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Abstract: A novel framework for 3D reconstruction of buildings based on a single off-nadir satellite
image is proposed in this paper. Compared with the traditional methods of reconstruction using
multiple images in remote sensing, recovering 3D information that utilizes the single image can
reduce the demands of reconstruction tasks from the perspective of input data. It solves the problem
that multiple images suitable for traditional reconstruction methods cannot be acquired in some
regions, where remote sensing resources are scarce. However, it is difficult to reconstruct a 3D model
containing a complete shape and accurate scale from a single image. The geometric constraints are not
sufficient as the view-angle, size of buildings, and spatial resolution of images are different among
remote sensing images. To solve this problem, the reconstruction framework proposed consists
of two convolutional neural networks: Scale-Occupancy-Network (Scale-ONet) and model scale
optimization network (Optim-Net). Through reconstruction using the single off-nadir satellite image,
Scale-Onet can generate water-tight mesh models with the exact shape and rough scale of buildings.
Meanwhile, the Optim-Net can reduce the error of scale for these mesh models. Finally, the complete
reconstructed scene is recovered by Model-Image matching. Profiting from well-designed networks,
our framework has good robustness for different input images, with different view-angle, size of
buildings, and spatial resolution. Experimental results show that an ideal reconstruction accuracy
can be obtained both on the model shape and scale of buildings.

Keywords: 3D model reconstruction; building; satellite image; encoder-decoder network

1. Introduction

For a long time, 3D building reconstruction technology based on remote sensing infor-
mation has a wide range of application requirements in people’s livelihood [1] and military
applications. At present, some building reconstruction work still relies on manual drawing
or UAV surveying and mapping [2,3], which often costs a lot of time. Many researchers
are devoted to exploring methods that use remote sensing information to automatically
reconstruct 3D models [4–6]. Generally, based on the input data, the reconstruction meth-
ods commonly used can be classified into the following three categories. Firstly, the most
common method is based on stereo matching [7], which uses two or multiple images that
meet certain conditions, such as intersection angle, overlap, and base-to-height ratio, to
reconstruct the entire scene. Secondly, a class of methods takes a segment of motion or
a set of time series images as input, combining the Structure from Motion [8] (SfM) with
Multi View System (MVS) to perform feature matching and generate the sparse or dense
point cloud. Thirdly, a few researchers have proposed methods for building information
extraction using the single image [9,10], which can get the height, contour, and floor area
of buildings. To generate the complete 3D model, it is often necessary to utilize auxiliary
reconstruction information such as the Digital Surface Model [11] (DSM). Nevertheless,

Remote Sens. 2021, 13, 4434. https://doi.org/10.3390/rs13214434 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6300-4602
https://orcid.org/0000-0003-0751-7726
https://orcid.org/0000-0003-2354-0141
https://doi.org/10.3390/rs13214434
https://doi.org/10.3390/rs13214434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214434
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214434?type=check_update&version=1


Remote Sens. 2021, 13, 4434 2 of 20

such research can not meet the requirements of an accurate model shape and scale in the
remote sensing reconstruction field, which still has great application limitations.

In recent years, satellite technology and imaging sensor technology have made signifi-
cant progress, but remote sensing images data are still expensive and scarce in some areas.
Finding multiple remote sensing images that can meet input conditions for traditional
high-accuracy reconstruction methods in some regions is costly. Therefore, in this case, the
advantages of 3D reconstruction using a single image are highlighted in terms of simplify-
ing the data. It can offer a new possibility for reconstruction tasks. However, reconstructing
water-tight mesh models with complete building shapes and size is a big challenge. The
problems in single image reconstruction techniques are also apparent. Firstly, it is chal-
lenging to obtain strict geometric constraints from the single image due to the inability of
the traditional methods to estimate the information of occluded parts accurately, which
will cause reconstruction results containing incomplete geometric structures. Secondly, the
images received from different satellites have different view-angles. The azimuth angle
determines which parts of the building are occluded, and the elevation angle affects the
size of the roof and facade in images, which are both essential for extracting geometric
information. Thirdly, estimating the exact size of buildings is also an essential mission
in the remote sensing field. Different image spatial resolutions, building size, etc., will
increase the difficulty of estimating the exact size. In summary, solving the above problems
is key to achieving single image reconstruction.

