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Abstract: On the Moon, in the near infrared wavelength range, spectral diagnostic features such as
the 1-µm and 2-µm absorption bands can be used to estimate abundances of the constituent minerals.
However, there are several factors that can darken the overall spectrum and dampen the absorption
bands. Namely, (1) space weathering, (2) grain size, (3) porosity, and (4) mineral darkening agents
such as ilmenite have similar effects on the measured spectrum. This makes spectral unmixing on
the Moon a particularly challenging task. Here, we try to model the influence of space weathering
and mineral darkening agents and infer the uncertainties introduced by these factors using a Markov
Chain Monte Carlo method. Laboratory and synthetic mixtures can successfully be characterized
by this approach. We find that the abundance of ilmenite, plagioclase, clino-pyroxenes and olivine
cannot be inferred accurately without additional knowledge for very mature spectra. The Bayesian
approach to spectral unmixing enables us to include prior knowledge in the problem without
imposing hard constraints. Other data sources, such as gamma-ray spectroscopy, can contribute
valuable information about the elemental abundances. We here find that setting a prior on TiO2 and
Al2O3 can mitigate many of the uncertainties, but large uncertainties still remain for dark mature
lunar spectra. This illustrates that spectral unmixing on the Moon is an ill posed problem and that
probabilistic methods are important tools that provide information about the uncertainties, that, in
turn, help to interpret the results and their reliability.

Keywords: Moon; unmixing; space weathering; Bayesian inference

1. Introduction

Reflectance spectroscopy can provide valuable insights into the composition of plane-
tary surfaces. On the lunar surface, the mineral composition is dominated by plagioclase
and pyroxenes [1], which show diagnostic absorption bands in the near-infrared wave-
length range at 1-µm and 2-µm (e.g., [2]). These spectral features enable us to estimate the
abundance of certain minerals or elements. Correlations between spectral parameters and
spectra with known composition can be used to create large-scale maps of, for example,
compounds of chemical elements, such as FeO or TiO2 (e.g., [3–5]). To determine the
abundances of known materials, spectral unmixing can be performed (e.g., [6,7]). With
higher spatial and spectral resolution data available in the last decade, such as data from
the Moon Mineralogy Mapper (M3) instrument on-board the Chandrayaan-1 spacecraft [8],
it is possible to investigate the composition of the Moon in more detail and to gain insight
into the evolution and geology of the Moon.

Unmixing describes the process of determining the abundances of a set of constituent
materials (endmembers) for a given spectrum employing radiative transfer modeling
to describe the interaction of light with the different endmembers. Here, it must be
differentiated between a surface where the endmembers build a macroscopic mixture, such
that they are spatially separated as in a checkerboard pattern. This type of mixture can be
described by a linear superposition of endmember reflectance spectra. The Moon, however,
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is covered by a layer of grains from crushed rocks, the so-called regolith. This constitutes
a typical intimate mixture, where light interacts with the different particles by multiple
scattering inside the medium. Intimate mixtures cannot be described by a linear mixture
of reflectance spectra in the near infrared. It has, however, been shown (e.g., [6]) that the
single scattering albedo (SSA) spectra can be unmixed linearly. Models such as the Hapke
model [9] can be used to calculate the SSA spectra, thus transforming a non-linear problem
into a linear unmixing problem.

The vast majority of unmixing approaches rely on classical optimization techniques
(e.g., gradient descent or Levenberg Marquardt algorithm) to fit the parameters of the
model, such as abundances or grain size, to match the measured spectrum. This has
been done for several planetary bodies, such as on Mars (e.g., [10,11]) or on the Moon
(e.g., [2,12,13]). The endmembers can for example be extracted from the image itself such
that they span a simplex. Each spectrum in the image can then be calculated as a linear
superposition of the edges of the simplex (endmembers) [6]. While this has the advantage
of being applied easily, it has the disadvantage that the composition of these so called
image endmembers might not be known. A different approach is to select endmember
spectra from a library of laboratory samples of known composition [6]. This way the
composition can be directly determined, but the endmembers must be selected carefully
and some spectra might still lie outside of the resulting simplex.

Spectra obtained under lunar conditions, however, are systematically different com-
pared to laboratory spectra of earth-analogs measured in the laboratory. Due to the lack of
an atmosphere, the lunar regolith is subject to the continuous influence of the space envi-
ronment. Micrometeorite bombardment and solar wind change the physical and chemical
characteristics of the upper layers of the regolith [14,15]. These changes include (1) cre-
ation of submicroscopic iron particles (smFe0) [14,15], (2) selective comminution of larger
grains into smaller grains, (3) melting of grains into agglutinates [15] and (4) an increase in
porosity creating a ’fairy-castle’ structure [14]. The smFe0 particles can be grouped into two
categories. Firstly, the smaller nanophase iron (npFe0) particles, which mostly redden the
overall spectrum and dampen the absorption bands, but also darken. These particles are
about 2–30 nm in diameter and accumulate in the rims of the mineral grains [15]. Secondly,
the microphase iron (mpFe0) particles which darken, but do not lead to an increase in
spectral slope [16]. All these changes significantly influence the optical properties of the
lunar surface and make it substantially more difficult to distinguish between minerals. For
example, Sunshine and Pieters [17] and Mustard and Pieters [2] found that, due to low
spectral resolution and signal-to-noise ratio multiple solutions might result in similar least
squares fits, but are physically implausible.

Therefore, unmixing lunar spectra either rely on image endmembers or mature sam-
ples returned by the Apollo missions. A catalog that covers a variety of compositions of
the maria is the Lunar Soil Characterization Consortium (LSCC) catalog [18,19]. However,
because the simplex is limited to only the main mare compositions and a few highland
samples, this catalog cannot cover the entire mineralogy of the lunar surface. For example,
the highlands are dominated by plagioclase (90%) [1] and the LSCC catalog cannot accu-
rately describe the typical highland spectra [20]. Further, uncommon compositions such
as the spinel-rich regions detected by Pieters et al. [21] cannot be explained by unmixing
purely based on the LSCC catalog.

Usually, when unmixing a spectrum, only a single best-fit solution is obtained by
using one of the optimization techniques mentioned above. Rommel et al. [13] used a
similarity measure between the measured and the modeled spectrum to select the best
combination between all possible combinations of endmembers. The differences between
best fit solution for a particular combination of endmembers and the measured spectra for
many combinations are, however, quite similar. Tiny changes in the spectrum could result
in an entirely different combination to be selected as the best solution. Lapotre et al. [22]
showed with a variety of experiments that the uncertainties of the endmember abundances
and grain size are relatively large and many solutions are equally likely. On the Moon,
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these uncertainties are likely to be even higher, with the influence of space-weathering.
In Rommel et al. [13] the best-fit solution often contained the ilmenite endmember, in
contrast to the absence of ilmenite in the actual mixture. Mineral darkening agents such as
ilmenite, which is abundant in some lunar maria, add another layer of complexity to the
unmixing as they are almost featureless and, therefore, mostly darkened.

In this work, we develop a Bayesian approach to unmixing. In Bayesian inference
(e.g., [23]), all parameters of the model are considered probabilistic variables. In this frame-
work, in addition to the point estimates of the best fit, we also estimate the uncertainties
of the parameters. Due to the darkening agents, which darken the spectra and dampen
the absorption bands, the uncertainties of the mineral abundances are likely to be higher
on the Moon than on other planetary bodies with an atmosphere (e.g., [22]). Additional
prior information can be conveniently incorporated in the Bayesian framework. To reduce
uncertainties of the mineral abundances, estimates of elemental abundances can be in-
cluded such that the algorithm will prefer solutions that use endmember combinations
with similar elemental compositions.

2. Methods

Generally, the methods employed in this work can be subdivided into two main
frameworks. Firstly, the radiative transfer model describes the scattering and absorption
behavior of the materials. This framework is built upon the Hapke model [9] and the space
weathering model of Wohlfarth et al. [24]. Secondly, the Bayesian framework formalizes
the probabilistic perspective of the problem. In the following section, we will describe the
choices of the models and their parameters.

2.1. Radiative Transfer Models
2.1.1. Hapke Model

The semi-empirical Hapke model has become the quasi-standard for the analysis of
particulate planetary surfaces. Over the years the original model [25] has been refined to
also include opposition effects and better approximations for the phase function and Chan-
drasekhar’s H-function to model multiple scattering inside of the medium. The Modified
Isotropic Multiple-Scattering Approximation (MIMSA) formulation of the model [26] is
as follows:

r(µ, µ0, g) =
ω

4π

µ0

µ + µ0
[p(g)BSH(g) + M(µ0, µ)]BCB(g). (1)

The single scattering albedo ω (SSA) can be calculated by inverting the equation for
ω. The cosines of the incidence (Θi) and emittance (Θe) angles are denoted as µ0 and µ,
respectively. The phase angle g is the angle between the incident and emitted light rays.
The phase function is denoted as p(g), the opposition effect is subsumed in the terms
for shadow hiding BSH and coherent backscattering BCB. We also include corrections
for macroscopic surface roughness as described in Hapke [27], but for the laboratory
mixtures used in this work, this effect is not relevant. The multiple scattering term M(µ0,µ)
models the scattering between the particles inside the medium and is described in detail
in Hapke [26] and not repeated here.

In general, the phase function p(g) can be represented by a sum of Legendre polyno-
mials Pn(cos(g)) weighted with the material-specific Legendre coefficients bn:

p(g) = 1 +
∞

∑
n=1

bnPn(cos(g)). (2)

Specifically, the phase function p(g) of the soil can be approximated with the double
Heney–Greenstein function [28]:

p(g) =
1 + cDHG

2
1− b2

DHG(
1− 2bDHG cos (g) + b2

DHG
)3/2 +

1− cDHG
2

1− b2
DHG(

1 + 2bDHG cos (g) + b2
DHG

)3/2 , (3)
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with the parameter cDHG being a measure for the amplitude of the backscattering lobe to
the forward scattering lobe. cDHG > 0 denotes particles that are mainly backscattering. The
parameter bDHG is a measure of the width of the lobe. For the lunar regolith, Warell [29]
found the standard values for the parameter bDHG and cDHG to be 0.21 and 0.7, respectively.
According to Yang et al. [30], ilmenite is more back-scattering while the other lunar minerals
are mainly forward-scattering. We adopt the parameters for ilmenite from Yang et al. [30]
and set bDHG=0.19 and cDHG=0.33 for the ilmenite endmembers. For the other endmembers
we use the parameters from Warell [29] to be consistent with the previous work of, for
example, Rommel et al. [13].

By expanding the Double Heney Greenstein function the Legendre coefficients can be
derived from the parameters bDHG and cDHG as follows [26]:

bn = cDHG(2n + 1)bDHG
n. (4)

The multiple scattering term M(µ, µ0) in Hapke [26] is derived from the Legendre
coefficients of the single scattering phase function p(g). Using only the first 15 coefficients
is sufficient, as the bn decreases with increasing n.

Under small phase angles, the surface appears brighter than would be expected. This
is accounted for in the model by the correction terms BSH and BCB, denoting the shadow
hiding and coherent backscatter effects, respectively [26]. The samples used in this work
were acquired under a phase angle of 30°, therefore, we will assume that the opposition
effect is negligible, if not mentioned otherwise.

This model is inverted to find the best fit albedo for the measured reflectance values.
This procedure is applied to the endmember spectra that are then used according to the
forward mixing model.

2.1.2. Forward Mixing Model

The single scattering albedos of the endmembers obtained by inverting the Hapke
MIMSA model are subsequently used to calculate the SSA spectra of the mixture. According
to Hapke [9] the single scattering albedo is defined as the scattering coefficients (S) divided
by the extinction coefficient (E) of the mixture,

ωmix =
S
E
=

∑
i

NiσiQS,i

∑
i

NiσiQE,i
, (5)

with Ni as the number of particles of particle type i per unit volume and σi = πa2
i as the

cross-sectional area, where ai denotes the radius of the corresponding particle type [9]. The
scattering efficiency is QS,i = QE,iωi, such that the mixing formula becomes:

~ωmix =

∑
i

MiQE,i
ρi Di

~ωi

∑
i

MiQE,i
ρi Di

. (6)

The bulk density of particle type i is denoted Mi and the average particle diameter
is Di. Assuming that the endmembers have the same average grain size Di and the same
extinction efficiencies QE,i, the fraction can be reduced. The albedo of the mixture can then
be expressed as a linear superposition of the endmember SSA spectra ωi weighted with
the Hapke coefficients θem,i,

~ωmed(~θem) = ∑
i

θem,i~ωem,i. (7)

For a mixture of typical lunar minerals, the extinction efficiencies, grain size, and
density are constant and approximately equal among the endmembers; therefore, these sim-
plifications will be used to calculate the SSA spectrum of the mixed mineral endmembers.
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This spectrum is then subsequently used as the input to the space weathering framework
to calculate the reflectance spectra of the mixture.

When the mixture directly results from the particular known endmembers used in the
unmixing, the sum of the weights should be equal to one (∑

i
θem,i = 1). In this work we are

not enforcing this constraint, but prefer solutions where the sum is close to one. By not
enforcing the sum-to-one constraint for the fractional abundances θem,i the sum can be seen
as a “catch-all” parameter for all linear, wavelength independent, differences among the
endmembers and compared to the examined sample. It is, however, physically implausible
to have endmembers with a negative contribution. Therefore, all endmember weights must
be larger than zero, that is, θem,i > 0.

Apart from the mineral composition and maturity of the sample, other physical
properties and the laboratory setups themselves also influence the measured spectra. In
this work, we use samples and endmembers of the same grain size fraction to remove
the influence of the grain size that has a strong effect on the overall spectra (e.g., [31]).
The grain size also introduces large uncertainties for immature spectra [22] and would,
therefore, influence the dependencies of the parameters we want to examine in this work.

The porosity or compactness [32] of a sample changes the brightness of a sample
almost without introducing a change to the continuum slope. Therefore, this parameter in-
troduces a scaling factor on the weights of the endmembers depending on the compactness
of the sample.

Depending on the laboratory setup, other factors might influence the measured spectra.
For example, the gain of the sensor might be different such that a linear offset is introduced,
when comparing the measurements of the same mineral for different laboratories.

2.1.3. Space Weathering

Space weathering poses a major challenge for unmixing mineral abundances. In
addition to the darkening and reddening, the diagnostic absorption features are obscured by
the optical influence of the space weathering particles. This makes it harder to differentiate
between the different minerals. While the band position remains constant the depth of the
absorption that could normally be used to estimate the fraction of the constituent minerals
is less clear.

Wohlfarth et al. [24] defined a framework based on ab-initio Mie modeling to charac-
terize the effects of the space weathering particles. We include these characteristics in the
unmixing framework. It is important to note that extinction efficiencies are not constant
over the wavelength and are very different for the mineral endmembers and for each of the
iron particles (see Figure 1a). As a result, the fraction in Equation (7) cannot be reduced. The
SSA spectrum of the mixed mineral endmembers (ωmed) according to Equation (7) is then
used as the starting value for the mixture with the iron particles. It is here assumed that all
endmembers have a similar grain size distribution, density and extinction efficiencies. The
values are adapted from Wohlfarth et al. [24] and listed in Table 1. The mixture of the iron
particles and the medium is then defined as:

~ωtotal(~ωmed(~θem), MnpFe, MmpFe) =

(1−MnpFe−MmpFe)~QE,med
ρmedDmed

~ωmed +
MnpFe ~QE,npFe

ρnpFeDnpFe
~ωnpFe +

MmpFe ~QE,mpFe
ρmpFeDmpFe

~ωmpFe

(1−MnpFe−MmpFe)~QE,med
ρmedDmed

+
MnpFe ~QE,npFe

ρnpFeDnpFe
+

MmpFe ~QE,mpFe
ρmpFeDmpFe

. (8)

The phase function of a mixture is also defined by the weighted sum of the phase func-
tions of the components. The phase functions of the soil and the small npFe0 particles are
independent of wavelength, but the larger mpFe0 particles have a wavelength dependent
phase function (see also Figure 2), which is, therefore, given as a vector.

~ptotal(g) =

(1−MnpFe−MmpFe)~QE,med~ωmed
ρmedDmed

pmed +
MnpFe ~QE,npFe~ωnpFe

ρnpFeDnpFe
pnpFe +

MmpFe ~QE,mpFe~ωmpFe
ρmpFeDmpFe

~pmpFe

(1−MnpFe−MmpFe)~QE,med~ωmed
ρmedDmed

+
MnpFe ~QE,npFe~ωnpFe

ρnpFeDnpFe
+

MmpFe ~QE,mpFe~ωmpFe
ρmpFeDmpFe

. (9)
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Figure 1. Extinction efficiencies and SSA spectra of the space weathering components npFe0 and mpFe0 calculated according
to Wohlfarth et al. [24]. (a) Extinction efficiencies QE; (b) SSA.

Table 1. Material parameters.

Parameter npFe0 mpFe0 Medium

ρ [g/cm3] 7.568 7.568 3.5
D [nm] 10 150 30µm
~QE(λ) Figure 1a Figure 1a 2.1

1000 1500 2000 2500

0.5

1

1.5

wavelength [nm]

p(
30

°)

Soil
npFe
mpFe

Figure 2. Phase function values for 30° phase angle. The Soil and the npFe0 particles phase functions
are independent of the wavelength in contrast to the mpFe0 particles.

