and depth-wise separable convolution, and the symbol
(*) denotes the gains compared with the baseline. In the listed models, Model1 (baseline)
was the network replaced by the CSPDarknet53 backbone network with MobileNet v2.
Model2 had rebuilding of the convolution structure of the neck and the head with the
depth-wise separable convolution. Model3 was the model in which the proposed AFFM
module was added to Model2. Model4 replaced the ReLU6 activation function of the CBR
normal convolution module in Figure 2 with the Mish activation function.

The results indicated that the proposed Model2 respectively reduced the amount of
model parameters and the model size by 72.97% and 69.72% compared with Model1, while
the mAP and FPS were only decreased by 0.35% and 3.85, respectively. The proposed
Model3 increased the mAP by 0.43% and 0.78% compared with Model1 and Model2, while
only increasing 260k parameters, at 44.92 FPS. After replacing the activation function with
Mish, the proposed Model4 achieved the best accuracy, i.e., the mAP reached 81.67%, while
the detection speed was only reduced by 7.67 FPS compared to Model1 (baseline), and the
mAP was improved by 0.94% and 1.29% compared to the baseline and Model2, respectively.
As can be seen, the proposed method was effective, achieving a large gain at a small cost.

Table 4. Results of ablation experiments on the PASCAL VOC2007 test dataset.

Model
Method mAP(%)

(*, *)
Parameters

(M) (*)
Model Size

(MB) (*)
Speed
(FPS)Baseline Dw AFFM Mish

Model1
√

80.73 38.74 154.6 51.85
Model2

√
80.38 (−0.35, 0) 10.47 (−72.97%) 46.8 (−69.72%) 48.00

Model3
√ √

81.16 (+0.43, +0.78) 10.73 (−72.30%) 47.8 (−69.08%) 44.92
Model4

√ √ √
81.67 (+0.94, +1.29) 10.73 (−72.30%) 47.8 (−69.08%) 44.18

Note: The symbol (*, *) denotes the gains compared with model1 and model2, respectively. The symbol (*) denotes the gains compared
with model1.
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4.3.2. Comparison with Other Object Detection Algorithms

A comparison with other object detection algorithms was conducted to verify the effec-
tiveness of the proposed method. All results were tested on the VOC2007 test data. Table 5
shows the comparison results of our method and the other object detection algorithms on
the PASCAL VOC dataset. The results suggest that the proposed method achieved a good
tradeoff between precision and speed.

Table 6 shows the detailed detection results of 20 classes on the Pascal VOC 2007 test
dataset between several detectors. Text in bold indicates the highest level. It is evident that
our method achieved the highest AP among 11 classes.

4.3.3. Detection Results on Underwater Datasets

After pre-training, the obtained model Model4 was transferred to the underwater
dataset for the final training, with total epoch set to 150 (freezing epoch set to 50 and
non-freezing epoch set to 100), and other training parameters kept the same as those shown
above. The training parameters for the YOLO v4 algorithm and the Tiny YOLO v4 algorithm
were set the same to transfer the training. Table 7 shows the comparison results of our
method with YOLO v4 and Tiny YOLO v4 on the brackish dataset. As can be seen, the
number of model parameters and model size of the proposed method respectively increased
by 4.77M and 25.1MB compared to the Tiny YOLO v4 algorithm in the brackish underwater
dataset, and the increased number of parameters mainly focused on the FPN and the PANet
structures. The FPS was 36.22% of the Tiny YOLO v4 algorithm, reaching 44.22, but mAP
increased significantly by 12.49%, which significantly improved the accuracy of small targets.
When compared to the YOLO v4 algorithm, the mAP was only reduced by 0.91%, but the
number of parameters and model size were reduced by 83.2% and 80.5%, respectively, and
the FPS was improved by 7.31. It is obvious that the proposed method achieved a balance
between accuracy and speed, and made the detection model light enough.

In order to verify the applicability of the proposed method in different underwater
environments, the parallel experiments were carried out on the URPC dataset. The results
are shown in Table 8. It is obvious that our method achieved a 79.54% mAP, which was
1.47% lower than that of YOLO v4 and 11.71% higher than that of Tiny YOLO v4. The
results of the experiments indicate that the proposed method can meet the demand of
detecting targets in different underwater environments.

The detection results were visualized on the brackish and URPC underwater datasets
in Figures 10 and 11. It was observed that the detection accuracy of our method was similar
to the YOLO v4 algorithm, and the detection performance of small targets was significantly
better than the Tiny YOLO v4 algorithm, while the Tiny YOLO v4 algorithm had a lot of
missing detection cases in small target detection. The reason for this is that the Tiny YOLO
v4 algorithm only extracted features at the scales of 13 × 13 and 26 × 26 and used an FPN
structure for feature fusion to detect targets, so it was not sensitive enough to small targets.