In this paper, we proposed a 3D Model Reconstruction framework of buildings (3DMR
framework) that only uses the single off-nadir satellite image. The framework consists of
three parts: Water-tight mesh model reconstruction network, model scale optimization
network, and the restoration algorithm for reconstructed scenes. In the first part, based on
the network structure of the Occupancy Network [12], we add the scale factor to improve
the Scale-Occupancy-Network (Scale-ONet). It establishes mapping from 2D satellite
images to 3D space, generating water-tight mesh models with accurate an shape and
rough scale by using feature extraction capabilities of convolutional neural networks to
replace the traditional 3D space solution process. Scale-ONet can adapt to the building
with different sizes and images with multiple azimuth angles, elevation angles, and spatial
resolutions. In the second part, the scale accuracy of reconstructed models from Scale-ONet
is further improved by the proposed model scale optimization network (Optim-Net). The
evaluation metrics with ground truth are promoted. In the last part, we design a Model-
Image matching algorithm to place the independent reconstructed models in the same
scene. The relative position relationships between buildings in the image and the azimuth
angle of the buildings can be recovered accurately. Our framework takes both the model
shape and model scale into account. While reducing the requirements for input data, our
framework also enhances the application potential. The final reconstruction model can
reach LoD2, a standard for characterizing the fineness of building models proposed by
CityGML [13]. The significant contributions of this paper can be summarized as follows:

• A 3D model reconstruction framework was proposed, which can generate water-tight
mesh models from the single satellite image;

• By setting the scale factor, Scale-ONet was proposed to reconstruct models from the
single image, which has a different view-angle, size of buildings, spatial resolutions;

• Optim-Net was proposed to optimize scale value in different directions and generate
optimized building models with accurate scales.

This paper is organized as follows: Section 2 reviews some typical research related to
the proposed framework. Section 3 elaborates on the structure of the proposed framework
and the specific implementation of the improved network. In Section 4, experiments and
analyses on different types of images verify the flexibility and robustness of our proposed
framework. A comprehensive summary of the work is presented in Section 5.
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2. Related Work

In this section, we introduce and analyze typical 3D reconstruction methods with
single or multiple images in the field of remote sensing and reconstruction networks in
computer vision. The specific content is as follows.

In terms of 3D reconstruction based on multiple images, both the traditional pho-
togrammetry method and the oblique photography technology widely used in recent years
are quite mature. Methods based on video sequence are represented by structure from
motion [14–17] and Multi-view Stereo [18,19] (MVS). Wu et al. [20] used multi-view aerial
imagery to extract building structures. The point cloud model was used in reconstruction
by Frommholz et al. [21]. It can generate textured building models. Rothermel et al. [22]
utilize multi-view high-resolution satellite images to realize mesh refinement. Many re-
searchers have introduced deep learning theory into this technical framework in recent
years and achieved good results. Typical examples include MVSNET [23], DeepSFM [24],
and R-MVSNet [25]. The issue of a slow reconstruction speed was addressed and optimized
using the CNN network by Xiang et al. [26]. These technologies belong to the category of
standard stereo pairs, focusing on the scene and still relying on stereo matching technology
to a large extent. A few researchers have studied 3D reconstruction methods based on
generalized stereo pairs. Typical examples are: Aguilar et al. [27] collected multiple sets of
GeoEye-1 and WorldView-2 satellite data, carried out the research on the three-dimensional
coordinate solution of generalized stereo pair, considering image characteristics such as
radiation and illumination, comprehensively analyzing the relationship between 3D re-
construction accuracy and ground control points, intersection angle between image pairs,
base height ratio, resolution, and other factors. Gu et al. [28] proposed adding a different
factor to the traditional calculation model to reduce the impact of resolution differences
on the accuracy of the three-dimensional coordinate calculation. Kim et al. [29] improved
the quality of DSMs generated from stereo image matching. Most studies avoid stereo
matching and only focus on the accuracy of a few manually selected matching points.

In terms of 3D reconstruction based on the single image, in addition to some early
shadow-based methods proposed by Izadi et al. [30] and Kim et al. [8], there is little related
research in the field of remote sensing. A typical example is Haala et al. [31], who proposed
a 3D reconstruction method of urban buildings based on obliqued remote sensing images.
This method can generate 3D building models in the form of point clouds, but it is difficult
to deal with occlusion problems, which will lead to problems such as missing models. The
single-image building reconstruction network proposed by Alidoost et al. [32] used an
optimized multi-scale convolution-deconvolution network to extract the height information
and roof profile information of the buildings in the image. The large complex building
is divided into multiple primitives [33], and the original building model is obtained
through information combination and model splicing, which also require higher primitive
processing. Partovi et al. [7,34] proposed to reconstruct 3D building models with LoD2
in the vector format using DSM and VHR optical satellite imagery, which allows for
reconstructing buildings higher than 3 m and larger than 75 m2, Sirmacek et al. [35] also
solved the problem where steep walls could not be generated. Awrangjeb et al. used
the data-driven method, performing 3D building roof reconstruction [36]. Liu et al. [37]
proposed convolutional neural network architecture that takes the single optical image
as input and produces an estimated DSM image and building height as output, similarly
by Amirkolae et al. [38]. The above content introduces most of the typical methods in
the single image reconstruction field. Although the methods are diversified, they have
substantial application restrictions, and most of them cannot obtain both the shape and
scale of models.