The phase functions are defined by the Legendre coefficients as in Equation (2). These
bn are calculated based on the refractive indices, grain size, and the Legendre expansion of
the Mie phase function from Fowler [33]. By equating the coefficients it can be shown that
the bn of the mixture are also the weighted bn of the soil, npFe0, and mpFe0 particles. The
Legendre coefficients of the mixture are then used to calculate the wavelength dependent
phase function of the mixture and are additionally used in the multiple scattering term
M(µ, µ0). Finally, we obtain reflectance spectra of the mixture, according to Equation (1).

2.1.4. Endmember Catalogs

In order to generate spectra similar to lunar conditions, we need to select endmembers
representative of the general mineralogy of the Moon. We are using only mineral endmem-
bers and are not trying to model the influence of agglutinate glasses. This glassy fraction
usually has a similar composition to the mineral fraction [34], as it is created endogenously.
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The absorption band depth is also not affected by glasses, but by a large amount of smFe0

in the agglutinates [35]. Agglutinates here are only relevant for the unmixing of the LSCC
catalog in Section 3.3, but this should be kept in mind when evaluating the results.

The highlands are dominated by plagioclase (around 90 wt.%) with the remaining
fraction mainly consisting of pyroxenes and minor phases of olivine and spinels [1]. The
composition of the maria is more diverse. About 30–40 wt.% are pyroxenes and plagioclase
still forms a major part of the composition with up to 60 wt.% of the mineral composition.
Olivine contributes up to 10 wt.% and the opaque mineral ilmenite is abundant in some
mare areas with up to 20 wt.% at maximum [1].

Among these groups of minerals are also variations depending on the elemental
composition. For example, Sun and Lucey [36] showed that by generating albedo spectra
based on the magnesium number and grain size the abundance estimation of olivine and
pyroxenes can be improved. We will use fixed albedo spectra as endmembers that are
chosen to be a good representation of a wide variety of possible true endmembers while
retaining the most distinct endmembers.

In general, we want to have one representative of each of the major minerals on the
Moon. Pyroxenes can be subdivided into low calcium pyroxenes (LCP), mainly orthopy-
roxenes (OPX), and high calcium pyroxenes (HCP), usually clinopyroxenes (CPX). The
LCP pyroxenes exhibit an absorption 0.9-µm and 1.9-µm [37,38]. The HCP pyroxenes can
be further subdivided into two spectrally distinct groups. Type A, with an absorption at
0.9-µm and at 1.15-µm, but no absorption around 2-µm [37] similar to olivine. Type B,
exhibits absorption bands at 1.05-µm and 2.35-µm [37]. The absorption band positions,
however, are not fixed, but vary with Mg2+, Fe2+, and Ca2+ content [39,40]. For the un-
mixing, the distinction between these three types of pyroxenes (HCP, LCP-A, and LCP-B)
is, however, beneficial, because we want to minimize the linear dependencies between the
endmember spectra.

2.2. Bayesian Inference

From experience of using unmixing algorithms based on an exhaustive search of all
possible endmember combinations (e.g., [13]), we know that several possible combinations
can produce similar results. The solution is, therefore, not unique. There might be multiple
local minima and some endmembers that are similar, when they become mature, are even
gradually interchangeable, without significantly reducing the quality of the fit. Classical
unmixing techniques, that are based on finding the best fit in the least squares sense,
ignore these uncertainties and only take a single solution, which by a somewhat arbitrary
similarity measure best describes the measured spectrum. By exploring the parameter
space more thoroughly we can obtain uncertainties and can also learn more about the
dependencies among the model parameters.

The process of estimating the probability distributions of parameters of a model
based on a set of data and additional assumptions or knowledge about the data is called
Bayesian inference (see e.g., [23]). All parameters of the model are described as probability
distributions. The goal, therefore, is to estimate the probability densities of the parameters
Θ given some data D. This is called the posterior distribution p(Θ | D). According to
Bayes’ rule the posterior density can be described as:

p(Θ | D) =
p(Θ)p(D | Θ)

p(D)
. (10)

The data are not changing for one observation, therefore, we can assume that p(D) is
constant. Consequently, we can define the unnormalized posterior density [23] as:

p(Θ | D) ∼ p(Θ)p(D | Θ). (11)

The probability of the parameters p(Θ) is the prior distribution and can introduce
already known information about the distribution of the parameters into the procedure or
it can be uninformative. The probability of the data given a set of parameters Θ is denoted
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as the likelihood (p(D | Θ)). The likelihood is evaluated as a function of Θ and gives us an
estimate on how likely the data have originated from the current parameters.

This unnormalized posterior distribution can be calculated analytically if the probabil-
ity distributions are chosen in a specific way, which might be limiting in practice. With the
advancement of computer technology and the introduction of Markov Chain Monte Carlo
(MCMC) methods [41], such as the Metropolis-algorithm [42], it is possible to estimate
complex probability distributions numerically. The algorithm used in this work to sample
from the posterior density distribution is described in the following section.

2.2.1. Sampling Algorithm

The goal of the Monte Carlo simulation is to approximate the posterior distribution.
Most of the sampling algorithms as well as our approach are based on the Metropolis algo-
rithm [42], which was subsequently generalized to non-symmetrical proposal distributions
and is then called Metropolis–Hastings algorithm [43]. This algorithm describes a random
walk through the posterior space such that for a large number of samples, the samples
converge to the posterior distribution. Generally, at each step of the Markov Chain a pro-
posal (Θt ∼ π(Θt−1)) is randomly generated based on the current location in parameter
space. This proposal is then either accepted or rejected and the current parameters are
consequently used for the next proposal. If the proposal is more probable than the current
sample, then the proposal is always accepted; if the proposal is less likely than the current
sample, it is accepted with a certain probability. Therefore, less probable solutions are also
sometimes accepted.

The random walk behavior of the Metropolis algorithm can, however, lead to slow
convergence because many proposals are rejected (e.g., [23]) and correlated parameters
can make the algorithm much less efficient [44]. Modified versions of the Metropolis
algorithm improve the proposals by, for example, estimating the covariance matrix on
the previous examples and scaling the proposal distribution accordingly (e.g., [45]) or by
additionally proposing an alternative step that is chosen based on the rejection of the first
proposal [46]. However, it still remains that these methods tend to be less efficient for
non-linearly correlated parameters, due to their inherent random walk behavior [44].

Hamiltonian Monte Carlo (HMC) borrows ideas from Hamiltonian dynamics [47] and
introduces a ’momentum’ variable. As in Hamiltonian dynamics, the momentum variable
and the position are building a dynamic system. The entire sampling process is subdivided
into simulations of L leapfrog steps each of length ε. To calculate the momentum at a
position in posterior space we need to calculate the derivative of the posterior density for
the local environment. With the advances in automatic differentiation in tools like, for
example, Theano [48], which is used in the pymc3 framework [49], it is possible to quickly
calculate the derivatives of more complex functions.

The two parameters of HMC (L and ε), however, must be tuned by hand and strongly
influence the performance of the algorithm. The parameter L determines the length of one
simulation of Hamiltonian dynamics and, if chosen too large, the leapfrog steps tend to do
a U-turn and return to the starting location [23]. The No U-Turn Sampler (NUTS) [44] is an
extension to HMC that automatically stops one simulation of Hamiltonian dynamics when
the leapfrog step would not increase the distance to the starting location and, therefore,
removes the need to tune the L parameter by hand [44]. This way, the NUTS sampler can
effectively explore the posterior space.

This algorithm is likely the best choice for our problem, because we can effectively
sample from a posterior distribution where we expect some parameters to be correlated
and the target distribution might be multimodal.

2.2.2. Likelihood

The unmixing problem according to Section 2.1 is that the abundances (~θem) of the
endmembers and the space weathering components npFe0 and mpFe0 (~θsmFe) with known
albedo spectra, extinction efficiencies and phase functions must be determined. They
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are the parameters we estimate with the help of MCMC. The known data that is used to
calculate the reflectance spectra are denoted as X. The likelihood/goodness of fit of the
current parameter estimates is evaluated with both the reflectance spectrum (rmix) and
the continuum removed spectrum (rcr) to emphasize the absorption band depths over
the absolute fit. The continuum removed spectrum is calculated in a straightforward
way such that certain fixed wavelengths are chosen as the points of the continuum (see,
Figure 3). Usually, the continuum is defined by the convex hull of the spectrum (e.g., [50]).
Calculating the continuum in this way is very time consuming considering that the function
and its derivative must be evaluated thousands of times. The convex hull is not a linear
function such that it is inefficient to implement it in Theano because the derivatives cannot
be determined easily. The indices of the local maxima would be dependent on the current
spectrum. Because for each of the current parameters of the Markov Chain the continuum
is different and depends on the slope, it cannot be computed prior to the sampling. Both
the method using the convex hull and the method using fixed wavelengths used in this
work are able to characterize the absorption bands usually found on the Moon.
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Figure 3. Example calculation of the continuum removed spectrum for endmember AG-TJM-009 from the RELAB database
space weathered with 1.5 wt.% npFe0 and 0.8 wt.% mpFe. The continuum is calculated as the linear interpolation between
the reflectance factor at 730.48 nm, 1578.86 nm and 2497.11 nm. These channels usually lie outside the absorption bands.
(a) Reflectance spectrum; (b) continuum removed spectrum.

Therefore, the concatenation of the spectrum and the continuum removed spectrum
represents the data S. The output of the model is, therefore, a function of the parameters
~θem and~θsmFe such that:

~Smix(~θem,~θsmFe) = [~rmix,~rcr]. (12)

The likelihood is then evaluated by building the sum over all log likelihoods or the
product of all probability density function values at the measured data (~S), given a normal
distribution around the modeled data and some variance σ2, which is also considered a
parameter of the model and, therefore, is also sampled.

p(~S | ~θem,~θsmFe, X) ∼
2K

∏
j=1
N (Sj | µ = Smix,j, σ2ζ j). (13)

K denotes the number of channels. If we know that the model’s accuracy is wavelength
dependent, it is reasonable to include this information in the likelihood function. Therefore,
we introduce a wavelength dependent scaling factor (~ζ) that can be used to emphasize, or
de-emphasize certain wavelength channels.



Remote Sens. 2021, 13, 4702 10 of 50

2.2.3. Prior

Bayesian inference offers a convenient way to include a-priori knowledge in the
sampling process. As described in Equation (11), the posterior is proportional to the
likelihood and the prior p(Θ). For multiple priors, the joint probability is given by the
product of the individual probability. Because our parameters are usually limited to the
interval of [0, 1], a good choice for the priors on our parameters is the Beta distribution,
which is defined by two shape parameters α and β as follows [51]:

Beta(x | α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (14)

with Γ denoting the gamma-function. Choosing α and β controls the shape of the Beta
distribution. Some examples are shown in Figure 4. For example, for a distribution with
α = 2 and β = 5, the mode of the distribution is 0.2, but for a distribution with α = 1 and
β = 3, the mode is zero and the probability decreases for increasing values. For values
outside the interval [0,1], the probability is zero.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

PD
F

α = 1, β = 1
α = 1, β = 3
α = 0.5, β = 0.5
α = 2, β = 5

Figure 4. Probability density function (PDF) of the Beta distribution for some examples of shape
parameters α and β.

The prior distribution on the endmember abundances can be set as follows, with the
shape parameters being chosen depending on the application:

p(~θem) ∼
N

∏
i=1

Beta(θem,i | α = αem,i, β = βem,i). (15)

The space weathering components, namely npFe0 and mpFe0, form only a small
fraction of the composition. Therefore, we can choose the prior similar to α = 1 and β = 3
in Figure 4 for each abundance of npFe0 and mpFe0 (~θsmFe)

p(~θsmFe) ∼
2

∏
i=1

Beta(θsmFe,i | α = αsmFe,i, β = βsmFe,i). (16)

The shape parameters will be chosen such that small values are preferred by the sam-
pler.

We do not enforce the sum to one constraint to account for differences in the laboratory
setups of the endmembers as well as porosity and other influences. Nonetheless, it is
sensible to set a prior on the sum of the endmember weights~θem:

p(∑~θem) ∼ N (∑~θem | µ = 1.0, σ2
sum). (17)

This prior is centered around one such that solutions where the sum of the endmem-
bers is close to one are favored. The variance σ2

sum is chosen depending on the differences
among the endmembers and the investigated samples.
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The elemental abundances can be relatively well characterized remotely with, for
example, gamma ray spectroscopy (e.g., [52]). Spectral parameters in the UV (e.g., [3,4])
or in the NIR (e.g., [5]) can also be used to estimate the elemental abundances, but should
be used with care. For example, according to the TiO2 maps of Sato et al. [4] the swirl
Reiner Gamma is deprived of TiO2 compared to its surroundings, which is physically
implausible, as the optical differences are likely due to a difference in maturity and/or
compaction [53]. Setting a prior, however, does not rule out solutions that do not confirm
with prior knowledge, as long as the probability of the prior does not become zero. If, for
example, the spectrum fits better for a high ilmenite concentration, this solution will be
found to be more likely.

The RELAB database provides elemental abundances for many of the samples (e.g., [37])
and the elemental composition of the endmembers from Rommel et al. [13] were deter-
mined by electron microprobe analysis. We here use endmembers with well-defined
elemental abundances (Eem, M× N matrix, for M elemental abundances and N endmem-
bers) and use the estimated elemental abundances of the samples (~esample, M× 1) as prior
information. If the samples are mixed directly from the endmembers with weights~c (N× 1)
the actual elemental abundances can be calculated as

~esample = Eem~c. (18)

For realistic mixtures, this relationship produces highly non-unique solutions for
the mineral weights because, for example, the MgO abundance could be attributed to a
pyroxene or an olivine. For each sample the elemental abundances are calculated based on
the proposed parameters of the mineral abundances~θem according to:

~θelem = Eem
~θem

n
∑

i=1
θem,i

. (19)

As the beta distribution should be centered around the estimated elemental abundance
we want to enforce the mode of that distribution to be equal to the estimated elemental
abundance. The mode of the Beta distribution for α > 1 and β > 1 is given by:

mode(x) =
α− 1

α + β− 2
=̂ ~esample. (20)

By increasing α (α ≥ 1), the variance of the distribution decreases. Therefore, we
choose a~αelem approximately according to the desired variance of that particular element
and calculate ~βelem according to Equation (20) such that:

~βelem =
~αelem − 1
~esample

+ 2−~αelem. (21)

Consequently, we define the prior for the elemental abundances to be:

p(~θem) ∼
M

∏
i=1

Beta(θelem,i | α = αelem,i, β = βelem,i). (22)

This distribution then effectively acts as a prior on the weights of the mineral end-
members, but there are multiple combinations that fit equally well.

3. Results

The measured spectrum of a mixture is influenced by several factors, namely (1)
composition (2), space weathering, (3) grain size, and (4) porosity. To disentangle the
effects, we designed several experiments. The grain size is constant for all experiments and
is expected to be known. Firstly, we calculate mature synthetic spectra to remove effects
not described by the mixing model itself, except for noise. This can also be interpreted
as a general validation of the sampling approach. Secondly, to remove the influence of
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space weathering and to test the general viability of the mixing model we used laboratory
mixtures of known endmember spectra. Thirdly, we apply the full framework to unmix
the LSCC spectra with endmember spectra from the RELAB catalog and include space
weathering particles. These LSCC spectra can be seen as a good representation of different
maturity levels and the general mineralogy of the lunar maria.

3.1. Synthetic Mixtures

This experiment is designed to estimate the uncertainties of the mixtures when all
influences not covered by the model are removed. Spectra are generated with the mixing
model including additional Gaussian noise with a standard deviation of σn = 0.0008. This
corresponds to a signal-to-noise ratio (SNR) between approximately 170 and 400 (with
SNR= µr,ch

σn
) depending on the channel.

We selected the endmembers according to the categorizations above (see Section 2.1.4).
A representative of each of the classes LCP, HCP Type A, HCP Type B, Olivine, Plagioclase,
and Ilmenite is selected from the RELAB catalog (https://pds-geosciences.wustl.edu/
spectrallibrary/default.htm, accessed on 1 November 2020) and the SSA values are obtained
by inverting the Hapke model and displayed in Figure 5. All endmembers are samples
of the 0–45µm size fraction. The elemental abundances of the endmembers are listed in
Table A1.

500 1000 1500 2000 2500

0.4

0.6

0.8

1

wavelength [nm]

SS
A

Hypersthene
Augite
Olivine
Plagioclase
Salite
Ilmenite

Figure 5. The endmembers for the experiments in Sections 3.1 and 3.3. All the endmembers have a
grain size of 0–45 µm. The RELAB IDs are: OPX is the hypersthene AG-TJM-009; CPX Type B is the
augite AG-TJM-010; OLV is the olivine PO-EAC-056; PLG is the plagioclase PL-EAC-029; CPX Type
A is the pyroxene diopside PP-ALS-105; ILM is the ilmenite SC-EAC-034.

The generated mixtures are based on a mare composition of the endmembers of
10 wt.% hypersthene, 40 wt.% augite, 5 wt.% olivine, 30 wt.% plagioclase, and 15 wt.%
diopside. The ilmenite abundance is varied between 0 wt.% and 16 wt.% and the remaining
fraction is normalized, such that the endmember weights again sum up to unity. The
abundances of npFe0 and mpFe0 is varied between 0 wt.% and 2.2 wt.%, and 0 wt.% and
1.2 wt.%, respectively. Ultimately, 48 synthetic mixtures (mix0–mix47) are created. The
detailed results for all mixtures are listed in Tables A3 and A4.