To better explain the feature extraction ability of the proposed network, the feature maps
of the network were also visualized. Figure 12 shows the original images of the brackish
dataset. Figures 13 and 14 visualize the output feature maps at different scales of the first
12 channels for each kernel. Additionally, our models and YOLO v4 extracted 3 feature maps,
and the model of Tiny YOLO v4 extracted only 2 feature maps. The results in Figures 13 and 14
prove that feature maps at small scales are better for large targets and that feature maps at
large scales are sensitive to small targets. The feature maps of the proposed method have
better texture and semantic information than Tiny YOLO v4, and have similar texture and
semantic information to YOLO v4, which demonstrates the effectiveness of our method.
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Table 5. The experimental results with different object detection algorithms.

Training Data Method Backbone Input Size mAP
(%)

Parameters
(M)

Model Size
(MB) GPU Speed

(FPS)

COCO [40] + 07 + 12 YOLO v4 [12] CSPDarknet53 416 × 416 89.88 64.04 244.7 RTX 2080ti 36.14
Tiny YOLO v4 [41] Tiny CSPDarknet53 416 × 416 78.41 5.96 22.6 RTX 2080ti 123.51

07 + 12 Faster-RCNN [11] VGG16 1000 × 600 73.2 134.70 ~ K 40 7
Faster-RCNN [18] ResNet101 1000 × 600 76.4 ~ ~ Titan X 5

SA-FPN [26] ResNet50 1280 × 768 79.1 ~ ~ GTX 1080ti 4

SSD300 [4] VGG16 300 × 300 74.3 26.30 ~ Titan X 46
R-FCN [42] ResNet50 1000 × 600 77.4 31.90 ~ Titan X 11

R-FCN3000 [43] ResNet50 1000 × 600 79.5 ~ ~ P6000 30
RON384++ [44] VGG16 384 × 384 75.4 ~ ~ Titan X 15
STDN321 [45] DenseNet169 321 × 321 79.3 ~ ~ Titan Xp 40.1
STDN513 [45] DenseNet169 513 × 513 80.9 ~ ~ Titan Xp 28.6
DSOD300 [46] DS/64-192-48-1 300 × 300 77.7 14.80 59.2 Titan X 17.4

DSOD300_lite [46] DS/64-192-48-1 300 × 300 76.7 10.4 41.8 Titan X 25.8
DSOD300_smallest [46] DS/64-64-16-1 300 × 300 73.6 5.9 23.5 Titan X ~

SqueezeNet-SSD [34] SqueezeNet 300 × 300 64.3 5.50 ~ Titan X 44.7
MobileNet-SSD [34] MobileNet 300 × 300 68.0 5.50 ~ Titan X 59.3

Pelee [33] PeleeNet 304 × 304 70.9 5.43 ~ TX2(FP32) 77
Tiny DSOD [34] G/32-48-64-80 300 × 300 72.1 0.95 ~ Titan X 105

Ours MobileNet v2 416 × 416 81.67 10.73 47.8 RTX 2080ti 44.18

Table 6. The results of different categories on the Pascal VOC2007 test dataset.

Method mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

RON384++ 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0
SSD512 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
R-FCN 79.5 82.5 83.7 80.3 69.0 69.2 87.5 88.4 88.4 65.4 87.3 72.1 87.9 88.3 81.3 79.8 54.1 79.6 78.8 87.1 79.5

Faster R-CNN 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
STDN513 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5

ours 81.6 88.5 87.5 83.1 75.2 67.1 85.3 90.2 88.9 60.9 89.7 78.4 89.5 89.5 84.9 84.8 55.1 86.9 74.3 90.8 82.0
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Table 7. Detection results of the proposed method on the brackish dataset.

Method mAP
(%)

Big Fish
(%)

Crab
(%)

Jelly Fish
(%)

Shrimp
(%)

Small Fish
(%)

Star Fish
(%)

Parameters
(M)

Model Size
(MB)

Speed
(FPS)

YOLO v4 93.56 98.57 91.39 96.86 94.77 83.96 95.82 64.04 244.0 36.91
Tiny YOLO v4 80.16 95.52 67.48 78.36 83.81 61.54 94.25 5.96 22.4 122.08

Ours 92.65 97.59 91.12 95.54 94.48 81.06 96.10 10.73 47.5 44.22

Table 8. Detection results of the proposed method on the URPC 2020 dataset.