Many 3D reconstruction networks based on the single image have been proposed
in recent years in the computer vision field. However, these methods mainly focus on
improving the accuracy of shape and pay little attention to the view-angle of input images
and the scale of models. According to the different ways of representing 3D models, these
methods can be broadly divided into three categories: Voxel, point cloud, and mesh. The
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voxel model has a simple structure and is easy to convert data to a three-dimensional
model. Therefore, in early research, most used voxel as the output format of the recon-
struction network [39,40]. However, the low-resolution voxel model cannot reflect the
smooth surface of the model. The increase in detail requires a square-fold increase in
resolution, which consumes considerable memory and computing time. After completing
the low-resolution voxel reconstruction, Smith et al. [41] used the super-resolution network
to increase the voxel to 5123. Wu et al. [42] got appropriate results at a moderate resolution.
Compared with voxel, the point cloud is more versatile and convenient for subsequent
processing. In typical research, Fan et al. [43] designed a point set generation network to
generate a target point cloud from the single image, and Wei et al. [44] used the conditional
generative network to predict the structure of the invisible part of objects in the image.
By decomposing the complex model into simple elements and then combining them after
reconstruction, Deprelle et al. [45] improved reconstruction accuracy. Mesh is the most
visually expressive form among the three types. Its complicated structure increases the
difficulty of neural network design. Wang et al. [46] used moving vertices to generate de-
formation to solve the point-line-surface relationship in the model. Despite the constraints
added during the movement, the deformation occasionally develops into unexpected situa-
tions. Groueix et al. [47] proposed representing a 3D shape as a collection of parametric
surface elements to reconstruct the model in a fragmented manner. Mescheder et al. [12]
got rid of the constraint of the mesh directly generated and used the moving cube algorithm
to reconstruct the model’s surface with contour boundary points acquired by the network
named ONet. It uses the Resnet18 [48] to extract features in the input images and feature
the decoding network to obtain a continuous probability space for generating mesh models.
Our framework combined the reconstruction task in remote sensing with the methods in
computer vision. It can solve the problem of the inability to generate complete models
from the single image in remote sensing. In addition, the proposed scale factor enables the
deep learning network to predict accurate building model sizes. So, the 3DMR framework
has unique advantages compared with the above research.

3. Methodology
3.1. 3D Model Reconstruction Framework of Buildings

The 3DMR framework is divided into three parts. The main part is Scale-ONet, which
reconstructs a complete building water-tight mesh model from the single off-nadir satellite
image. The second part is Optim-Net, which optimizes the scale of these mesh models.
The third part is the Model-Image matching algorithm, which can restore the entire scene.
The structure of the framework is shown in Figure 1. Regarding the input data of networks,
both the image and 3D mesh model are processed, whether in the training or testing stage.
Since there is much interfering information in the image, apart from the buildings, when
using a neural network for feature extraction, in order to reduce the influence of interfering
information on the reconstruction result, the background in the original image needs to be
removed. The mesh structure is chosen as the resulting form, which has good visual effects
and can express more model details. In the proposed 3DMR framework, the scale factor
s is added to the network to reconstruct the rough scale of building models, forming an
improved Scale-Occupancy-Network (Scale-ONet). The network produces a 3D probability
space, and all points in this space have a value, which indicates the probability that this
point is inside the building model. Then the complete building model is extracted from
this 3D space. After obtaining the complete building mesh model, the scale optimization
network (Optim-Net) optimize the value of scale with this model in x, y, and z directions of
the axis, using the features extracted from the corresponding image, the result model has a
accurate building shape and scale.
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Figure 1. Structure of 3D building reconstruction framework. The dotted boxes are the two main parts of the framework.
Scale-ONet generates the building model from the input images and point clouds. Optim-Net optimizes the scale of the
reconstructed model based on the original input images.

3.2. Scale-ONet

Scale-ONet makes full use of the available information for reconstruction in a single
image. Meanwhile, in order to solve the key problem in the field of remote sensing
reconstruction, we modified part of its training and testing strategy, and added the scale
factor. Implementation details are introduced in this section.