Generally, all endmembers are measured under similar conditions. According to these
conditions the priors have to be chosen. In our case, we do not want to directly employ
knowledge about mineral abundances (~θem). Therefore, we choose an uninformative prior,
that is:

p(~θem) ∼
N

∏
i=1

Beta(θem,i | α = 1, β = 1). (23)

https://pds-geosciences.wustl.edu/spectrallibrary/default.htm
https://pds-geosciences.wustl.edu/spectrallibrary/default.htm
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Both shape parameters of the Beta distribution are set to one for the prior distribution,
such that the prior is a uniform distribution between zero and one. Because negative
weights are physically implausible, these samples are always rejected.

The mixtures are synthetically generated, such that we set σsum = 0.02 to prefer
solutions where the sum of the fractional abundances is close to one. The experiment is
carried out once with no prior on the elemental abundances and once with an elemental
prior on the abundances of TiO2 and Al2O3 (see also Table 2). For theoretical abundances
below 1 wt.% the variance becomes very low when using the method mentioned above.
Therefore, we set αelem = 1 and βelem = 10 for the shape of the prior, making the mode zero
and the PDF is given in Figure 6.

Table 2. Prior setups for the elemental abundances used during this work. The shape parameter β is then calculated
according to Equation (21). If αelem > 1 and the theoretical elemental abundance is below 1 wt.%, the shape parameters will
be set to αelem = 1 and βelem = 10.

SiO2 TiO2 Al2O3 Cr2O3 MgO CaO MnO FeO Na2O K2O P2O5 SO3

None αelem 1 1 1 1 1 1 1 1 1 1 1 1
TiO2 αelem 1 40 1 1 1 1 1 1 1 1 1 1
Ti/Al αelem 1 40 40 1 1 1 1 1 1 1 1 1

All αelem 30 30 30 1 30 30 1 30 1 1 1 1

0 0.2 0.4 0.6 0.8 1

0

5

10

elemental abundance

PD
F

Figure 6. The probability distribution function of the prior on the elemental abundances for a
theoretical abundance below 1 wt.%.

In general, we set the shape parameters for npFe0 and mpFe0 to αsmFe = 1 and
βsmFe = 30. These parameters were tuned by hand such that 80 % of the probability
density is distributed in the interval [0 wt.%, 5 wt.%]. Higher values than 5 % are physically
implausible. Trang and Lucey [54] found about 2 wt.% of smFe at the maximum for the
Moon, excluding the polar regions. The model of Trang and Lucey [54], first versions
of which were introduced in Trang et al. [55] and Lucey and Riner [16], differs from the
model of Wohlfarth et al. [24], for example, Trang et al. [55] do not consider the influence
of the phase function. Therefore, the predicted concentration of npFe0 and mpFe0 is not
necessarily the same, leading us to set a relatively uninformative prior on each of the smFe
abundances. The prior on the abundance of smFe particles is consistent throughout this
work and is not changed between experiments.

Generally, the mean predicted solution does not necessarily correspond to the actual
mixture coefficients used, but the theoretical values are always part of the solution. Classical
unmixing approaches are limited to just one solution and small changes may lead to
different optimal solutions, which are also not necessarily equal to the ground truth values.

Ilmenite shows, compared to the mafic minerals, an almost featureless spectrum in
the NIR wavelength range. Because of its low albedo, the abundance of ilmenite also
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dampens the absorption bands and darkens the overall spectrum. This is, to some extent,
similar to the spectral influence of mpFe0 particles. If the absolute reflectance is poorly
defined, so is the ilmenite abundance. Consequently, depending on the prior setup and
the sum constraint the uncertainties of ilmenite are different. If no prior on the elemental
or mineral abundances is set, the abundance of ilmenite is relatively poorly defined. For
the mixtures that, in theory, do not contain ilmenite, a majority of the accepted mixtures
contain significant amounts of ilmenite (see Figure 7). A combination of ilmenite and
other endmembers can, therefore, equally explain the measured spectrum. This effect can
be mitigated when a prior is used (see Figure 8). For the fresh mixture (mix0), without
any smFe particles, the uncertainty of the spectrum is small (see Figure 9). The mineral
uncertainties are small, but for the other mixtures, the uncertainties significantly increase.
The majority of posterior density of plagioclase (PLG) is generally lower than the actual
abundance, and for olivine (OLV) and/or diopside (CPXA) the majority of posterior density
is below the actual value. This suggests that a mixture of olivine/diopside and ilmenite
produces very similar results to plagioclase. Olivine and diopside have similar absorptions
at about 1-µm, making them interchangeable to some extent when the maturity increases.
For example, for mix15 there are two distinct modes with either high concentration of
diopside or olivine. The mineral uncertainties of mix5 are large, but the spectrum is clearly
defined. This highlights that there are several solutions that produce nearly identical
spectra. Sometimes, however, the modal abundance values do not sum up to one, because,
for example, just one of the distributions is skewed. This can lead to mode predicted
spectra outside of the confidence band. The modal abundance values were likely never
sampled in this particular combination.

Ilmenite is the only endmember that contains significant amounts of TiO2. Including
prior knowledge about the abundance of TiO2 can, therefore, favor solutions that are close
to the true ilmenite value. In Figure 8 the violin plots of the acceptable solutions considering
the TiO2 and Al2O3 prior are displayed. The abundance of ilmenite is then much more
clearly defined. The uncertainties of the other minerals also mostly decrease, while the
uncertainties of the spectra remain similar.

The results for the most mature spectrum with the highest abundance of ilmenite
are shown in Figure 10. With the prior, the uncertainties of all endmembers can be re-
duced. The confidence plots remain very similar. Figure 11 shows the distribution of the
differences between theoretical values and mean predicted abundance. By including the
prior the differences can be reduced. The mean of olivine is usually above the true value,
while the mean of plagioclase and clinopyroxene is usually below the theoretical value.
The theoretical abundance of olivine is relatively small compared to the other minerals,
consequently, the mean is usually higher. The uncertainties of olivine and clinopyroxenes
are high for both with and without the prior. This can be seen in Figure 12. Including
prior knowledge about the elements Al2O3 and TiO2 the uncertainties of all mineral abun-
dances are mitigated. This is despite the fact that these elements are almost depleted in the
pyroxenes and olivine.

The abundance of npFe0 and mpFe0 is usually well defined, as changes to the abun-
dance of npFe0 and mpFe0 can have a strong influence on the modeled spectrum. In
Figures 7, 8 and 10 it can be seen that the predicted npFe0 and mpFe0 do not change signifi-
cantly with the introduction of a prior. In Table 3 the correlation coefficients between true
smFe abundance and the standard deviation of the minerals is listed. For all minerals it can
be seen that the correlation coefficients are positive. Therefore, the higher the abundance
of smFe is, the larger the uncertainties become. The uncertainty of ilmenite is, however,
uncorrelated to the smFe abundance, even if no prior knowledge is used. Because ilmenite
does not show a prominent absorption band such a feature cannot be obscured by the
smFe particles. This is visible in Figure 13. While the overall uncertainties decrease with a
prior on the elemental abundances, the trend that the uncertainties increase with increasing
maturity is visible for both with and without a prior.
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Figure 7. Violin plots for synthetic mixtures 0, 5, and 15 for the MCMC sampling without a prior on the elemental
abundances. These mixtures do not contain ilmenite, but the posterior distribution contains many solutions with significant
amounts of ilmenite. Yellow diamonds mark the true abundances that were used for mixing the endmembers. (a) Without
elemental prior (mix0); (b) Without elemental prior (mix0); (c) Without elemental prior (mix5); (d) Without elemental prior
(mix5); (e) Without elemental prior (mix15); (f) Without elemental prior (mix15).
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Figure 8. Violin plots for synthetic mixtures 0, 5, and 15 for the MCMC sampling including a prior on the elemental
abundances. Compared to the version without a prior the ilmenite abundance could effectively be constrained. This also
slightly reduced the uncertainties associated with the other minerals. Yellow diamonds mark the true abundances that were
used for mixing the endmembers. (a) With TiO2 and Al2O3 prior (mix0); (b) With TiO2 and Al2O3 prior (mix0); (c) With
TiO2 and Al2O3 prior (mix5); (d) With TiO2 and Al2O3 prior (mix5); (e) With TiO2 and Al2O3 prior (mix15); (f) With TiO2

and Al2O3 prior (mix15).

Figure 8. Violin plots for synthetic mixtures 0, 5, and 15 for the MCMC sampling including a prior on the elemental
abundances. Compared to the version without a prior the ilmenite abundance could effectively be constrained. This also
slightly reduced the uncertainties associated with the other minerals. Yellow diamonds mark the true abundances that were
used for mixing the endmembers. (a) With TiO2 and Al2O3 prior (mix0); (b) With TiO2 and Al2O3 prior (mix0); (c) With
TiO2 and Al2O3 prior (mix5); (d) With TiO2 and Al2O3 prior (mix5); (e) With TiO2 and Al2O3 prior (mix15); (f) With TiO2

and Al2O3 prior (mix15).
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Figure 9. Confidence plots for synthetic mixtures 0, 5, and 15. In the left column, the plots of the sampling without an
elemental prior are displayed. For the confidence plots in the right column, prior information about the elements TiO2 and
Al2O3 was included. (a) Without elemental prior (mix0); (b) With TiO2 and Al2O3 prior (mix0); (c) Without elemental prior
(mix5); (d) With TiO2 and Al2O3 prior (mix5); (e) Without elemental prior (mix15); (f) With TiO2 and Al2O3 prior (mix15).
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Figure 10. Results for the most mature spectrum, which also has the highest ilmenite concentration. The spectrum becomes
very dark. The abundance of npFe0 and mpFe0 is well defined either with or without the prior information. The uncertainties
of the mineral abundances decrease when including the prior. The yellow diamonds in the violin plots mark the true
abundances that were used for mixing the endmembers. (a) Without elemental prior (mix47); (b) Without elemental prior
(mix47); (c) With TiO2 and Al2O3 prior (mix47); (d) With TiO2 and Al2O3 prior (mix47); (e) Without elemental prior (mix47);
(f) With TiO2 and Al2O3 prior (mix47).
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Figure 11. Differences between mean predicted solution and true abundance. The differences in ilmenite and plagioclase
abundance can be reduced with a prior on the TiO2 and Al2O3 abundance. Each circle represents one mixture. (a) Without
prior; (b) TiO2 and Al2O3 prior.
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Figure 12. Uncertainties associated with each of the mineral abundances. With a prior all uncertainties, except for the
orthopyroxene, which is already quite low, can be reduced. Each circle represents one mixture. (a) Without prior; (b) TiO2

and Al2O3 prior.

Table 3. Pearson r coefficients for the relationship between theoretical smFe abundance and standard
deviation of the respective endmembers. Except for ilmenite with an elemental prior all correlation
coefficients are positive. Therefore, with increasing smFe abundance, the uncertainties of the mineral
abundances increase.

OPX CPXB OLV PLG CPXA ILM

rNone 0.93 0.71 0.47 0.54 0.48 0.13
rTi/Al 0.94 0.81 0.56 0.70 0.58 0.02

Generally, it can be seen that the ilmenite abundance is difficult to determine reliably
without prior information, for both immature and mature spectra. For mature spectra,
the uncertainties of all mineral abundances become very large, even for an almost perfect
case, where influences which are not modeled, are removed. This illustrates that unmixing
on the Moon is an ill-posed problem, and additional knowledge about the composition is
necessary. The addition of a prior to indirectly include information about the plagioclase
and ilmenite abundance is effective in reducing some of the uncertainties.
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Figure 13. Correlation between true smFe abundance and the uncertainties (standard deviations) of the plagioclase
abundance. It can be seen that the uncertainties generally decrease with the elemental prior. (a) Without prior; (b) TiO2 and
Al2O3 prior.

3.2. Fresh Laboratory Mixtures

This experiment is set up to unmix real laboratory mixtures (see also Rommel et al. [13])
from laboratory endmembers. Thus, we select the same endmembers as in Rommel
et al. [13] but omit one of the two labradorites (plagioclases) as the two are very similar,
and we want to select endmembers that are spectrally distinct. We also omit the diallagite
endmember, to reduce the catalog to the same size as for the other experiments and this
endmember is only present in one mixture, which is, consequently, also omitted here. The
amphibole endmember pargasite (PRG) was selected in Rommel et al. [13] to test whether
uncommon minerals can also be detected by the algorithm. We keep this endmember for
our analysis even though it is not present on the Moon.

For the inversion of the Hapke model, the parameters are chosen in the same way as in
Rommel et al. [13] for comparability. Therefore, the term for the shadow hiding opposition
effect is not set to zero, but BSH0 = 3.1 and hSH = 0.11 are adopted from Rommel et al. [13].
The resulting SSA spectra are shown in Figure 14.

The elemental abundances of the endmembers were determined in Rommel et al. [13]
based on electron microprobe analysis in the laboratory (see Table A5) and the modes and
shape parameters are determined according to Section 2.2.3. The results were obtained by
using no elemental priors on the one hand and using a prior for the TiO2 abundance on the
other hand (see first two rows of Table 2).

The true values of the abundance of submicroscopic iron particles in this experiment
is zero. In order to test whether fresh and mature spectra can be reliably distinguished
from each other, we still employ the same prior for smFe as for the other experiments.

All endmembers and mixtures were measured in the same laboratory and the mixtures
are directly mixed from the endmembers; therefore, the weights of the endmembers should
sum up to a value close to one. We set a prior on the sum according to Equation (17) with a
standard deviation of σsum = 0.02.

The detailed results of the unmixing without a prior on the elemental abundances and
with a prior on the TiO2 abundance are listed in Tables A7 and A8, respectively. Generally,
the mean predicted results are very similar to those of Rommel et al. [13] considering that
the endmembers labradorite A and diallagite were omitted. Even though we did not use
a strong prior on the abundance of iron particles, the predicted abundances are almost
exclusively below 0.02 wt.% or a fraction smaller than 2× 10−4.

For the version without a prior on the TiO2 abundance, ilmenite is erroneously pre-
dicted in the mixtures of pargasite and plagioclase. For example, Figure 15 shows the violin
plots of all similarly well-fitting solutions. It can be seen that ilmenite is predicted to be
present, and a solution without ilmenite is not part of the uncertainty. Therefore, a solution
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with ilmenite fits better than one without ilmenite. If we, however, prefer solutions where
the contribution of ilmenite is close to zero, we obtain a better result and the errors in
pargasite and plagioclase abundance are reduced. In Figure 16 the confidence plots are
plotted. Here it can be seen that the mean and mode predicted spectra fit quite well for both
prior setups. By introducing the prior for the TiO2 abundance, the uncertainties of the fit
increase (σ = 0.006 compared to σ = 0.003 for no prior). Therefore, slightly less well fitting
solutions are accepted if the ilmenite abundance confirms better with the prior knowledge.
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Figure 14. The endmembers for the experiment in Section 3.2 taken from Rommel et al. [13]. PRG:
pargasite, AUG: augite, OLV: olivine, PLG: plagioclase (labradorite B), FS: ferrosilite, ILM: hemo-
ilmenite.

In the mixtures containing plagioclase and ferrosilite, plagioclase is confused with
pargasite if no prior knowledge is included. The two endmembers are spectrally very simi-
lar and are both bright (see Figure 14). In Figure 17, an example violin plot is shown, where
the confusion of plagioclase and pargasite can be seen in Figure 17a. Small contributions of
ilmenite can already dampen the absorption band of the pargasite endmember, such that
the similarity to plagioclase increases. The mean predicted abundance of ilmenite is quite
low with 0.48 wt.% for the version without a prior, but still leads to a significantly different
solution. The confidence plots in Figure 18 look nearly identical, except that for the TiO2
prior to the uncertainty of the 0.9 µm absorption band slightly increases. This suggests
that both solutions, with and without ilmenite, represent regions of high posterior density.
It is, however, very difficult for the sampler to traverse from one region to the other, as
the two are far apart and due to the prior on the sum it is unlikely for a limited number of
samples that both regions are sampled. However, with a relatively uninformative prior
as in Figure 6 this ambiguity can be removed, such that the solutions with no ilmenite are
preferred. This trend illustrated by the two examples above, can also be seen in Figure 19.
The differences between mean predicted solution and true abundance for the endmembers
augite, olivine, and ferrosilite are not improved by including prior knowledge about the
TiO2 abundance. This is likely because of inaccuracies of the data and the simple mixing
model and also a problem in Rommel et al. [13]. The inherent simplifications of the Hapke
model makes it such that the fractional abundances are not necessarily equal to their actual
weight fraction (e.g., [56]). Similar to a regularization term in classical optimizations, we
can use the prior to favor certain solutions, without imposing hard constraints. Generally,
without prior knowledge the abundance of plagioclase is usually underestimated, while
the abundance of ilmenite and pargasite is overestimated. The uncertainties are mostly
small, both with and without TiO2 prior (see Figure 20).
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Figure 15. Violin plots for mix0 of the fresh laboratory mixtures. Yellow diamonds mark the theoretical abundances that
were used for mixing the endmembers. (a) Without prior; (b) TiO2 prior.
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Figure 16. Confidence for mix0 of the fresh laboratory mixtures. Uncertainty of the spectrum slightly increases with the
introduction of a prior on the TiO2 abundance. (a) Without prior; (b) TiO2 prior.
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Figure 17. Violin plots for mix10 of the fresh laboratory mixtures. Yellow diamonds mark the theoretical abundances that
were used for mixing the endmembers. (a) Without prior; (b) TiO2 prior.
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Figure 18. Confidence for mix10 of the fresh laboratory mixtures. The prediction of the 0.9µm absorption is slightly less
certain for the version with a prior on TiO2 abundance. Mean predicted spectra are almost identical, even though the
weights are quite different. For the version without an elemental prior the sampled σ is 0.011 and 0.012 for the version with
a TiO2 prior. (a) Without prior; (b) TiO2 prior.
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Figure 19. Prior on the element TiO2 mainly present in ilmenite, significantly reduces the differences in predicted plagioclase
and also pargasite abundance and theoretical abundances. These spectra of the three endmembers are relatively flat and do
not show significant absorption bands. (a) Without prior; (b) TiO2 prior.
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Figure 20. The uncertainties of the respective endmembers are in general relatively low. Only the mixture containing
ilmenite and ferrosilite is highly uncertain. For that particular sample, no good solution has been found considering the
prior on the sum of the endmember weights. (a) Without prior; (b) TiO2 prior.