Method mAP
(%)

Holothurian
(%)

Echinus
(%)

Starfish
(%)

Scallop
(%)

YOLO v4 81.01 71.21 89.94 85.58 77.30
Tiny YOLO v4 67.83 54.09 80.43 77.94 58.87

Ours 79.54 70.38 90.11 85.52 72.16
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5. Discussion
5.1. Lightweight Techniques for Underwater Object Detection

Lightweight object detection is a hotspot at present, and has achieved good performance
in object detection of common categories. However, there is little research on lightweight
underwater object detection. Current research on lightweighting of neural network model is
divided into two mainstream directions: designing lightweight networks and model compres-
sion. The study in this paper mainly focuses on building a more lightweight detection network
based on YOLO v4 by combining MobileNet v2 and depth-wise separable convolution. Ex-
periments indicate that this method can effectively reduce the number of parameters without
sacrificing much accuracy. However, this kind of approach generally retains a large number
of redundant parameters and channels due to the presets, even if the number of parameters is
greatly reduced by changing the convolution methods. Therefore, it is necessary to prune the
“least important” parameters with an appropriate criterion [47–49]. The limitation to this is
that although the detector meets the requirement of real-time, the detection time (22 ms) of the
proposed underwater object detector is still long, which could be further lowered. Meanwhile,
the parameters can be compressed by using proper methods for applying the model into
small embedded devices.

5.2. Challenges of Underwater Small Target Detection

Detection of underwater small targets is a tough problem. At present, multi-scale
feature learning, data augmentation [50,51] or feature fusion are the most popular research
methods for small object detection. Methods based on multi-scale feature learning and
feature fusion consider both shallow texture information and deep semantic information,
which is beneficial to the feature extraction of small targets. However, existing feature
fusion methods such as addition and concatenation are context-independent and may lead
to noise, which makes it difficult to further improve the detection performance of small
targets. This paper has tried to introduce the context-dependent attention mechanisms
that extract both global and local features to obtain channel attention weights, which
enable the detection network to better detect underwater small targets by combining AFFM
modules with FPN structures. This has confirmed that the feature fusion method based on
context-dependence performs better than context-independent methods in the detection of
small targets. Meanwhile, the visualization technology of CNN indicates that feature maps
of different scales have different sensitivities to targets of varied scales. Unfortunately,
there are still defects in our work when detecting targets under extreme scale variations.
Consequently, there is still room for further research based on the feature fusion approach
to better detect small targets.

5.3. Applicability in Different Underwater Marine Scenarios

In order to verify the applicability of the proposed method, we have trained and
tested our method on two different underwater datasets. As it turns out, our method has
achieved a similar performance compared to YOLO v4 and has reached a significantly
higher accuracy than Tiny YOLO v4. However, our detector may miss detection targets
when the targets are extremely small and when the features of targets are not obvious.
We speculate that the extracted features are not shallow enough, despite shallow features
not being conducive to classification. It is worth considering whether it is better to use
shallower features for detection.

6. Conclusions

In the past, underwater object detection techniques based on optical imaging mainly
focus on improving detection accuracy by using large classification networks. However,
lightweight and real-time performance will perform better in practical applications. In
order to solve the lightweight problem of underwater object detection, this paper proposes
a lightweight underwater object detector that offers a great tradeoff between accuracy and
speed. In our work, in order to build a lightweight detection network for faster and better
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detection of marine underwater targets, the MobileNet v2 was utilized as a backbone to
extract preliminary features. Meanwhile, depth-wise separable convolution was adopted
to rebuild the neck and head to reduce the number of model parameters. The improved
AFFM module was designed to adapt to the FPN structure to extract features with both
rich semantic information and location information, which is beneficial for underwater
small targets. Experiments indicated that the parameters of the proposed network were
reduced to 19.53% of YOLO v4 with a process speed of more than 44 FPS, and our detector
had a similar performance on the underwater datasets compared to YOLO v4. In particular,
our method achieved a 92.65% mAP and a 79.54% mAP on the brackish and URPC 2020
datasets, respectively. Furthermore, our method obtained a 81.67% mAP on the common
PASCAL VOC dataset, which shows that the proposed method has certain advantages
over the listed algorithms in terms of accuracy and speed.

In our future work, we will continue to further study lightweight and acceleration
methods for application in marine underwater object detection. The following directions
can be taken into account: (1) model pruning, (2) low-rank estimation, and (3) model
distillation. In a word, the key to achieving lightweighting is to increase the compactness
of the DCNN.
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