3.2.1. Overall Structure

The network structure of Scale-ONet is shown in Figure 2. The encoder extracts the
building features from the input image and feeds them into the decoder together with
the coordinates of the point cloud in unit space. In the training stage, the point cloud
is sampled randomly. In the test stage, the point cloud is sampled regularly to generate
exquisite and accurate building mesh models. According to the structure of Scale-ONet,
the mapping between input and output can be expressed by the following equation:

I ∝ s = F(n)

[
D
(
E(i− b),

⋃
m=1···M

xm

)]
, I ∈ [0, 1] (1)

M = MC

⋃
p∈I

(p|p ≥ τ)

 (2)

where i is the input image and b is the background information. Encoder E extracts
features from images, and decoderD predicts the probability of point xm, which is sampled
randomly or regularly from the unit 1 space. F(n) indicates that the iteration is performed
n times. The output I is a unit space, the value of each point in this space is a probability
in 0–1. Then, I is scaled according to the factor s obtained by the decoder. Finally, the
threshold τ distinguishes points whether in the models or not in I and the complete mesh
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model is generated by the Matching Cube algorithm. Affected by network adjustment, for
learning the network parameters, the loss function is redefined. Its formula is as follows:

LB(θ) =
1
|B|

|B|

∑
i=1

K

∑
j=1

L( fθ(pij, xi), (oij, si)) (3)

where B is the number of models in the training batch and K is the number of sampling
points in the model. fθ is the mapping from 2D image to 3D probability space. The input
pij is the coordinates of points, xi is the features extracted from the input image. Outputs
are the predicted occupancy probability and scale. oij ≡ o(pij) represents the true space
occupation probability at pij. For the sampling point cloud in the training sets, the values
of points on the surface or inside the model are set to 1, while the values of points outside
the model are set to 0, representing probabilities of 100% and 0%. The output values of
points predicted by the decoder in Scale-ONet are continuous, in the 0–1. L(·, ·) is the
cross-entropy classification loss.

Figure 2. Structure of Scale-ONet convolutional neural network. The left dotted box is the feature extraction module. The
right dotted box is the feature decoding module composed by five decoding blocks. The predicted scale factor s is used to
adjust the size of the reconstructed model.

3.2.2. Solutions to the Problem of Diverse View-Angle

During the functioning of different satellites, the images acquired by the sensors have
different azimuth angles and elevation angles due to the limitation of their orbits and
flight attitude angles. For the types of buildings reconstructed in this research, the main
features used for classification are reflected on the different roof structures and the outer
contour of the building. Since the background information in the images are removed,
the height of the building is mainly obtained from the facade. It should be noted that the
orthophoto does not contain the facade information of the building and cannot predict
accurate height values. Therefore, our framework uses off-nadir images as input. During
the training process, to reduce the influence of different view-angles of the input image
on the reconstruction result, the training dataset does not specify the imaging azimuth
and elevation angle, so long as the images have clear roofs and facades. Profit from the
generalization capabilities of the feature extraction network, it can adapt multitudinous
view-angles of the input image and extract the complete features of the building.

3.2.3. Reconstruct Models of Diverse Size Buildings

In the remote sensing reconstruction assignment of the building, a vital mission is to
predict an accurate size. ONet only focuses on targets’ shape, and all generated models
are the same scale within the unit cube. In order to obtain the accurate size of the target
building, it is necessary to use the pixel number and spatial resolution of the input image
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as prior information. When training Scale-ONet, the models in the training set are scales by
actual ratio, and the scale of training models is 0–1. Meanwhile, all models are direction-
normalized in advance for better training results, as shown in Figure 3. The relative
scale factor of the reconstruction building is obtained through the feature extraction and
decoding network. According to the above analysis, the current reconstruction model scale
factor s is formed. The calculation process uses the following equation:

s = λi × Range(dlog2(pr/ptrt)e) (4)

where λi is the relative scale factor extracted by the network from the input image, and
Range is a function that calculates the scale range of models according to the ratio between
training and test images. p, pt represent the number of length (or width) pixels in the
test and training images, and r, rt are the remote sensing spatial resolution of the test and
training images. After the decoder uses the feature vector to obtain the unit probability
space, the shape of the reconstructed model and the ratio in x, y, and z directions are then
determined. The scale factor s is a single value, by which the entire probability space can
be scaled to the actual size. It settles the key problem that the reconstructed model has a
real scale.

Figure 3. Axis direction of the model in training and test.

3.2.4. Adapt to Diverse Spatial Resolution of Images

The spatial resolution will significantly affect the quality of satellite images. Some
important information for reconstruction will become blurred in low-resolution images,
such as contours, the boundary between roofs and facades, etc. However, the encoder
can extract building features well, Scale-ONet can obtain approximately consistent results
in shape, whether using low-resolution and high-resolution images. In another aspect,
the spatial resolution will affect the prediction of a building’s size. Therefore, in the
training process, in order to ensure that the network can learn the proportional relationship
between models, the training set needs to be composed of images with the same spatial
resolution. In the test process, the building scale can be calculated by Formula (4), so
accurate reconstruction can be achieved at multiple spatial resolutions.