Remote Sens. 2021, 13, 4702 24 of 50

3.3. LSCC Samples

In the final experiment, we unmix spectra from the LSCC catalog with laboratory
mineral endmembers and the npFe0 and mpFe0 particles. The LSCC catalog contains
mature samples that were returned from the lunar surface by the Apollo missions and
is, therefore, a good representation of lunar mineralogy. We use the <45µm size fraction
spectra for the unmixing, and because there is no data on the mineral abundances of
this size fraction we use the mineral abundances from the 20–45µm size fraction, which
correspond to a large portion of the weight, as a reference for evaluating the results. The
endmembers are the same samples from the RELAB library listed in Section 3.1. These
endmembers do not correspond to the actual constituent minerals and there are additional
minerals that are not covered by the endmember catalog, for example, spinel. Additionally,
the endmember catalog does not contain agglutinates in comparison to the LSCC samples
with large fractions of agglutinates. The ground truth abundances are obtained from
the tables of Taylor et al. [18,19]. The abundances of the minerals were grouped into
clinopyroxene, orthopyroxene, olivine, plagioclase, and ilmenite. The abundances were
then normalized to the mineral fraction because we are not considering glasses. We have
seen that, without a prior on the elemental abundances, the uncertainties become very
large for mature spectra. Therefore, we will use the same prior once on TiO2 and Al2O3
abundances, which in the previous experiments reduced the uncertainties effectively for
plagioclase and ilmenite, but also for many of the other minerals. Additionally, we will
employ a prior on all elements with a relevant abundance on the Moon, which might
contribute to distinguishing between minerals (see also Table 2). The elemental abundances
of the LSCC samples are listed in Table A9. The spectra were measured under laboratory
conditions, but the mixtures are much more complex compared to the laboratory mixtures
from Section 3.2. We are, therefore, not enforcing the sum-to-one constraint as strongly,
as we set σsum = 0.1. Because plagioclase and ilmenite have both almost featureless flat
spectra, the uncertainties between these two increase significantly the more relaxed the
prior on the sum is. Therefore, the prior knowledge about TiO2 and Al2O3 abundance
becomes even more essential.

Detailed results for the unmixing of all LSCC spectra are listed in Tables A10 and A11
for the two experiments with different priors. Generally, the uncertainties are similar
between both versions, but for some samples the priors on the other elements help in
reducing the uncertainties. This can be seen in Figure 21. Therefore, we will focus on the
Ti/Al prior version.
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Figure 21. Uncertainties associated with each of the mineral abundances for the unmixing of the LSCC spectra. (a) TiO2 and
Al2O3 prior; (b) All prior.

In some cases, the plagioclase abundance is underestimated; such an example can be
seen in Figure 22. For the violin plots, the two clinopyroxenes are grouped together. The
spectrum fits quite well and the true plagioclase abundance is not part of the uncertainty.
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Therefore, a prior cannot mitigate the differences between mean predicted and theoretical
abundance. Instead, olivine and orthopyroxene abundances are overestimated. A similar
problem can be seen for 12001 and 15041. These samples are the ones with the highest
fraction of agglutinic glasses (12001: 56.2 wt%, and 15041: 51.3 wt%, and 10084: 53.9 wt%)
among the mare samples. For all other samples, the predicted abundances are close to the
true values.
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Figure 22. Results for LSCC sample 10084 with Ti/Al prior. Yellow diamonds mark the estimated theoretical mineral
fractional abundances. Plagioclase is underestimated, while olivine is generally overestimated. This is a mature spectrum
with an Is/FeO value of 88, therefore, also the estimated npFe0 and mpFe0 abundance is high. The spectrum is generally
very dark. (a) Endmember abundances (10084); (b) smFe abundances (10084); (c) Confidence plot (10084).

Figure 23 shows the typical results for a mature mare spectrum. Most of the abun-
dances are relatively well defined with the prior on the TiO2 and Al2O3 abundance. Com-
pared to sample 10084 in Figure 22, there are significantly fewer npFe0 and mpFe0 particles
predicted to be present. As sample 14260 contains less FeO (9.65 wt.% compared to 14.8 wt.%
in 10084) it is likely that the smFe abundance saturates more quickly, such that additional
smFe cannot easily be created as quickly anymore. The ilmenite abundance is compara-
tively small, which might also be a contributing factor to the uncertainties being relatively
small. Similarly, for the mature highland spectrum in Figure 24, the iron abundance in the
highlands is generally much smaller so that less smFe can be created. According to the
Is/FeO parameter, this is also a very mature spectrum and the absorption bands are weakly
pronounced. However, the smFe abundance is small compared to the mare samples. In
Figure 25, the results for sample 79221, with both the Ti/Al prior and also with the prior
on all major elemental abundances, is shown. This sample is rich in ilmenite and also
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relatively mature, therefore the uncertainties are quite high. In such cases, the results can
be improved when additional elemental abundance information is available. For most
other LSCC samples the Ti/Al prior is, however, sufficient to constrain the procedure. The
npFe0 and mpFe0 abundance is not much effected by the change in prior knowledge.
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Figure 23. Results for LSCC sample 14260 with Ti/Al prior. This mature mare spectrum (Is/FeO = 93.3) can be well
characterized. Yellow diamonds mark the estimated theoretical mineral fractional abundances. Except for a small difference
in theoretical and predicted clinopyroxene abundance, the fit is good. (a) Endmember abundances (14260); (b) smFe
abundances (14260); (c) Confidence plot (14260).
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Figure 24. Results for LSCC sample 62231 with Ti/Al prior. This LSCC sample is a mature (Is/FeO = 116.7) highland
spectrum. There are almost no absorption bands visible. Yellow diamonds mark the true mineral fractional abundances.
The mean predicted values are close to the theoretical mineral abundances. (a) Endmember abundances (62231); (b) smFe
abundances (62231); (c) smFe abundances (62231).
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Figure 25. Cont.
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Figure 25. Results for LSCC sample 79221 both with the prior on TiO2 and Al2O3 abundance and a prior on all relevant
elements. Including prior information about the other elements as well can help in mitigating uncertainties between
clinopyroxene and olivine. This is also a mature mare spectrum with an Is/FeO value of 91.0. Yellow diamonds mark the
theoretical mineral fractional abundances. (a) Endmember abundances with Ti/Al prior (79221); (b) smFe abundances with
Ti/Al prior (79221); (c) Endmember abundances all elements prior (79221); (d) smFe abundances all elements prior (79221);
(e) Confidence Ti/Al prior (79221); (f) Confidence all elements prior (79221).

In Figure 26 the correlations between Is/FeO or Is and mean predicted npFe0 or mpFe0

abundance are displayed. The abundances are only weakly correlated with the Is/FeO
maturity index. In contrast the correlation between the ferromagnetic resonance Is and
the abundance is very strong. Even for the small dataset this correlation is significant.
Because the Is is a measure on the amount of iron particles in the size fraction between
4 nm and 33 nm [57], this suggests that the abundance of npFe0 can be obtained relatively
reliably even with a limited endmember catalog. This difference between Is/FeO and
Is also supports the findings of Trang and Lucey [54] that the saturation limit of npFe0

particles is dependent on the FeO abundance. The saturation limit increases with increasing
FeO abundance. Figure 27 shows the relationship between npFe0 and mpFe0 abundance
in the LSCC samples. Usually, the factor between the abundance of npFe0 and mpFe0

abundance is approximately constant, where the amount of npFe0 is typically twice as high
as the amount of mpFe.
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Figure 26. Relationship of npFe0 and mpFe0 abundance to the Is/FeO maturity parameter and the ferromagnetic resonance
(FMR) Is. The FMR parameter is sensitive to small iron particles in the size range between about 4 nm and 33 nm [57]. The
correlation between npFe0 and Is is clearly visible as well as for the larger mpFe0 particles. (a) npFe0, r = 0.39; (b) mpFe0,
r = 0.34; (c) npFe0, r = 0.88; (d) mpFe0, r = 0.87.
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Figure 27. The correlation between the mean predicted npFe0 and mpFe0 abundance is r = 0.90.
Therefore, with increasing npFe0 abundance typically also the mpFe0 abundance increases. The
factor npFe

mpFe approximately amounts to 2.
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4. Discussion

Generally, the three experiments show that a probabilistic perspective provides im-
portant insights into the unmixing process overall. When trying to unmix lunar spectra
many factors have to be considered to obtain reliable results. A non-probabilistic approach
needs to make many assumptions about the composition and the maturity of the surface
to obtain plausible results. Even if these assumptions are accurate only a single best fit
solution is obtained. All experiments shown in this work illustrate that there is no unique
solution and that a variety of combinations can produce similar results and, thus, a number
of different interpretations are possible.

The synthetic mixtures in Section 3.1 were used to estimate the influence of the dark-
ening agents on the overall uncertainties of the mineral abundances. The results showed
that with increasing smFe abundance the uncertainties increased. Ilmenite or TiO2 also con-
tributed to uncertainties in the data, but there appears to be no direct relationship between
true ilmenite abundance and uncertainties. However, introducing prior knowledge about
the TiO2 and Al2O3 abundance can significantly reduce the uncertainties of all mineral
abundances as well as the errors between mean predicted and true mineral abundances
and is, therefore, suitable for the application of the approach to real lunar spectra. For
very mature spectra the uncertainties become very large. This illustrates the need for a
probabilistic approach to the problem of unmixing spectra for mineral and smFe particle
abundances. The abundance of the smFe particles could, however, still be reliably detected
for any maturity level. The uncertainties of the minerals all increased with increasing smFe
concentration, except for ilmenite. This might be explained by the fact that ilmenite with its
featureless spectrum is already difficult to determine accurately if the absolute brightness
of the sample is not well defined. Ilmenite, therefore, is not easily distinguished by any
absorption bands, which become more difficult to quantify with increasing maturity.

Ambiguities between spectrally similar endmembers such as plagioclase, pargasite,
and ilmenite in Section 3.2 can lead to larger errors (up to 57 wt.%) in the best fit solution
of the Hapke model and the measured spectra. When these ambiguities are mitigated
with using prior information, the errors are usually well below 15 wt.%. All models have
to include some simplifications such that they cannot perfectly represent reality. These
problems inherent to the mixing model itself usually cannot be predicted by the MCMC
sampler. Ambiguities and uncertainties due to the choice of model parameters on the other
hand can be quantified and may indicate problems with the choice of endmembers and/or
assumptions made about the data. In some cases where plagioclase and pargasite were
confused, two local minima far apart from each other in parameter space were not found
by the sampler, even though the mean σ of the confidence plots is very similar. Generally,
the fresh laboratory spectra could easily be distinguished as such. The abundance of smFe
is predicted to be effectively absent.

The final experiment of unmixing the LSCC spectra with RELAB mineral endmembers
demonstrated that this approach can be applied to the lunar surface. When the abundance
of agglutinitic glasses is high, olivine and plagioclase abundances tend to be poorly defined.
The reconstruction is very accurate, but the uncertainties of the mineral abundances are
high for mature spectra. This shows that classical optimization techniques are prone to
fail on the task of unmixing the spectra with accurate abundances. The abundances of the
smFe particles are, however, well defined. The results align with the findings of Trang
and Lucey [54] that the npFe and mpFe abundance for mature spectra depends on the FeO
abundance. Furthermore, the predicted abundance of npFe and mpFe particles correlates
well with the Is parameter of the LSCC samples. For npFe, this can be interpreted to be a
sign that the algorithm predicts plausible results. The npFe and mpFe abundances are also
strongly correlated, such that the correlation of mpFe might be attributed to this nearly
constant factor. According to Lucey and Riner [16] mpFe sized particles are not present
in the samples investigated, but the larger particle size is necessary to model the effects
of space weathering. Wohlfarth et al. [24] further suggested that clusters or layers of npFe
particles that effectively act as a larger mpFe particle are responsible for the darkening. This
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effect can also be simulated with light scattering theory as in Arnaut et al. [58]. This would
suggest that npFe and mpFe (or clusters of npFe) are both created by the same processes.
The cluster/layer theory is consistent with the results of the LSCC unmixing.

All endmembers and investigated mixtures have the same average grain size, which usu-
ally is not the case for remotely measured datasets. For the Martian surface, Lapotre et al. [22]
and Lapotre et al. [59] investigated the influence of the grain size on the uncertainties and
showed that the solution to this inverse problem is highly non-unique. Integrating the grain
size into the existing framework would add another layer of complexity to the model, making
it even more challenging to obtain meaningful results. Therefore, prior knowledge about the
grain size would likely be necessary to constrain the procedure. If the grain size varied signifi-
cantly between endmembers, systematical errors with respect to their relative fraction would
be introduced. Some simplifications to the model, however, have to be made for this highly
complex inverse problem to be solvable. The effects of the grain size in combination with space
weathering components and the other agents that darken the overall spectrum, discussed in
this work, can be investigated in possible future research.

The laboratory samples examined in this work all have a relatively high SNR in
comparison to, for example, the Moon Mineralogy Mapper data. When the SNR decreases,
the standard deviation of the likelihood function is likely to increase, such that more
solutions might be considered acceptable. This, in turn, most likely also increases the
uncertainties of the fractional abundances. Nonetheless, we can indirectly measure the
influence of the SNR based on the average differences between model prediction and
observed spectra. In our work, which follows a Bayesian approach, the variance of the
differences is a part of the model and is thus also estimated (cf. Equation (13)). However,
averaging over neighboring pixels, where the composition is similar, improves the SNR.
Due to the high computational effort to sample from these complex distributions, the
number of pixels that can be investigated is limited. Therefore, clustering the data and
applying the unmixing to the centroids also mitigates the effects of a low SNR and makes
computing the abundances over large areas feasible (e.g., [60,61]).

5. Conclusions

Unmixing can be used to obtain quantitative information about the composition of
remote surfaces. Building on the Hapke model (e.g., [9]) and the space weathering model
of Wohlfarth et al. [24], we have developed a combined unmixing model. The parameters
of the model and their corresponding uncertainties were obtained by Bayesian inference
with an MCMC sampler. The results showed that, especially on the Moon, there is no
unique solution that would perfectly describe the measured spectra. The absorption bands
at around 1-µm and 2-µm are the main features for estimating the abundances. These
features are obscured by submicroscopic iron particles, making it harder to quantify the
corresponding mineral abundances. Some mineral combinations even become gradually
interchangeable, only slightly changing the modeled spectrum. Therefore, additional
knowledge is necessary to constrain the procedure. We find that information about the
elemental abundances, which can be obtained from different independent data sources, is
well suited to helping to distinguish between different minerals and we prefer solutions
that correspond better with this prior knowledge. Inherent simplifications of the mixing
model can lead to systematic errors. In such cases, the uncertainties might still be small,
therefore, it is difficult to predict such problems with the model itself if no ground truth is
available. Overall, the uncertainties can be accurately estimated from the MCMC sampler.
For very mature spectra, these uncertainties become large, suggesting that a classical
optimization approach is destined to fail at consistently predicting accurate results. The
abundance of submicroscopic iron particles, responsible for the optical effects of maturity,
could reliably be determined with the proposed approach. The results of the unmixing on
LSCC spectra showed that the probabilistic unmixing approach is applicable to realistic
lunar spectra. The knowledge about the uncertainties inherent to the problem are, however,
essential for the interpretation of the results obtained for lunar spectra.
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Appendix A

Appendix A.1. Synthetic Mixtures

Table A1. Elemental abundances of endmember catalog for experiments in Sections 3.1 and 3.3. The sample spectra and
elemental abundances are taken from the RELAB library (https://pds-geosciences.wustl.edu/spectrallibrary/default.htm,
accessed on 1 November 2020).