3.3. Model Scale Optimization Network

The 3D model reconstructed by Scale-ONet from the single image already has pre-
dicted scale, but there is still a certain disparity with real buildings. After analysis, the real
remote sensing image has the following problems. The first one is that some remote sensing
images are low quality. Affected by remote sensing images of different imaging quality,
there are problems such as uneven edges, curved angles, and unclear edges and corners of
the top surface and facade, which will affect the edge structure of the reconstructed model,
resulting in inaccurate scales. Another problem is that, in the processing of generating
models, a threshold needs to be set in the continuous probability space to distinguish the
inside and outside of the predicted model. This operation causes the model to expand
from the boundary, especially the height with the lowest prediction accuracy, so that the
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reconstructed model will be larger than its actual scale. The above reasons result in scale
deviations with the reconstructed models. Thus, the Model Scale Optimization Network
(Optim-Net) is proposed to reduce the error between the reconstructed model and the
target. The network structure is shown in Figure 4.

Figure 4. Structure of model scale optimization network, which is composed of two parts: Feature extraction and a fully
connected layer.

The center of the models is placed at the origin of the coordinate. The roof direction of
the building is consistent with the positive y-axis of the coordinate, as shown in Figure 3.
Optim-Net takes the reconstructed image and the scale value in x, y, and z axis directions
with the mesh model generated by Scale-Onet as input, and directly outputs the optimized
value. The Vgg16 network [49] is used as the feature extraction in this network structure,
and the softmax layer is changed to a fully connected layer. After obtaining the 1000-
dimensional feature vector, the vector is linked with the scale information, and passed
through a multi-layer fully connected structure to generate a new predicted scale. Follow-
up experiments prove the effectiveness of the network. The formula to describe the
optimization process is as follows:

Vx, Vy, Vz = fs
{

fFE(i− b)⊕
[
V̂x, V̂y, V̂z

]}
(5)

where fFE is the feature extraction network. ⊕ denotes a vector connection. V̂x, V̂y, V̂z and
Vx, Vy, Vz are the value of scale before and after optimization, using fs.

3.4. Model-Image Matching Algorithm

After processing the aforementioned network, individual models are obtained for each
building in the reconstructed area. Since the network needs to normalize the orientation
angle for all the input and output models, the result meshes all have the same orientation
angle. For the task of 3D reconstruction in the remote sensing field, it is important to recover
the complete scene of the image area, i.e., to recover the relative position relationships
between buildings and their own orientation angles. Model-Image matching algorithm is
proposed in the 3DMR framework. When cropping the whole image into small slices, each
building can be matched with its position. After acquiring the reconstructed model, it can
be placed on the same scene according to this matching relationship. The relative position
between the models is accurately recovered. Then, the models are rotated horizontally.
When the overlap ratio is at a maximum between the orthographic projection of the models
and the buildings in the image, the current model orientation angle is immobilized.
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3.5. Evaluation Metrics

The 3DMR framework takes both the shape and scale into account, and two different
evaluation metrics are used to evaluate the reconstruction results. The accuracy of the
building reconstruction scale is calculated by Root Mean Square Error (RMSE), where
xm, ym, zm are the values of scale with the model in the direction of the x, y, and z axis,
using the following equation:

RMSE =

√√√√ 1
M

M

∑
m=1

[|xm − x̂m|+ |ym − ŷm|+ |zm − ẑm|]2. (6)

The shape evaluation uses the Earth Mover’s Distance [50] (EMD) as the metrics,
which is the minimum cost of normalization from one distribution to another, so it can be
used to characterize the distance between two distributions:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

‖x− φ(x)‖2. (7)

In this formula, S1, S2 respectively represent the reconstructed model and the ground
truth model, and x represents the coordinates of points on the model surface. φ() is the
nearest neighbor matching used to find corresponding points from S1 to S2. At first, both
the reconstructed and ground truth models are placed at the origin of coordinates, and the
direction of models is the same. Then, Poisson Surface Sampling is performed separately
for the reconstructed and ground truth models to obtain the surface point cloud. We
calculate the nearest point on the ground truth model as its corresponding point for each
point on the reconstructed model. A smaller EMD means a higher accuracy of the model
reconstruction shape.

4. Experiments

In this section, four parts of the experiment were designed. In the first part, the
simulated dataset was mainly used to verify the adaptability of Scale-ONet for the different
view-angle and sizes of buildings. The second part used two satellite datasets that have
images including buildings with different shapes, sizes, and spatial resolutions to verify the
robustness of Scale-ONet. The third part tests the model scale optimization network and
proves that it can reduce the scale error. Finally, we show the complete reconstructed scene.

4.1. Data Preparation and Experimental Environments

We produced three datasets that consist of images and mesh models. The first one is a
simulated dataset, which has a regularized model, images are rendered from models. The
other two datasets are composed of off-nadir satellite images of Dortmund and Yokosuka
and mesh models. Each model matched four images with different azimuth angles, one
of which was the original image, and the other three used the idea of data enhancement,
rotating the original image by 90°, 180°, and 270° to generate new images. According to
the size of the buildings, all of these images are resized to a suitable size. The relevant
parameters of three datasets are shown in Table 1, and we selected two typical areas shown
in Figure 5. The production process of the dataset is as follows:

Table 1. Relevant parameters of the three datasets.

Simulated Dortmund Yokosuka

Images 13,800 860 1056
Models 1150 215 264

Range of size 10–100 m 7–20 m 40–80 m
Spatial resolution 0.5 m 0.09 m 0.49 m

Cropped image size 224 × 224 224 × 224 350 × 350
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• Simulated dataset: 1150 models were drawn for the simulation experiment, with a
regular scale and shape. We use the model rendering algorithm to render the drawn
3D models. Different simulation images are generated by setting parameters of the
rendered lighting, color, and camera position;

• Satellite images: We selected areas-of-interest from the original satellite image. Each
building target in these areas is independently cropped into a square image. The
background information in these square images was manually removed;

• 3D mesh models: Most areas on Google Earth contain a “3D Buildings Photorealistic”
layer, which has complete building structures. We picked building targets in Google
Earth and obtained information on the structure and size of these buildings through
measurement tools. We used model software to draw water-tight mesh models of
these buildings, which have real and different shapes and scale.

In this paper, all experiments are carried out in the same environment. Network
training and testing are under ubuntu 18.04. The hardware environment includes double
Intel Xeon Silver 4210 CPUs and the GPU accelerating used single NVIDIA RTX 2080 Ti
with 11 GB of memory.

The specific parameters of the two neural networks used in the experiments are as
follows: (1) Scale-ONet, the batch size is 64, a Adam optimizer is used, the learning rate is
set to 1 × 10−4, and the epoch is 500. The number of points sampled from training models
is 2048, and the resolution of the reconstructed model is 1283. (2) Optim-Net, the batch size
is 16, the SGD optimizer is used, the learning rate is set to 1 × 10−4, and the epoch is 2000.

Figure 5. Sample of a dataset for network training and testing. The first row is the original remote sensing images. The
second row is the individual building images extracted from the original images, after removing the background. The
third row is the Ground Truth building mesh models drawn from the images. The fourth row is the images generated by
the simulation.
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4.2. Simulation Experiment for Scale-ONet

Since we were unable to collect enough satellite images with an all view-angle, it
cannot truly reflect the generalization ability of the reconstructed network. Meanwhile,
simulated images of buildings with different sizes can test the accuracy of the network
for scale prediction. So, we used the simulated images with a different view-angle and
sizes of buildings to perform experiments. The models in the training set included a
total of five sizes at 100 m, 80 m, 60 m, 40 m, and 20 m, which is the length in the z-axis
direction. Moreover, the images were rendered with azimuth angles of 35°, 70°, 105°, and
140° and elevation angles of 35°, 50°, and 65°. The test set used different building sizes and
a view-angle from the training set.

In the experiment, four typical types of buildings were tested, which are the pyramidal
roof building, hipped roof building, gabled roof building, and flat roof building. Among
them, the results of the pyramidal roof building are shown in Figure 6 and Table 2. The
colors of buildings in test images were generated by random rendering. In Figure 6, the (a)
is the result of reconstruction with multiple azimuths angles. The azimuth angle has little
effect on the reconstruction quality from the subjective results, and we did not consume
space to expound it. Figure 6b,c show the results of the tests at different elevation angles
and different scales. Combining results in Figure 6 and Table 2, the proposed network is
adaptable to a wide range of elevation angles. It accurately predicts the shape and size of
the building from a single image. The quantitative results show that the average error of
the reconstructed model is less than 2 m in length and height.

Figure 6. Simulation experiment results. (a) Reconstruction results at different azimuth angles.
(b,c) Reconstruction results at different elevation angles and different sizes of buildings.

Table 2. Quantitaive test results in the simulation experiment.