SiO2 TiO2 Al2O3 Cr2O3 MgO CaO MnO FeO Na2O K2O P2O5 Fe2O3

AG-TJM-009 54.09 0.16 1.23 0.75 26.79 1.52 0.49 15.22 0.05 0.05 0.0 0.00
AG-TJM-010 50.73 0.74 8.73 0.00 16.65 15.82 0.13 5.37 1.27 0.00 0.0 1.08
PO-EAC-056 40.42 0.00 0.03 0.13 48.25 0.19 0.15 11.11 0.00 0.00 0.0 0.00
PL-EAC-029 54.85 0.06 27.71 0.02 0.00 10.97 0.01 0.00 5.15 0.40 0.0 0.46
PP-ALS-105 48.41 1.05 5.29 0.03 12.37 22.15 0.26 6.15 0.36 0.00 0.0 3.79
SC-EAC-034 0.20 47.61 0.01 0.02 0.01 0.00 0.02 45.43 0.00 0.00 0.0 0.00

Table A2. Origin of endmember samples in Sections 3.1 and 3.3. All samples except for the AG-TJM-009 Hypersthene
endmember, which is of meteoritic origin, originate from Earth.

Sample ID Mineral Origin Abbreviation

AG-TJM-009 Hypersthene Johnstown Meteorite OPX
AG-TJM-010 Augite Kakanui, New Zealand CPXB
PO-EAC-056 Olivine Green sand beach near S Point, HI OLV
PL-EAC-029 Plagioclase Ylijarvi, Ylamaaa, Kimi, Finland PLG
PP-ALS-105 Diopside Trail Creek, Grand Co., CO CPXA
SC-EAC-034 Ilmenite Telemark, Norway ILM

https://pds-geosciences.wustl.edu/spectrallibrary/default.htm
https://pds-geosciences.wustl.edu/spectrallibrary/default.htm
https://pgi.utk.edu/lunar-soil-characterization-consortium-lscc-data/
https://pgi.utk.edu/lunar-soil-characterization-consortium-lscc-data/
https://pds-geosciences.wustl.edu/spectrallibrary/default.htm
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Table A3. Detailed results for the unmixing of the synthetically generated by using the forward mixing model. Only a
uniform prior on the elemental and mineral abundances was set.

mix0 mix1 mix2
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.97 9.96 0.04 10.00 9.80 9.82 0.14 10.00 10.76 10.66 0.27 10.00
CPXB 39.95 40.00 0.17 40.00 40.19 40.33 0.89 40.00 37.31 37.75 1.58 40.00
OLV 4.58 4.44 0.36 5.00 8.29 8.35 1.84 5.00 18.28 19.20 3.19 5.00
PLG 29.85 29.93 0.41 30.00 29.11 28.45 1.71 30.00 13.89 16.75 3.05 30.00

CPXA 15.02 15.38 0.50 15.00 12.60 12.43 2.13 15.00 18.96 13.99 3.56 15.00
ILM 0.17 0.83 0.63 0.00 0.52 1.50 1.21 0.00 2.03 3.60 2.21 0.00
npFe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00
mpFe 0.00 0.00 0.00 0.00 0.40 0.40 0.00 0.40 0.78 0.79 0.01 0.80
SUM 99.55 100.54 −− 100.00 100.51 100.87 −− 100.00 101.23 101.96 −− 100.00

mix3 mix4 mix5
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.07 9.91 0.34 10.00 10.34 10.46 0.19 10.00 9.87 9.87 0.24 10.00
CPXB 35.50 39.32 1.69 40.00 38.56 39.69 1.30 40.00 38.72 38.86 1.60 40.00
OLV 40.64 32.95 5.25 5.00 6.37 2.48 2.05 5.00 7.98 8.40 4.56 5.00
PLG 1.60 12.86 4.53 30.00 25.96 28.15 1.97 30.00 27.49 27.86 2.83 30.00

CPXA 7.46 2.73 2.17 15.00 18.36 18.76 2.92 15.00 13.56 13.21 5.03 15.00
ILM 9.80 4.19 2.49 0.00 0.24 1.62 1.40 0.00 4.30 4.61 2.42 0.00
npFe 0.07 0.05 0.01 0.00 0.57 0.57 0.01 0.60 0.60 0.61 0.02 0.60
mpFe 1.18 1.16 0.02 1.20 0.01 0.01 0.00 0.00 0.40 0.40 0.01 0.40
SUM 105.08 101.95 −− 100.00 99.82 101.15 −− 100.00 101.93 102.81 −− 100.00

mix6 mix7 mix8
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.69 8.63 0.33 10.00 10.52 10.68 0.58 10.00 11.43 11.64 0.39 10.00
CPXB 46.15 45.51 1.59 40.00 33.21 39.95 2.91 40.00 33.81 31.75 2.44 40.00
OLV 18.74 14.98 5.36 5.00 10.37 11.96 7.17 5.00 11.08 2.41 2.63 5.00
PLG 26.56 26.74 4.51 30.00 21.10 29.30 5.31 30.00 19.85 18.35 2.76 30.00

CPXA 0.51 2.26 2.07 15.00 23.73 7.81 5.97 15.00 22.63 35.25 5.78 15.00
ILM 1.76 4.32 2.50 0.00 1.63 1.90 1.55 0.00 0.69 1.64 1.38 0.00
npFe 0.68 0.69 0.02 0.60 0.55 0.57 0.03 0.60 1.34 1.32 0.02 1.40
mpFe 0.75 0.76 0.02 0.80 1.28 1.29 0.03 1.20 0.01 0.01 0.00 0.00
SUM 102.41 102.45 −− 100.00 100.56 101.60 −− 100.00 99.48 101.04 −− 100.00

mix9 mix10 mix11
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.68 10.46 0.49 10.00 9.71 9.44 0.37 10.00 9.77 8.86 0.54 10.00
CPXB 39.80 36.92 2.93 40.00 43.59 44.30 1.60 40.00 39.64 46.41 2.76 40.00
OLV 7.62 9.75 6.68 5.00 5.39 5.74 3.67 5.00 8.74 9.25 5.80 5.00
PLG 22.46 22.45 3.81 30.00 34.59 36.19 2.89 30.00 20.78 27.35 4.11 30.00

CPXA 4.62 19.44 8.02 15.00 7.01 3.59 2.98 15.00 20.16 7.79 5.47 15.00
ILM 0.49 1.74 1.46 0.00 0.13 2.07 1.59 0.00 1.78 1.54 1.31 0.00
npFe 1.40 1.40 0.04 1.40 1.44 1.46 0.02 1.40 1.38 1.44 0.03 1.40
mpFe 0.37 0.37 0.02 0.40 0.81 0.79 0.02 0.80 1.18 1.22 0.03 1.20
SUM 85.67 100.77 −− 100.00 100.41 101.33 −− 100.00 100.88 101.19 −− 100.00
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Table A3. Cont.

mix12 mix13 mix14
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.39 10.09 0.50 10.00 11.54 11.44 0.48 10.00 6.48 6.71 0.60 10.00
CPXB 38.62 38.96 2.82 40.00 37.73 36.57 2.24 40.00 37.72 39.38 1.64 40.00
OLV 11.31 9.79 5.69 5.00 33.08 35.29 6.59 5.00 1.92 2.24 1.72 5.00
PLG 19.88 19.74 3.17 30.00 6.57 7.23 3.54 30.00 45.94 47.81 2.04 30.00

CPXA 23.44 20.65 7.95 15.00 12.51 7.60 5.67 15.00 6.13 2.57 1.89 15.00
ILM 1.69 1.81 1.49 0.00 1.56 1.93 1.56 0.00 2.10 1.77 1.43 0.00
npFe 2.15 2.15 0.04 2.20 2.22 2.23 0.03 2.20 2.25 2.29 0.04 2.20
mpFe 0.00 0.01 0.01 0.00 0.32 0.32 0.02 0.40 0.73 0.74 0.02 0.80
SUM 105.32 101.04 −− 100.00 102.98 100.06 −− 100.00 100.29 100.48 −− 100.00

mix15 mix16 mix17
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.29 11.09 0.74 10.00 9.17 9.16 0.07 9.20 9.07 9.07 0.18 9.20
CPXB 38.16 35.75 3.99 40.00 36.89 36.79 0.36 36.80 38.87 38.89 1.13 36.80
OLV 24.38 11.31 8.60 5.00 4.92 5.39 0.99 4.60 0.71 5.90 2.80 4.60
PLG 18.23 18.96 4.36 30.00 26.73 26.32 1.18 27.60 27.08 28.03 2.41 27.60

CPXA 0.59 21.99 10.56 15.00 13.71 13.66 1.51 13.80 17.80 9.52 3.24 13.80
ILM 1.96 1.53 1.31 0.00 9.98 9.87 1.98 8.00 15.51 9.71 2.56 8.00
npFe 2.17 2.17 0.06 2.20 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
mpFe 1.18 1.18 0.03 1.20 0.00 0.00 0.00 0.00 0.41 0.41 0.01 0.40
SUM 93.61 100.63 −− 100.00 101.40 101.20 −− 100.00 109.03 101.12 −− 100.00

mix18 mix19 mix20
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.04 9.10 0.30 9.20 10.37 10.39 0.33 9.20 8.69 8.68 0.20 9.20
CPXB 37.76 40.48 1.75 36.80 36.89 37.34 1.64 36.80 35.95 35.97 1.24 36.80
OLV 7.86 8.05 3.45 4.60 12.22 14.88 3.52 4.60 2.26 2.77 1.96 4.60
PLG 21.73 26.48 3.49 27.60 21.05 25.06 3.40 27.60 30.05 29.81 1.85 27.60

CPXA 16.18 9.28 3.77 13.80 9.78 4.85 2.97 13.80 15.59 14.84 3.51 13.80
ILM 5.82 4.08 2.38 8.00 7.95 6.38 2.67 8.00 8.06 7.69 2.65 8.00
npFe 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.60 0.60 0.01 0.60
mpFe 0.78 0.79 0.01 0.80 1.19 1.21 0.02 1.20 0.00 0.00 0.00 0.00
SUM 98.39 97.46 −− 100.00 98.25 98.89 −− 100.00 100.60 99.77 −− 100.00

mix21 mix22 mix23
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.75 9.52 0.30 9.20 10.59 10.38 0.41 9.20 9.86 8.92 0.51 9.20
CPXB 33.87 36.21 1.75 36.80 32.01 33.40 2.69 36.80 34.59 40.23 2.33 36.80
OLV 7.84 15.35 6.16 4.60 12.45 3.79 3.24 4.60 13.34 9.92 5.96 4.60
PLG 24.27 23.85 4.10 27.60 18.88 23.85 3.99 27.60 19.33 28.95 5.17 27.60

CPXA 13.79 7.67 5.11 13.80 18.51 21.58 6.11 13.80 13.03 4.22 3.59 13.80
ILM 7.95 5.71 2.72 8.00 5.91 5.00 2.67 8.00 12.18 7.87 3.06 8.00
npFe 0.58 0.61 0.02 0.60 0.58 0.57 0.02 0.60 0.64 0.65 0.02 0.60
mpFe 0.40 0.39 0.01 0.40 0.77 0.79 0.02 0.80 1.17 1.22 0.03 1.20
SUM 97.47 98.31 −− 100.00 98.35 97.99 −− 100.00 102.33 100.11 −− 100.00
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Table A3. Cont.

mix24 mix25 mix25
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.76 8.84 0.34 9.20 7.97 7.87 0.45 9.20 8.51 8.31 0.57 9.20
CPXB 32.63 36.47 1.91 36.80 28.43 33.90 2.65 36.80 36.45 38.13 2.52 36.80
OLV 6.87 10.07 4.20 4.60 1.57 7.63 5.54 4.60 15.52 6.57 5.01 4.60
PLG 23.48 28.49 2.95 27.60 22.79 27.96 4.17 27.60 33.03 34.10 4.20 27.60

CPXA 19.23 8.47 5.43 13.80 31.63 15.13 7.00 13.80 0.47 6.23 5.01 13.80
ILM 9.69 6.86 2.81 8.00 2.91 4.79 2.65 8.00 3.55 5.38 2.75 8.00
npFe 1.41 1.41 0.02 1.40 1.42 1.41 0.03 1.40 1.42 1.43 0.03 1.40
mpFe 0.00 0.01 0.01 0.00 0.33 0.33 0.02 0.40 0.83 0.85 0.02 0.80
SUM 100.67 99.20 −− 100.00 95.30 97.28 −− 100.00 97.54 98.72 −− 100.00

mix27 mix28 mix29
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.58 10.40 0.73 9.20 9.85 9.22 0.51 9.20 8.96 7.92 0.64 9.20
CPXB 34.74 35.52 3.77 36.80 33.63 36.95 2.28 36.80 31.58 37.27 2.93 36.80
OLV 17.54 18.77 9.94 4.60 0.00 1.88 1.80 4.60 8.91 4.14 3.35 4.60
PLG 21.87 18.42 6.88 27.60 33.24 38.10 3.16 27.60 29.98 35.60 4.17 27.60

CPXA 9.78 10.64 7.87 13.80 6.55 7.37 4.35 13.80 13.88 8.37 5.73 13.80
ILM 3.61 4.75 2.76 8.00 6.40 3.35 2.26 8.00 4.02 5.15 2.80 8.00
npFe 1.35 1.34 0.04 1.40 2.17 2.19 0.03 2.20 2.12 2.21 0.04 2.20
mpFe 1.32 1.32 0.05 1.20 0.00 0.01 0.00 0.00 0.46 0.44 0.02 0.40
SUM 98.11 98.50 −− 100.00 89.68 96.88 −− 100.00 97.33 98.43 −− 100.00

mix30 mix31 mix32
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 7.81 7.53 0.62 9.20 9.09 8.67 0.77 9.20 8.39 8.42 0.11 8.40
CPXB 36.21 39.00 2.65 36.80 35.89 37.86 2.66 36.80 34.74 34.78 0.53 33.60
OLV 2.69 3.31 2.81 4.60 11.93 4.45 3.48 4.60 3.72 3.53 1.27 4.20
PLG 31.23 35.79 4.03 27.60 27.84 35.14 3.87 27.60 27.12 27.42 1.47 25.20

CPXA 15.27 7.14 5.08 13.80 8.12 5.79 4.24 13.80 10.13 10.02 1.77 12.60
ILM 5.71 4.99 2.62 8.00 2.77 5.02 2.72 8.00 15.86 15.64 2.28 16.00
npFe 2.23 2.25 0.04 2.20 2.28 2.27 0.05 2.20 0.00 0.00 0.00 0.00
mpFe 0.72 0.76 0.03 0.80 0.99 1.03 0.04 1.20 0.00 0.00 0.00 0.00
SUM 98.92 97.76 −− 100.00 95.63 96.94 −− 100.00 99.96 99.81 −− 100.00

mix33 mix34 mix35
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.88 8.81 0.20 8.40 8.65 8.31 0.41 8.40 9.12 8.35 0.54 8.40
CPXB 31.13 30.99 1.14 33.60 28.73 33.86 3.05 33.60 29.97 34.01 3.11 33.60
OLV 7.95 7.58 2.04 4.20 10.49 5.00 3.82 4.20 1.73 2.41 1.87 4.20
PLG 21.10 20.71 2.68 25.20 13.95 22.96 5.34 25.20 28.48 31.94 3.13 25.20

CPXA 15.73 15.24 2.63 12.60 23.20 15.10 6.09 12.60 16.19 8.71 5.22 12.60
ILM 17.80 17.59 2.72 16.00 11.53 12.02 2.84 16.00 12.27 11.80 2.47 16.00
npFe 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.01 0.02 0.01 0.00
mpFe 0.39 0.39 0.01 0.40 0.71 0.75 0.02 0.80 1.17 1.18 0.01 1.20
SUM 102.59 100.92 −− 100.00 96.55 97.25 −− 100.00 97.76 97.23 −− 100.00
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Table A3. Cont.

mix36 mix37 mix38
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.92 8.83 0.23 8.40 8.29 8.18 0.33 8.40 8.87 8.70 0.35 8.40
CPXB 34.38 32.56 1.26 33.60 33.25 32.42 2.06 33.60 29.26 32.76 1.83 33.60
OLV 0.07 1.05 0.95 4.20 5.09 6.78 4.66 4.20 15.65 17.31 6.27 4.20
PLG 27.48 28.19 2.07 25.20 24.42 24.11 3.83 25.20 14.26 21.09 5.26 25.20

CPXA 10.38 14.40 2.78 12.60 0.91 12.18 5.67 12.60 13.64 3.74 3.29 12.60
ILM 13.97 13.48 2.74 16.00 16.33 16.27 2.95 16.00 21.74 16.69 3.10 16.00
npFe 0.59 0.59 0.01 0.60 0.63 0.62 0.02 0.60 0.60 0.61 0.02 0.60
mpFe 0.00 0.00 0.00 0.00 0.37 0.37 0.01 0.40 0.80 0.82 0.02 0.80
SUM 95.21 98.51 −− 100.00 88.29 99.94 −− 100.00 103.42 100.30 −− 100.00

mix39 mix40 mix41
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.01 8.03 0.49 8.40 9.69 9.68 0.45 8.40 12.28 11.47 0.60 8.40
CPXB 31.48 31.33 2.62 33.60 28.61 29.51 2.66 33.60 21.46 27.39 3.07 33.60
OLV 6.59 15.45 7.72 4.20 8.43 3.16 2.58 4.20 21.65 25.18 9.20 4.20
PLG 21.63 21.88 6.03 25.20 20.90 22.75 3.76 25.20 3.73 8.45 5.38 25.20