Model Type Elevation Angle of 57.5° Elevation Angle of 42.5° Elevation Angle of 70°

Length (m) Real model 90.00 70.00 50.00 30.00 90.00 50.00 90.00 50.00
Reconstruction model 88.73 69.14 50.78 33.62 91.19 51.24 90.48 51.23

Height (m) Real model 42.00 32.60 23.30 14.00 42.00 23.30 42.00 23.30
Reconstruction model 43.29 33.09 24.21 14.94 41.45 22.81 41.87 23.44

However, it is adversely affected by the way the network generates the model. When
using the same network to test two targets with vastly different scales, the larger model
occupies more points, and the edges of the building can be reconstructed well. However,
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for example in the smallest model in Figure 6b, too-small buildings in the image can lead
to information loss, and the few numbers of occupied points make the shape of the recon-
structed model too smooth, not meeting the authenticity of the building. Moreover, the
occupied probability space obtained from the network prediction is continuous, showing
some error in the prediction results. The building meshes extracted from the space using
the Matching Cube Algorithm are defective. The surfaces of meshes are uneven and the
edges are small circular arcs rather than standard right or obtuse angle. Nevertheless,
the experiments with simulation images verify the good generalization of the proposed
network at different view-angles and different sizes of buildings.

4.3. Real Remote Sensing Image Testing and Evaluation

Satellite images vary greatly in the spatial resolution and imaging quality of the
acquired images according to the different sensors, which test the adaptability of the
proposed network for various images. In this section, we performed a total of three sets of
experiments. Firstly, to test whether Scale-ONet is affected by the different imaging quality,
we tested a set of images from the Dortmund, taken at different times. Secondly, we tested
different building targets, and also used this dataset of Dortmund, to verify that Scale-ONet
can achieve building reconstruction with an accurate shape and rough scale. Thirdly, the
dataset in the Dortmund is mainly captured in urban areas, where the buildings are mainly
residential, and the main range of sizes is 7–20 m with a high spatial resolution. Therefore,
in this experiment, we chose the dataset of Yokosuka, which is different. The images are
mainly captured in the coastal area, and the buildings are mostly industrial buildings with
a size range between 40–80 m and a moderate spatial resolution. Therefore, by testing this
dataset, it is possible to verify whether Scale-ONet can obtain consistently good results
with completely different data.

4.3.1. Satellite Images of the Dortmund

In this part, we used the dataset of the Dortmund area. The building styles in this
area were mainly residential, whose main differences are on the roof structure. The specific
characteristics of this dataset are in Table 1. A total of 105 sets of models and images were
selected for training, and another 110 sets were used to test in this experiment.

In order to verify that the proposed framework can present broadly consistent and
small error results when reconstructing different view-angles and imaging quality targets,
we selected different time images of the same building for testing. The test result is shown
in Figure 7. The imaging date is marked at the bottom. In this experiment, a total of six
images of the gabled roof building was selected at different times. Diverse illumination,
shadow, and imaging distortion did not affect the reconstruction result in general. From
the quantitative evaluation results in Table 3, it can be summarized that the differences of
images slightly affect the extraction of building information by the reconstruction network,
both on shape accuracy and scale error. Consequently, from the results, nearly consistent
models were obtained.

Figure 7. Reconstruction models using images with a different time phase. The first row shows the
original images, and the second row shows the reconstruction results.
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Table 3. Quantitaive experiment results using images with different times.

Image Date 2 August 2015 20 July 2016 18 August 2016 27 May 2017 6 April 2018 2 June 2019

EMD 0.7549 0.6443 0.7997 0.6964 0.8621 0.6820
RMSE (m) 2.1802 2.0850 2.1756 2.1696 2.1902 2.3242

Reconstruction results of buildings with different shapes and scales are shown in
Figure 8. We number each reconstruction target and calculate the EMD and RMSE values.
In the calculation of EMD, the number of sampling points is 2000. The results are shown
in Table 4. Real satellite images have complex environmental effects. Image distortion
caused by the imaging sensor, unstable ambient light, similar but different view-angles,
and other unfavorable factors lead to unclear textures and outlines of buildings. There are
eaves in some houses in the selected area of this experiment, and there is a small number of
obstructions around residential houses, resulting in incomplete building structures. The
factors mentioned above are important reasons for the deterioration of reconstruction
quality, but the proposed framework overcomes these challenges. As introduced in the
methodology section, the threshold τ can determine the boundaries of the model in the
probability space and thus affect the final shape. A larger threshold brings higher confidence
and a more even surface of the reconstructed model, but the generalization of the network
will be weakened. So we compare the EMD at threshold τ equal to 0.2, 0.5, and 0.95.
According to the calculation, the best average value of EMD is 0.7681 when τ = 0.95,
the difference between the shape of the reconstruction model and the target is tiny. It is
proved that roof structures with a pyramidal roof, hipped roof, gabled roof, etc. can be
accurately reconstructed. The disadvantage is that the edges and corners of the top and
sides of buildings are too smooth and do not conform to the characteristics of artificial
features. Considering the accuracy of the building size, the average RMSE value is 2.0562 m,
which is still within the acceptable range of reasonable error. Experiments show that the
proposed framework can reliably reconstruct building models from remote sensing images
with different view-angle, sizes of buildings, etc.