CPXA 7.93 6.93 5.59 12.60 17.66 20.38 6.31 12.60 25.15 12.35 8.62 12.60
ILM 17.69 17.02 3.22 16.00 12.54 12.15 3.03 16.00 14.29 12.78 3.08 16.00
npFe 0.63 0.63 0.03 0.60 1.35 1.35 0.03 1.40 1.32 1.35 0.04 1.40
mpFe 1.22 1.22 0.03 1.20 0.00 0.01 0.01 0.00 0.40 0.40 0.03 0.40
SUM 93.34 100.64 −− 100.00 97.83 97.63 −− 100.00 98.57 97.63 −− 100.00

mix42 mix43 mix44
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 7.78 7.45 0.50 8.40 7.16 6.17 0.69 8.40 9.68 9.22 0.60 8.40
CPXB 37.17 38.83 1.61 33.60 27.73 32.31 2.35 33.60 28.12 31.30 4.25 33.60
OLV 1.45 2.77 2.21 4.20 1.73 4.39 3.39 4.20 0.77 1.32 1.27 4.20
PLG 29.75 32.75 2.86 25.20 35.06 36.52 3.60 25.20 19.32 22.58 5.31 25.20

CPXA 0.54 2.84 2.50 12.60 11.96 3.98 3.25 12.60 27.09 20.93 8.71 12.60
ILM 14.57 14.32 3.01 16.00 13.89 14.96 3.00 16.00 11.81 11.68 2.40 16.00
npFe 1.47 1.46 0.03 1.40 1.45 1.52 0.04 1.40 2.06 2.10 0.06 2.20
mpFe 0.77 0.78 0.02 0.80 1.05 1.04 0.03 1.20 0.00 0.01 0.01 0.00
SUM 91.27 98.95 −− 100.00 97.53 98.33 −− 100.00 96.79 97.04 −− 100.00

mix45 mix46 mix47
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.27 8.68 0.56 8.40 6.65 7.77 0.68 8.40 8.11 8.37 0.83 8.40
CPXB 29.73 30.84 2.74 33.60 34.55 34.15 2.39 33.60 33.14 33.91 3.53 33.60
OLV 10.26 16.03 7.45 4.20 12.51 4.38 4.14 4.20 17.41 9.24 6.99 4.20
PLG 21.52 21.32 5.26 25.20 24.34 34.42 3.75 25.20 22.08 26.87 5.71 25.20

CPXA 2.55 8.10 6.44 12.60 5.01 4.51 3.90 12.60 0.13 6.11 5.19 12.60
ILM 14.02 13.42 3.24 16.00 16.39 12.24 3.05 16.00 15.19 12.32 3.28 16.00
npFe 2.21 2.19 0.04 2.20 2.18 2.23 0.05 2.20 2.19 2.22 0.06 2.20
mpFe 0.44 0.43 0.03 0.40 0.80 0.79 0.03 0.80 1.08 1.11 0.05 1.20
SUM 86.35 98.39 −− 100.00 99.44 97.47 −− 100.00 96.07 96.83 −− 100.00
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Table A4. Detailed results for the unmixing of the synthetically generated by using the forward mixing model. A prior on
the TiO2 and the Al2O3 was set with αelem = 40. All results are displayed in wt.%.

mix0 mix1 mix2
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.98 9.96 0.04 10.00 9.82 9.82 0.14 10.00 10.46 10.59 0.26 10.00
CPXB 39.99 40.04 0.16 40.00 40.72 40.51 0.88 40.00 37.65 39.10 1.50 40.00
OLV 4.62 4.65 0.28 5.00 8.80 8.81 1.78 5.00 18.93 18.69 2.89 5.00
PLG 30.29 30.31 0.21 30.00 29.41 29.28 1.50 30.00 19.10 20.83 2.48 30.00

CPXA 14.97 14.98 0.32 15.00 12.54 11.43 1.99 15.00 16.08 10.46 3.19 15.00
ILM 0.01 0.17 0.13 0.00 0.05 0.19 0.14 0.00 0.15 0.23 0.16 0.00
npFe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00
mpFe 0.00 0.00 0.00 0.00 0.40 0.40 0.00 0.40 0.80 0.80 0.01 0.80
SUM 99.86 100.12 −− 100.00 101.33 100.04 −− 100.00 102.36 99.90 −− 100.00

mix3 mix4 mix5
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.70 9.81 0.34 10.00 10.22 10.45 0.20 10.00 9.87 9.87 0.23 10.00
CPXB 40.08 40.80 1.53 40.00 38.55 40.26 1.31 40.00 40.15 39.75 1.46 40.00
OLV 19.90 24.58 4.53 5.00 4.49 2.24 1.60 5.00 9.83 10.86 4.62 5.00
PLG 21.40 21.22 3.38 30.00 30.66 29.87 1.65 30.00 30.77 30.55 2.43 30.00

CPXA 8.55 3.12 2.34 15.00 20.65 17.28 3.12 15.00 8.74 8.75 4.43 15.00
ILM 0.27 0.31 0.18 0.00 0.02 0.15 0.13 0.00 0.01 0.25 0.17 0.00
npFe 0.02 0.03 0.01 0.00 0.57 0.58 0.01 0.60 0.62 0.62 0.02 0.60
mpFe 1.19 1.19 0.02 1.20 0.02 0.02 0.00 0.00 0.40 0.40 0.01 0.40
SUM 99.90 99.84 −− 100.00 104.59 100.24 −− 100.00 99.36 100.03 −− 100.00

mix6 mix7 mix8
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.74 8.71 0.32 10.00 10.57 10.60 0.52 10.00 11.26 11.44 0.39 10.00
CPXB 46.53 45.72 1.51 40.00 39.68 40.78 2.39 40.00 33.64 33.52 2.29 40.00
OLV 12.44 12.66 4.60 5.00 8.16 11.20 5.91 5.00 6.23 2.28 1.85 5.00
PLG 30.30 30.60 3.51 30.00 31.55 31.71 4.14 30.00 20.41 21.46 2.52 30.00

CPXA 1.32 2.03 1.80 15.00 15.52 6.07 4.41 15.00 28.42 31.32 4.86 15.00
ILM 0.27 0.28 0.18 0.00 0.01 0.26 0.18 0.00 0.00 0.11 0.10 0.00
npFe 0.68 0.68 0.01 0.60 0.55 0.57 0.02 0.60 1.34 1.33 0.02 1.40
mpFe 0.77 0.77 0.02 0.80 1.31 1.30 0.03 1.20 0.00 0.01 0.01 0.00
SUM 99.60 99.99 −− 100.00 105.49 100.63 −− 100.00 99.96 100.14 −− 100.00

mix9 mix10 mix11
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.92 10.30 0.45 10.00 9.95 9.51 0.36 10.00 8.77 8.77 0.47 10.00
CPXB 39.89 38.58 2.54 40.00 42.86 43.97 1.56 40.00 47.18 47.21 2.19 40.00
OLV 19.99 10.13 6.04 5.00 0.47 6.67 3.90 5.00 18.30 9.47 5.32 5.00
PLG 23.52 25.36 3.16 30.00 34.66 36.59 2.81 30.00 25.20 29.05 3.24 30.00

CPXA 5.86 15.29 6.99 15.00 1.89 3.14 2.56 15.00 0.65 5.72 4.58 15.00
ILM 0.05 0.20 0.17 0.00 0.39 0.27 0.17 0.00 0.04 0.19 0.15 0.00
npFe 1.45 1.41 0.03 1.40 1.45 1.45 0.02 1.40 1.44 1.44 0.03 1.40
mpFe 0.35 0.37 0.02 0.40 0.79 0.79 0.02 0.80 1.23 1.22 0.02 1.20
SUM 99.23 99.85 −− 100.00 90.23 100.15 −− 100.00 100.14 100.40 −− 100.00
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Table A4. Cont.

mix12 mix13 mix14
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.89 9.86 0.47 10.00 11.59 11.36 0.48 10.00 8.00 6.91 0.67 10.00
CPXB 41.22 40.94 2.49 40.00 36.27 38.91 2.19 40.00 35.52 38.95 1.80 40.00
OLV 16.01 11.35 5.42 5.00 21.61 24.65 5.87 5.00 1.89 2.73 2.15 5.00
PLG 22.92 22.60 2.75 30.00 12.45 14.57 2.81 30.00 43.67 47.63 2.27 30.00

CPXA 14.77 15.13 6.96 15.00 17.25 9.78 5.80 15.00 9.64 3.00 2.45 15.00
ILM 0.04 0.17 0.14 0.00 0.23 0.24 0.16 0.00 0.32 0.31 0.18 0.00
npFe 2.15 2.17 0.03 2.20 2.21 2.23 0.03 2.20 2.24 2.28 0.04 2.20
mpFe 0.00 0.01 0.01 0.00 0.34 0.34 0.02 0.40 0.71 0.73 0.03 0.80
SUM 104.85 100.04 −− 100.00 99.40 99.50 −− 100.00 99.04 99.54 −− 100.00

mix15 mix16 mix17
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.74 10.71 0.68 10.00 9.16 9.16 0.07 9.20 9.10 9.07 0.18 9.20
CPXB 38.64 38.87 3.35 40.00 36.76 36.82 0.34 36.80 38.80 38.93 1.14 36.80
OLV 30.84 11.69 7.30 5.00 5.54 5.55 0.89 4.60 5.97 6.02 2.66 4.60
PLG 18.06 23.21 3.62 30.00 26.56 26.63 0.84 27.60 27.89 28.34 2.08 27.60

CPXA 1.24 15.30 8.40 15.00 13.22 13.38 1.25 13.80 9.58 9.24 3.01 13.80
ILM 0.04 0.18 0.14 0.00 9.00 9.32 1.37 8.00 9.83 9.18 1.51 8.00
npFe 2.18 2.19 0.05 2.20 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00
mpFe 1.20 1.19 0.03 1.20 0.00 0.00 0.00 0.00 0.41 0.41 0.01 0.40
SUM 99.56 99.96 −− 100.00 100.25 100.85 −− 100.00 101.17 100.79 −− 100.00

mix18 mix19 mix20
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.97 9.07 0.30 9.20 10.34 10.31 0.34 9.20 8.58 8.68 0.20 9.20
CPXB 39.54 40.16 1.71 36.80 37.29 37.60 1.71 36.80 37.72 35.96 1.22 36.80
OLV 7.04 7.04 3.25 4.60 13.78 13.89 3.35 4.60 6.29 2.64 1.86 4.60
PLG 24.80 24.46 2.97 27.60 20.78 24.97 3.01 27.60 30.27 29.36 1.29 27.60

CPXA 3.22 11.42 3.67 13.80 9.01 5.16 2.91 13.80 9.28 15.16 3.34 13.80
ILM 8.05 7.44 1.33 8.00 7.48 8.09 1.41 8.00 7.31 8.47 1.45 8.00
npFe 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.62 0.60 0.01 0.60
mpFe 0.79 0.79 0.01 0.80 1.21 1.22 0.02 1.20 0.00 0.00 0.00 0.00
SUM 91.63 99.59 −− 100.00 98.69 100.02 −− 100.00 99.45 100.27 −− 100.00

mix21 mix22 mix23
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 9.45 9.46 0.31 9.20 10.34 10.32 0.40 9.20 9.04 8.91 0.49 9.20
CPXB 36.64 36.45 1.82 36.80 31.96 33.40 2.44 36.80 36.53 40.28 2.16 36.80
OLV 13.40 13.25 5.71 4.60 7.17 2.62 2.02 4.60 5.84 9.98 5.34 4.60
PLG 24.60 23.82 3.18 27.60 22.52 22.89 2.99 27.60 27.55 28.40 3.99 27.60

CPXA 4.86 8.89 5.46 13.80 20.30 22.87 5.16 13.80 12.38 4.34 3.58 13.80
ILM 9.01 7.87 1.39 8.00 7.27 7.48 1.37 8.00 10.20 8.75 1.52 8.00
npFe 0.59 0.61 0.02 0.60 0.55 0.56 0.02 0.60 0.64 0.65 0.02 0.60
mpFe 0.40 0.40 0.01 0.40 0.79 0.79 0.01 0.80 1.20 1.22 0.03 1.20
SUM 97.96 99.74 −− 100.00 99.56 99.58 −− 100.00 101.53 100.66 −− 100.00
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Table A4. Cont.

mix24 mix25 mix26
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.92 8.78 0.33 9.20 7.78 7.85 0.44 9.20 8.30 8.31 0.57 9.20
CPXB 35.24 36.75 1.77 36.80 36.28 33.65 2.57 36.80 35.14 37.55 2.75 36.80
OLV 10.03 10.36 3.89 4.60 17.54 7.06 5.10 4.60 19.53 7.52 4.99 4.60
PLG 26.99 27.79 2.37 27.60 20.23 26.11 3.22 27.60 27.90 31.06 3.88 27.60

CPXA 14.37 8.10 4.91 13.80 14.95 16.77 6.89 13.80 0.88 7.74 5.60 13.80
ILM 8.44 8.38 1.47 8.00 6.99 7.63 1.40 8.00 7.18 8.24 1.48 8.00
npFe 1.42 1.41 0.02 1.40 1.43 1.41 0.03 1.40 1.43 1.42 0.03 1.40
mpFe 0.00 0.01 0.01 0.00 0.33 0.33 0.01 0.40 0.82 0.84 0.02 0.80
SUM 103.98 100.15 −− 100.00 103.77 99.07 −− 100.00 98.92 100.42 −− 100.00

mix27 mix28 mix29
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 10.17 10.16 0.73 9.20 9.92 9.36 0.55 9.20 7.62 7.94 0.65 9.20
CPXB 36.80 37.10 3.46 36.80 33.27 35.56 2.70 36.80 34.58 36.30 3.07 36.80
OLV 7.18 12.13 6.96 4.60 0.03 1.76 1.66 4.60 0.85 5.14 3.96 4.60
PLG 22.46 21.37 4.13 27.60 30.29 33.73 3.30 27.60 27.30 32.25 3.68 27.60

CPXA 26.85 12.28 8.00 13.80 18.37 11.52 5.49 13.80 12.17 10.43 6.24 13.80
ILM 7.66 7.47 1.38 8.00 6.79 7.43 1.39 8.00 8.74 8.13 1.47 8.00
npFe 1.35 1.33 0.04 1.40 2.12 2.17 0.04 2.20 2.19 2.21 0.04 2.20
mpFe 1.35 1.34 0.04 1.20 0.00 0.00 0.00 0.00 0.44 0.43 0.02 0.40
SUM 111.12 100.50 −− 100.00 98.66 99.37 −− 100.00 91.25 100.19 −− 100.00

mix30 mix31 mix32
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.22 7.50 0.64 9.20 8.78 8.73 0.81 9.20 8.43 8.42 0.11 8.40
CPXB 34.72 38.72 2.63 36.80 31.55 36.89 3.15 36.80 34.88 34.75 0.53 33.60
OLV 2.55 3.93 3.03 4.60 7.31 5.65 4.13 4.60 3.15 3.34 1.19 4.20
PLG 29.24 33.34 3.32 27.60 23.94 31.73 3.83 27.60 27.16 27.07 1.31 25.20

CPXA 17.00 8.03 4.96 13.80 17.80 7.61 5.31 13.80 11.23 10.36 1.63 12.60
ILM 10.28 8.18 1.47 8.00 9.50 8.08 1.46 8.00 16.29 16.29 1.87 16.00
npFe 2.21 2.25 0.04 2.20 2.18 2.26 0.05 2.20 0.00 0.00 0.00 0.00
mpFe 0.74 0.75 0.03 0.80 1.01 1.02 0.04 1.20 0.00 0.00 0.00 0.00
SUM 102.02 99.70 −− 100.00 98.88 98.68 −− 100.00 101.14 100.23 −− 100.00

mix33 mix34 mix35
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.80 8.78 0.20 8.40 8.58 8.24 0.39 8.40 8.20 8.13 0.39 8.40
CPXB 31.32 31.25 1.08 33.60 31.68 34.37 2.40 33.60 31.79 34.73 2.09 33.60
OLV 7.48 7.33 1.93 4.20 3.79 3.65 2.87 4.20 7.68 3.33 2.64 4.20
PLG 20.90 21.42 2.33 25.20 18.89 22.73 3.35 25.20 25.22 29.44 3.07 25.20

CPXA 15.02 14.69 2.30 12.60 20.51 15.34 5.50 12.60 12.48 8.71 4.40 12.60
ILM 17.26 17.27 2.10 16.00 16.84 14.59 2.01 16.00 10.65 14.55 2.23 16.00
npFe 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.03 0.03 0.01 0.00
mpFe 0.39 0.39 0.01 0.40 0.75 0.76 0.01 0.80 1.13 1.17 0.02 1.20
SUM 100.78 100.73 −− 100.00 100.29 98.93 −− 100.00 96.02 98.89 −− 100.00
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Table A4. Cont.

mix36 mix37 mix38
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.74 8.82 0.22 8.40 7.98 8.17 0.32 8.40 8.64 8.64 0.35 8.40
CPXB 32.58 32.55 1.21 33.60 32.08 32.49 2.02 33.60 33.89 33.40 1.60 33.60
OLV 0.16 0.98 0.87 4.20 14.84 5.94 4.03 4.20 12.93 14.69 4.96 4.20
PLG 29.40 27.14 1.70 25.20 24.14 24.35 3.04 25.20 23.20 23.26 3.63 25.20

CPXA 8.85 14.89 2.59 12.60 17.14 12.60 5.48 12.60 0.88 3.77 3.19 12.60
ILM 14.54 15.23 2.02 16.00 17.71 16.68 2.11 16.00 16.61 16.57 2.16 16.00
npFe 0.59 0.59 0.01 0.60 0.62 0.62 0.02 0.60 0.61 0.60 0.02 0.60
mpFe 0.00 0.00 0.00 0.00 0.38 0.37 0.01 0.40 0.83 0.83 0.02 0.80
SUM 94.28 99.62 −− 100.00 113.88 100.23 −− 100.00 96.15 100.34 −− 100.00

mix39 mix40 mix41
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.94 8.13 0.59 8.40 9.43 9.61 0.44 8.40 11.01 11.40 0.60 8.40
CPXB 28.47 31.69 2.45 33.60 29.50 29.79 2.50 33.60 29.79 29.47 3.14 33.60
OLV 19.01 12.95 5.56 4.20 1.85 3.03 2.55 4.20 6.85 11.39 6.90 4.20
PLG 22.79 24.61 3.57 25.20 22.30 21.88 3.06 25.20 15.62 16.22 3.66 25.20

CPXA 5.21 6.64 4.33 12.60 21.88 20.38 5.89 12.60 14.30 16.61 8.82 12.60
ILM 13.99 16.28 2.27 16.00 13.98 14.33 2.07 16.00 14.11 13.70 2.03 16.00
npFe 0.61 0.62 0.02 0.60 1.34 1.36 0.03 1.40 1.34 1.34 0.04 1.40
mpFe 1.21 1.23 0.03 1.20 0.00 0.01 0.01 0.00 0.44 0.45 0.02 0.40
SUM 98.42 100.30 −− 100.00 98.95 99.02 −− 100.00 91.69 98.78 −− 100.00

mix42 mix43 mix44
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 7.94 7.42 0.52 8.40 7.27 6.40 0.77 8.40 8.81 8.72 0.50 8.40
CPXB 37.42 38.80 1.70 33.60 27.35 31.09 3.00 33.60 35.14 34.99 2.71 33.60
OLV 4.27 3.42 2.58 4.20 2.92 5.29 3.46 4.20 0.48 1.85 1.71 4.20
PLG 27.44 31.16 2.61 25.20 30.11 33.35 3.48 25.20 18.75 24.89 3.42 25.20

CPXA 2.32 3.05 2.40 12.60 14.10 6.28 4.87 12.60 16.43 14.23 5.74 12.60
ILM 16.46 16.30 2.19 16.00 18.46 17.29 2.03 16.00 13.81 13.84 2.03 16.00
npFe 1.45 1.47 0.03 1.40 1.48 1.51 0.04 1.40 2.16 2.16 0.04 2.20
mpFe 0.77 0.77 0.02 0.80 1.04 1.04 0.03 1.20 0.00 0.01 0.01 0.00
SUM 95.86 100.15 −− 100.00 100.21 99.71 −− 100.00 93.41 98.53 −− 100.00

mix45 mix46 mix47
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 8.83 8.59 0.54 8.40 7.40 7.72 0.69 8.40 8.43 8.26 0.81 8.40
CPXB 30.16 31.74 2.36 33.60 30.12 33.81 2.60 33.60 30.28 33.86 3.12 33.60
OLV 7.10 13.91 6.05 4.20 0.75 5.23 3.93 4.20 4.59 9.46 5.67 4.20
PLG 21.86 22.24 3.59 25.20 28.09 31.50 3.57 25.20 21.38 25.01 4.08 25.20

CPXA 16.90 8.08 5.92 12.60 8.94 5.68 4.30 12.60 19.24 6.88 5.62 12.60
ILM 14.09 14.87 2.08 16.00 15.90 15.36 2.13 16.00 12.72 14.82 2.11 16.00
npFe 2.13 2.20 0.04 2.20 2.27 2.23 0.05 2.20 2.21 2.21 0.06 2.20
mpFe 0.46 0.44 0.02 0.40 0.78 0.78 0.03 0.80 1.05 1.10 0.04 1.20
SUM 98.95 99.42 −− 100.00 91.19 99.31 −− 100.00 96.66 98.28 −− 100.00
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Appendix A.2. Fresh Laboratory Samples

Table A5. Elemental abundances of endmember catalog for Section 3.2 taken from Rommel et al. [13].

SiO2 TiO2 Al2O3 Cr2O3 MgO CaO MnO FeO Na2O K2O P2O5 Fe2O3

Pargasite 43.80 1.06 15.63 0.03 18.85 12.39 0.05 0.25 2.84 1.72 0.00 0.28
Augite 50.10 1.26 4.81 0.60 15.22 22.70 0.08 2.41 0.49 0.02 0.00 2.35
Olivine 37.70 0.07 0.04 0.03 35.40 0.16 0.39 26.49 0.03 0.02 0.00 0.23

Plagioclase 54.70 0.00 28.80 0.00 0.00 11.22 0.00 0.28 4.78 0.60 0.00 0.00
Ferrosilite 47.90 0.05 0.32 0.03 5.18 0.88 1.92 44.70 0.03 0.03 0.00 0.20
Ilmenite 0.02 50.40 0.02 0.12 6.15 0.00 0.26 34.10 0.00 0.00 0.00 7.90

Table A6. Origins of endmember catalog for Section 3.2 taken from Rommel et al. [13]. All samples
were provided by the University of Göttingen and originate from Earth.

Mineral Origin Abbreviation

Pargasite Merelani Hill, Tanzania PRG
Augite Paškopole, Czech Republic AUG
Olivine China OLV

Plagioclase Nordingrå, Sweden PLG
Ferrosilite Mansjöberg, Sweden FS
Ilmenite Rogaland, Norway ILM

Table A7. Detailed results for the unmixing of fresh laboratory spectra from Rommel et al. [13]. The results were obtained
without the use of an elemental prior.

mix0 mix1 mix2
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 25.37 25.58 0.60 9.20 36.74 36.95 0.59 18.50 46.19 46.24 0.47 28.10
AUG 0.02 0.14 0.11 0.00 0.03 0.11 0.09 0.00 0.00 0.10 0.08 0.00
OLV 0.00 0.05 0.05 0.00 0.00 0.05 0.04 0.00 0.00 0.04 0.04 0.00
PLG 74.59 74.13 0.70 90.80 62.94 62.83 0.67 81.50 53.73 53.88 0.57 71.90
FS 0.28 0.28 0.09 0.00 0.15 0.14 0.08 0.00 0.08 0.10 0.06 0.00

ILM 14.49 13.91 1.01 0.00 13.62 14.04 0.98 0.00 11.60 11.47 0.84 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 114.75 114.09 −− 100.00 113.48 114.12 −− 100.00 111.61 111.83 −− 100.00

mix3 mix4 mix5
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 78.28 78.19 0.32 68.00 83.11 82.98 0.42 78.50 90.10 90.04 0.36 89.10
AUG 0.08 0.14 0.08 0.00 0.12 0.13 0.08 0.00 0.01 0.04 0.04 0.00
OLV 0.00 0.06 0.05 0.00 0.00 0.05 0.05 0.00 0.00 0.03 0.03 0.00
PLG 22.52 22.36 0.39 32.00 17.55 17.55 0.48 21.50 10.67 10.67 0.38 10.90
FS 0.02 0.06 0.04 0.00 0.03 0.07 0.05 0.00 0.03 0.07 0.05 0.00

ILM 6.76 6.74 0.60 0.00 9.28 9.32 0.74 0.00 7.72 7.80 0.64 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 107.67 107.55 −− 100.00 110.08 110.10 −− 100.00 108.53 108.65 −− 100.00
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Table A7. Cont.

mix5 mix7 mix8
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 18.76 18.85 1.71 0.00 30.02 30.11 3.69 0.00 44.41 46.99 4.15 0.00
AUG 0.00 0.08 0.08 0.00 0.00 0.19 0.19 0.00 0.12 0.30 0.29 0.00
OLV 0.53 0.62 0.34 0.00 3.59 3.80 0.89 0.00 6.10 6.82 1.10 0.00
PLG 70.98 71.21 1.89 92.80 43.15 43.11 4.19 85.10 18.96 14.11 4.79 76.90
FS 11.93 11.88 0.24 7.20 25.74 25.64 0.56 14.90 33.49 32.96 0.68 23.10

ILM 0.06 0.61 0.57 0.00 0.04 0.68 0.63 0.00 0.15 0.82 0.79 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 102.27 103.25 −− 100.00 102.54 103.52 −− 100.00 103.24 101.99 −− 100.00

mix9 mix10 mix11
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 33.27 38.70 1.84 0.00 16.89 21.22 1.76 0.00 11.88 11.52 0.82 0.00
AUG 0.22 0.72 0.72 0.00 4.18 1.27 1.10 0.00 0.09 0.57 0.50 0.00
OLV 5.66 4.77 1.11 0.00 0.73 2.21 1.13 0.00 0.04 0.50 0.40 0.00
PLG 7.45 2.09 1.80 58.80 4.32 1.58 1.59 38.00 0.09 0.72 0.65 26.30
FS 57.05 57.11 0.76 41.20 80.55 80.17 0.87 62.00 93.34 93.39 0.52 73.70

ILM 0.57 0.64 0.61 0.00 0.29 0.48 0.46 0.00 0.00 0.43 0.41 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.01 0.01 −− 0.00 0.01 0.01 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 104.23 104.03 −− 100.00 106.97 106.93 −− 100.00 105.44 107.12 −− 100.00

mix12 mix13 mix14
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 3.85 3.73 1.15 0.00 3.89 7.30 3.79 0.00 53.52 55.49 1.09 56.50
AUG 3.60 2.81 1.46 0.00 18.79 3.51 3.22 54.10 0.44 0.56 0.54 0.00
OLV 1.02 1.05 0.75 0.00 6.44 6.81 3.89 0.00 0.19 0.34 0.32 0.00
PLG 0.07 0.61 0.58 13.70 0.69 3.10 2.72 0.00 0.23 0.80 0.74 0.00
FS 99.97 99.79 0.20 86.30 73.16 83.11 3.19 45.90 50.31 49.68 0.86 43.50

ILM 0.01 0.36 0.36 0.00 0.01 0.85 0.80 0.00 0.08 0.51 0.49 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.03 0.03 −− 0.00 0.01 0.01 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.01 0.01 −− 0.00 0.00 0.00 −−
SUM 108.52 108.35 −− 100.00 102.97 104.68 −− 100.00 104.77 107.38 −− 100.00

mix15 mix16
Mode Mean Std Theo Mode Mean Std Theo

PRG 0.13 1.40 1.25 0.00 31.88 32.04 16.29 0.00
AUG 0.32 1.16 1.14 0.00 2.18 7.30 6.50 0.00
OLV 20.78 28.54 2.75 53.60 7.47 7.10 6.05 0.00
PLG 0.03 1.13 1.05 0.00 12.32 15.67 13.11 0.00
FS 76.62 76.17 2.66 46.40 2.69 5.92 4.58 54.60

ILM 0.05 0.46 0.45 0.00 24.88 24.85 11.52 45.40
npFe 0.00 0.01 0.01 −− 4.87 6.82 1.85 −−
mpFe 0.00 0.01 0.01 −− 0.00 0.06 0.06 −−
SUM 97.93 108.85 −− 100.00 81.42 92.88 −− 100.00
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Table A8. Detailed results for the unmixing of fresh laboratory spectra from Rommel et al. [13].

mix0 mix1 mix2
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 21.75 21.67 0.90 9.20 33.15 33.63 0.95 18.50 44.30 44.07 0.73 28.10
AUG 0.00 0.04 0.04 0.00 0.00 0.04 0.04 0.00 0.00 0.03 0.03 0.00
OLV 0.00 0.02 0.02 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.02 0.00
PLG 81.84 81.82 0.91 90.80 69.83 69.84 0.97 81.50 59.05 59.06 0.75 71.90
FS 0.00 0.04 0.04 0.00 0.00 0.03 0.03 0.00 0.00 0.02 0.02 0.00

ILM 0.00 0.01 0.01 0.00 0.00 0.03 0.03 0.00 0.02 0.07 0.06 0.00
npFe 0.01 0.01 0.00 −− 0.01 0.01 0.00 −− 0.01 0.01 0.00 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 103.59 103.60 −− 100.00 102.98 103.60 −− 100.00 103.37 103.26 −− 100.00

mix3 mix4 mix5
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 77.43 77.62 0.36 68.00 82.29 82.36 0.56 78.50 90.05 89.82 0.46 89.10
AUG 0.00 0.02 0.02 0.00 0.00 0.03 0.03 0.00 0.00 0.02 0.02 0.00
OLV 0.00 0.01 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.01 0.00
PLG 24.59 24.50 0.40 32.00 20.20 20.37 0.60 21.50 12.26 12.40 0.52 10.90
FS 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.01 0.00

ILM 1.18 1.13 0.42 0.00 1.16 1.07 0.44 0.00 1.87 1.88 0.59 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 103.20 103.31 −− 100.00 103.66 103.86 −− 100.00 104.19 104.15 −− 100.00

mix6 mix7 mix8
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 0.00 0.04 0.04 0.00 0.00 0.07 0.07 0.00 0.03 0.13 0.12 0.00
AUG 0.00 0.02 0.02 0.00 0.00 0.05 0.05 0.00 0.00 0.08 0.08 0.00
OLV 0.00 0.07 0.07 0.00 0.01 0.26 0.23 0.00 0.09 0.42 0.37 0.00
PLG 90.55 90.52 0.18 92.80 75.78 75.95 0.36 85.10 65.61 65.87 0.53 76.90
FS 13.00 12.97 0.21 7.20 27.53 28.27 0.39 14.90 37.41 37.46 0.55 23.10

ILM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
npFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 103.55 103.63 −− 100.00 103.32 104.60 −− 100.00 103.15 103.96 −− 100.00

mix9 mix10 mix11
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 0.00 0.24 0.22 0.00 0.04 0.41 0.36 0.00 0.60 0.65 0.51 0.00
AUG 0.01 0.15 0.14 0.00 0.03 0.24 0.22 0.00 0.07 0.22 0.21 0.00
OLV 0.21 0.57 0.50 0.00 0.17 0.81 0.68 0.00 0.04 0.33 0.30 0.00
PLG 44.43 43.97 0.74 58.80 20.86 24.01 0.86 38.00 10.20 11.87 0.68 26.30
FS 60.48 60.54 0.77 41.20 79.36 81.98 0.82 62.00 94.13 94.14 0.54 73.70

ILM 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00
npFe 0.00 0.01 0.01 −− 0.00 0.01 0.01 −− 0.00 0.01 0.01 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.00 0.00 −− 0.00 0.00 0.00 −−
SUM 105.12 105.47 −− 100.00 100.45 107.45 −− 100.00 105.04 107.22 −− 100.00
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Table A8. Cont.

mix12 mix13 mix14
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

PRG 0.74 0.79 0.62 0.00 8.07 7.41 3.77 0.00 53.34 55.50 1.11 56.50
AUG 0.16 0.48 0.41 0.00 0.68 3.63 3.17 54.10 0.43 0.55 0.54 0.00
OLV 2.35 2.48 0.87 0.00 3.13 6.65 3.83 0.00 0.05 0.34 0.33 0.00
PLG 2.67 4.26 1.04 13.70 0.67 2.99 2.61 0.00 2.59 0.86 0.80 0.00
FS 99.99 99.82 0.18 86.30 84.39 83.10 3.07 45.90 49.70 49.72 0.85 43.50

ILM 0.00 0.01 0.01 0.00 0.89 1.00 0.23 0.00 0.10 0.13 0.11 0.00
npFe 0.00 0.01 0.00 −− 0.01 0.03 0.03 −− 0.00 0.01 0.01 −−
mpFe 0.00 0.00 0.00 −− 0.00 0.01 0.01 −− 0.00 0.00 0.00 −−
SUM 105.91 107.82 −− 100.00 97.84 104.78 −− 100.00 106.22 107.10 −− 100.00

mix15 mix16
Mode Mean Std Theo Mode Mean Std Theo

PRG 0.19 0.57 0.51 0.00 15.11 20.78 11.02 0.00
AUG 0.09 0.45 0.41 0.00 0.86 6.57 5.86 0.00
OLV 25.41 29.63 2.56 53.60 5.08 8.53 6.56 0.00
PLG 0.19 1.34 1.20 0.00 5.39 10.36 8.50 0.00
FS 76.07 76.51 2.66 46.40 6.43 6.34 4.50 54.60

ILM 0.00 0.02 0.01 0.00 42.06 41.83 5.49 45.40
npFe 0.00 0.01 0.01 −− 4.09 5.65 1.63 −−
mpFe 0.00 0.01 0.01 −− 0.00 0.04 0.05 −−
SUM 101.94 108.51 −− 100.00 74.93 94.42 −− 100.00

Appendix A.3. LSCC Samples

Table A9. Elemental abundances used for the LSCC samples taken from Taylor et al. [18] and Taylor et al. [19]. The elemental
and mineral abundances of the 20–45µm size fraction were used for the priors, but the 0–45µm size fraction spectra were
used for the unmixing. The 0–45 µm size fraction mineral abundances were not available.

SiO2 TiO2 Al2O3 Cr2O3 MgO CaO MnO FeO Na2O K2O P2O5 Fe2O3

10084 41.3 8.30 12.00 0.30 8.46 11.60 0.21 15.50 0.39 0.12 0.12 0.17
12001 45.3 3.20 11.00 0.41 10.60 9.83 0.21 16.90 0.39 0.21 0.23 0.11
12030 46.1 3.74 10.50 0.40 9.94 9.09 0.23 17.60 0.41 0.26 0.19 0.12
14141 47.2 1.96 15.00 0.26 11.00 10.10 0.15 11.60 0.59 0.47 0.26 0.07
14163 47.1 2.00 15.40 0.23 11.00 10.20 0.15 11.50 0.57 0.41 0.21 0.08
14259 47.1 1.99 15.80 0.24 10.70 10.50 0.15 11.00 0.60 0.43 0.26 0.09
14260 47.4 1.86 16.30 0.22 10.40 10.70 0.14 10.70 0.60 0.44 0.22 0.10
15041 46.1 2.03 12.50 0.39 11.20 9.91 0.20 15.20 0.36 0.16 0.19 0.11
15071 45.8 2.33 12.40 0.43 11.40 9.81 0.21 15.60 0.36 0.14 0.15 0.10
61141 44.5 0.58 26.10 0.11 6.56 15.20 0.08 5.15 0.46 0.10 0.06 0.05
61221 44.5 0.56 27.20 0.09 5.45 15.90 0.06 4.62 0.46 0.07 0.05 0.04
62231 44.5 0.58 25.70 0.11 6.59 15.30 0.09 5.31 0.42 0.09 0.07 0.08
64801 44.6 0.63 26.50 0.10 6.09 15.60 0.08 4.82 0.44 0.12 0.06 0.10
67461 44.4 0.44 27.30 0.09 5.11 16.10 0.07 4.93 0.41 0.05 0.03 0.07
67481 44.7 0.49 26.70 0.09 5.98 15.60 0.08 5.19 0.45 0.06 0.05 0.04
70181 40.7 8.11 11.50 0.43 10.10 10.30 0.22 16.00 0.35 0.08 0.06 0.16
71061 39.2 9.48 9.33 0.48 10.80 9.58 0.23 18.50 0.34 0.07 0.04 0.17
71501 38.4 10.70 9.94 0.46 9.97 9.94 0.24 17.80 0.35 0.07 0.07 0.17
79221 40.5 7.38 11.60 0.40 10.90 10.30 0.22 15.80 0.38 0.09 0.06 0.17
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Table A10. Detailed results for the unmixing of LSCC spectra with the catalog of RELAB endmembers. A prior on the TiO2

and the Al2O3 was set with αelem = 40.

10084 12001 12030
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 11.50 10.73 0.47 0.80 23.14 22.92 0.61 1.99 22.83 22.88 0.82 6.48
CPX 40.09 35.27 1.85 36.69 46.20 45.63 1.70 43.75 42.33 37.70 2.23 50.40
OLV 7.11 11.70 4.19 3.28 7.02 2.31 1.90 8.24 9.02 4.59 3.55 7.24
PLG 12.94 11.94 2.50 39.34 7.15 11.68 2.09 32.46 12.38 21.34 3.99 25.77
OTH −− −− −− 4.92 −− −− −− 7.27 −− −− −− 5.73
ILM 6.52 12.01 2.15 14.98 6.01 5.50 1.03 6.30 8.04 7.88 1.28 4.38
npFe 1.86 1.94 0.04 −− 1.56 1.51 0.03 −− 0.35 0.35 0.02 −−
mpFe 0.69 0.68 0.03 −− 0.79 0.84 0.02 −− 0.33 0.34 0.02 −−
SUM 78.16 81.66 −− 100.00 89.52 88.03 −− 100.00 94.60 94.39 −− 100.00

14141 14163 14259
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 17.03 16.99 0.51 13.93 11.87 11.86 0.48 16.34 12.55 12.67 0.49 20.03
CPX 6.75 7.71 1.63 22.53 4.77 6.36 1.68 24.33 5.52 9.77 1.62 29.09
OLV 14.17 14.45 5.81 7.36 22.77 21.99 6.14 6.03 14.46 5.12 3.79 6.22
PLG 54.09 54.11 5.08 48.96 47.60 48.62 5.11 47.51 55.10 60.57 3.22 38.16
OTH −− −− −− 3.72 −− −− −− 3.77 −− −− −− 2.98
ILM 4.32 4.29 0.73 3.50 3.80 4.19 0.71 2.01 4.08 4.09 0.69 3.52
npFe 0.16 0.16 0.01 −− 0.58 0.59 0.02 −− 1.07 1.07 0.02 −−
mpFe 0.11 0.11 0.01 −− 0.20 0.20 0.02 −− 0.35 0.36 0.02 −−
SUM 96.36 97.56 −− 100.00 90.82 93.03 −− 100.00 91.71 92.21 −− 100.00

14260 15041 15071
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 14.83 15.01 0.51 13.98 23.31 23.26 0.66 8.13 23.34 23.12 0.65 6.66
CPX 9.27 12.13 1.82 26.88 34.16 40.74 2.61 40.35 36.26 39.39 2.12 38.97
OLV 1.67 4.16 3.15 6.27 13.24 4.73 3.34 7.11 3.41 4.42 3.26 8.06
PLG 56.09 57.35 3.04 46.59 13.38 16.89 2.84 33.41 16.28 20.43 2.70 37.42
OTH −− −− −− 3.58 −− −− −− 8.41 −− −− −− 4.96
ILM 4.40 3.65 0.65 2.69 3.18 3.19 0.64 2.59 3.43 4.05 0.78 3.93
npFe 1.11 1.13 0.02 −− 1.60 1.59 0.04 −− 1.33 1.34 0.03 −−
mpFe 0.40 0.40 0.02 −− 0.80 0.83 0.03 −− 0.71 0.72 0.02 −−
SUM 86.26 92.30 −− 100.00 87.27 88.81 −− 100.00 82.73 91.42 −− 100.00

61141 61221 62231
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 4.63 4.54 0.28 3.39 4.46 4.46 0.17 4.18 4.25 4.30 0.28 4.23
CPX 0.54 1.81 0.54 5.39 0.38 1.18 0.33 6.22 0.79 1.59 0.46 6.19
OLV 6.46 4.21 2.37 4.24 18.11 17.15 2.00 5.50 10.41 6.20 2.83 5.90
PLG 80.98 84.45 2.30 85.77 75.09 74.80 1.82 82.83 78.55 81.98 2.61 82.45
OTH −− −− −− 0.61 −− −− −− 0.42 −− −− −− 0.61
ILM 1.17 1.11 0.20 0.61 1.08 1.14 0.20 0.85 1.18 1.10 0.18 0.61
npFe 0.43 0.42 0.01 −− 0.06 0.06 0.00 −− 0.49 0.47 0.01 −−
mpFe 0.15 0.15 0.01 −− 0.03 0.03 0.00 −− 0.14 0.15 0.01 −−
SUM 93.77 96.11 −− 100.00 99.12 98.73 −− 100.00 95.18 95.17 −− 100.00
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64801 67461 67481
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 4.26 4.20 0.26 4.40 5.86 5.90 0.18 3.97 5.03 5.06 0.14 4.09
CPX 0.10 1.83 0.52 5.40 3.59 4.41 0.52 5.80 0.46 0.97 0.29 5.06
OLV 7.21 3.14 2.04 3.90 5.81 7.89 2.23 3.36 11.70 12.80 1.80 5.55
PLG 80.78 85.12 2.09 85.21 81.34 81.08 1.97 86.33 79.37 79.24 1.63 84.88
OTH −− −− −− 0.43 −− −− −− 0.13 −− −− −− 0.28
ILM 1.15 1.20 0.21 0.65 0.79 0.81 0.16 0.40 0.97 0.99 0.18 0.14
npFe 0.44 0.43 0.01 −− 0.12 0.11 0.00 −− 0.15 0.15 0.00 −−
mpFe 0.12 0.12 0.01 −− 0.03 0.03 0.00 −− 0.04 0.04 0.00 −−
SUM 93.50 95.49 −− 100.00 97.40 100.10 −− 100.00 97.52 99.05 −− 100.00

70181 71061 71501
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 13.66 13.64 0.37 3.25 0.01 0.38 0.34 2.33 12.40 12.80 0.48 2.62
CPX 27.30 25.51 1.61 30.63 0.01 2.16 0.49 39.16 31.62 31.59 1.28 35.99
OLV 10.69 7.64 3.89 7.75 17.97 11.64 6.67 7.90 0.71 1.87 1.54 6.56
PLG 19.93 24.47 2.94 36.40 54.89 61.00 6.35 28.14 18.33 18.95 2.22 30.05
OTH −− −− −− 2.80 −− −− −− 1.42 −− −− −− 2.37
ILM 18.70 19.81 3.04 19.17 36.26 37.29 5.84 21.06 30.79 27.04 4.04 22.40
npFe 1.77 1.77 0.03 −− 1.03 1.03 0.04 −− 1.78 1.77 0.03 −−
mpFe 0.65 0.66 0.02 −− 0.12 0.14 0.03 −− 0.64 0.64 0.02 −−
SUM 90.28 91.08 −− 100.00 109.14 112.47 −− 100.00 93.85 92.24 −− 100.00

79221
Mode Mean Std Theo

OPX 10.76 10.76 0.44 3.48
CPX 11.62 12.80 1.82 27.70
OLV 24.71 23.59 6.37 11.35
PLG 24.64 27.31 3.09 39.97
OTH −− −− −− 0.24
ILM 16.49 16.34 2.59 17.27
npFe 1.82 1.81 0.04 −−
mpFe 0.60 0.60 0.02 −−
SUM 88.22 90.80 −− 100.00

Table A11. Detailed results for the unmixing of LSCC spectra with the catalog of RELAB endmembers. For all relevant
elemental abundances a prior was introduced.

10084 12001 12030
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 11.11 10.90 0.47 0.80 23.03 22.88 0.61 1.99 23.47 22.88 0.87 6.48
CPX 44.61 42.22 2.44 36.69 47.34 45.81 1.58 43.75 42.67 37.88 2.14 50.40
OLV 1.32 2.55 1.93 3.28 1.74 1.33 1.13 8.24 0.85 1.80 1.46 7.24
PLG 12.05 13.44 2.74 39.34 10.86 12.03 1.61 32.46 19.70 23.19 2.27 25.77
OTH −− −− −− 4.92 −− −− −− 7.27 −− −− −− 5.73
ILM 15.03 14.58 2.22 14.98 5.51 6.96 1.37 6.30 7.44 10.18 1.84 4.38
npFe 1.93 1.93 0.05 −− 1.51 1.51 0.03 −− 0.33 0.35 0.02 −−
mpFe 0.68 0.71 0.02 −− 0.86 0.84 0.02 −− 0.35 0.35 0.02 −−
SUM 84.13 83.69 −− 100.00 88.48 89.02 −− 100.00 94.13 95.95 −− 100.00
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Table A11. Cont.

14141 14163 14259
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 17.00 16.94 0.48 13.93 11.44 11.76 0.46 16.34 13.01 12.75 0.50 20.03
CPX 14.26 8.50 1.43 22.53 11.13 8.42 1.58 24.33 18.66 9.38 1.69 29.09
OLV 7.15 12.81 3.41 7.36 16.92 16.65 3.46 6.03 4.44 9.80 3.10 6.22
PLG 55.31 54.75 3.15 48.96 49.34 51.88 3.23 47.51 51.95 55.64 2.87 38.16
OTH −− −− −− 3.72 −− −− −− 3.77 −− −− −− 2.98
ILM 4.68 5.14 0.95 3.50 4.60 5.02 0.93 2.01 5.10 4.99 0.90 3.52
npFe 0.16 0.16 0.01 −− 0.58 0.59 0.02 −− 1.06 1.07 0.02 −−
mpFe 0.12 0.11 0.01 −− 0.21 0.21 0.01 −− 0.33 0.34 0.02 −−
SUM 98.40 98.13 −− 100.00 93.43 93.72 −− 100.00 93.16 92.56 −− 100.00

14260 15041 15071
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 15.88 15.14 0.55 13.98 23.36 23.36 0.67 8.13 23.28 23.19 0.64 6.66
CPX 19.94 12.82 2.27 26.88 48.17 42.50 2.94 40.35 46.71 40.36 2.28 38.97
OLV 6.42 7.51 2.98 6.27 5.71 2.85 2.24 7.11 3.92 2.95 2.18 8.06
PLG 45.68 52.69 3.60 46.59 8.07 16.75 3.02 33.41 17.03 20.63 2.33 37.42
OTH −− −− −− 3.58 −− −− −− 8.41 −− −− −− 4.96
ILM 4.29 4.38 0.85 2.69 3.75 3.76 0.82 2.59 4.75 4.92 0.97 3.93
npFe 1.03 1.12 0.04 −− 1.55 1.58 0.04 −− 1.34 1.34 0.03 −−
mpFe 0.39 0.39 0.02 −− 0.83 0.83 0.03 −− 0.71 0.72 0.02 −−
SUM 92.21 92.54 −− 100.00 89.07 89.21 −− 100.00 95.69 92.05 −− 100.00

61141 61221 62231
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 4.80 4.74 0.26 3.39 4.47 4.33 0.17 4.18 4.52 4.50 0.30 4.23
CPX 0.70 1.18 0.35 5.39 3.48 2.11 0.42 6.22 0.01 1.35 0.35 6.19
OLV 10.81 10.48 1.76 4.24 13.99 14.02 1.75 5.50 12.53 11.42 1.90 5.90
PLG 77.39 78.33 1.77 85.77 75.05 77.15 1.51 82.83 75.88 76.57 1.93 82.45
OTH −− −− −− 0.61 −− −− −− 0.42 −− −− −− 0.61
ILM 1.30 1.32 0.26 0.61 1.13 1.26 0.26 0.85 1.17 1.28 0.25 0.61
npFe 0.44 0.44 0.01 −− 0.06 0.06 0.00 −− 0.48 0.48 0.01 −−
mpFe 0.13 0.13 0.01 −− 0.03 0.03 0.00 −− 0.14 0.14 0.01 −−
SUM 95.00 96.05 −− 100.00 98.11 98.88 −− 100.00 94.11 95.12 −− 100.00

64801 67461 67481
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 4.75 4.42 0.26 4.40 5.95 5.93 0.16 3.97 5.06 5.05 0.14 4.09
CPX 4.89 1.42 0.36 5.40 4.26 4.39 0.47 5.80 0.39 1.09 0.29 5.06
OLV 8.18 9.09 1.63 3.90 9.77 8.29 1.54 3.36 12.19 12.59 1.46 5.55
PLG 75.77 79.08 1.72 85.21 81.29 80.61 1.37 86.33 79.25 79.28 1.32 84.88
OTH −− −− −− 0.43 −− −− −− 0.13 −− −− −− 0.28
ILM 1.09 1.42 0.28 0.65 0.84 0.95 0.21 0.40 1.09 1.13 0.23 0.14
npFe 0.44 0.44 0.01 −− 0.12 0.12 0.00 −− 0.15 0.15 0.00 −−
mpFe 0.11 0.11 0.01 −− 0.03 0.03 0.00 −− 0.04 0.04 0.00 −−
SUM 94.68 95.45 −− 100.00 102.11 100.17 −− 100.00 97.98 99.15 −− 100.00
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Table A11. Cont.

70181 71061 71501
Mode Mean Std Theo Mode Mean Std Theo Mode Mean Std Theo

OPX 13.62 13.71 0.38 3.25 0.13 0.40 0.37 2.33 12.43 12.77 0.47 2.62
CPX 29.07 28.56 1.82 30.63 7.99 2.63 0.50 39.16 34.36 32.03 1.25 35.99
OLV 1.71 4.28 2.56 7.75 12.94 18.69 3.06 7.90 0.13 1.46 1.22 6.56
PLG 19.83 24.09 2.78 36.40 53.99 54.66 3.53 28.14 17.31 18.64 2.06 30.05
OTH −− −− −− 2.80 −− −− −− 1.42 −− −− −− 2.37
ILM 19.08 21.83 3.11 19.17 35.52 32.99 4.39 21.06 28.94 27.94 3.61 22.40
npFe 1.77 1.76 0.03 −− 1.00 1.03 0.04 −− 1.74 1.77 0.03 −−
mpFe 0.67 0.66 0.02 −− 0.13 0.11 0.02 −− 0.66 0.64 0.02 −−
SUM 83.31 92.47 −− 100.00 110.56 109.37 −− 100.00 93.17 92.84 −− 100.00

79221
Mode Mean Std Theo

OPX 11.26 11.10 0.40 3.48
CPX 23.11 23.64 1.56 27.70
OLV 10.76 11.37 3.75 11.35
PLG 27.57 27.74 2.88 39.97
OTH −− −− −− 0.24
ILM 19.87 19.00 2.84 17.27
npFe 1.76 1.76 0.03 −−
mpFe 0.63 0.62 0.02 −−
SUM 92.56 92.85 −− 100.00
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