Figure 8. Reconstruction models using images with a different building roof. Buildings (a–f) are the six
samples in the test set. The first row shows the original images, the second row shows the reconstruction
results, and the third row shows the Ground Truth models.



Remote Sens. 2021, 13, 4434 14 of 20

Table 4. Quantitative experiment results using images with a different building roof. Building a–f are the same as in Figure 8.
The bold numbers are the minimum EMD at different thresholds, which means the best reconstructed shape of buildings.

a b c d e f Average of a–f Average of Total 110 Models

EMD (τ = 0.95) 0.6172 0.6557 0.9839 0.6176 0.5989 1.0654 0.7565 0.7681
EMD (τ = 0.5) 0.6239 0.6608 0.8613 0.6181 0.7394 1.1170 0.7701 0.7852
EMD (τ = 0.2) 0.6615 0.7491 1.0133 0.6599 0.6932 1.5013 0.8797 0.9028

RMSE (m) 2.6207 2.0972 2.0401 1.7957 1.9885 2.1867 2.1215 2.0562

4.3.2. Satellite Images of the Yokosuka

In this experiment, we used the dataset of the Yokosuka area. The building styles in
this area were mainly industrial buildings, which are different from the residential houses
(mainly flat-topped buildings) in the previous section. Most of the differences are reflected
in the plane structure of each building. The original images of this dataset are Panchromatic
images (PAN). We converted the images into three-band RGB images to keep the data and
network structure consistent. The specific characteristics of this dataset are in Table 1. A
total of 223 sets of models and images were selected for training, and another 41 sets were
used to test in this experiment.

Although in the process of drawing the real model, the small protrusions on the top
of buildings were accurately drawn, the roof is adjusted to be flat to get the best results
of neural network training. Consequently, the reconstruction results automatically ignore
the complex structure on the top of buildings. The ground truth used for calculating
the evaluation completes the models to ensure accuracy. From the reconstruction results
shown in Figure 9, the proposed framework can accurately predict the plane structure of
the buildings and provide models with good subjective results.

Figure 9. Reconstruction models using images of Yokosuka. Buildings (a–f) are the six samples in
the test set. The first row shows the original images, the second row shows the reconstruction results,
and the third row shows the Ground Truth models.

Table 5 shows the quantitative evaluation results. In terms of the shape of buildings,
reconstructed mesh models can achieve the ideal results. The experiments also compared
the EMD at different thresholds, reconstructed models have the best shape when the
threshold is 0.95, and the average EMD value is 0.4593. In Figure 9, model (a,e,f) has
multiple gradations on the roof of the real building model, and the reconstructed model
does not restore this detail. The range of building sizes selected for this area in experiments
is between 40–80 m, and the average RMSE value is 2.6523 m. Naturally, both subjective
and objective results can demonstrate the good reconstruction ability of the proposed
reconstruction framework on off-nadir satellite images.

By conducting the above two experiments, the performance of Scale-ONet is proven.
It can reconstruct the building well from a single image with different spatial resolutions
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and building types. However, the results are opposite in two datasets when evaluating
the model shape and building size. For the shape of models, the EMD calculated from the
Yokosuka dataset is better than from the Dortmund dataset. Since the Yokosuka dataset has
twice the training data as the Dortmund dataset, it has a better training effect. Conversely,
for the prediction of building sizes, the RMSE calculated from the Dortmund dataset is
better than from the Yokosuka dataset. Since the images in the Yokosuka dataset has a
bigger spatial resolution and larger range of building sizes, when the network deviates, the
error increases more significantly.

Table 5. Quantitative experiment results using images of Yokosuka. Building a–f are the same as in Figure 9. The bold
numbers are the minimum EMD at different thresholds, which means the best reconstructed shape of buildings.

a b c d e f Average of a–f Average of Total 41 Models

EMD (τ = 0.95) 0.5455 0.2938 0.3618 0.4973 0.2652 0.2704 0.3723 0.4593
EMD (τ = 0.5) 0.5101 0.3082 0.3799 0.5017 0.2638 0.2761 0.3733 0.4687
EMD (τ = 0.2) 0.5647 0.3155 0.4003 0.5252 0.2892 0.2931 0.3980 0.4820

RMSE (m) 2.0835 1.6636 2.7004 2.5677 1.9658 1.6228 2.1006 2.6523

In Figure 10, some reconstructed models with poor reconstruction quality were shown.
For images (a,b), we did not remove the background information. Influenced by this
unfavorable factor, the ridge of reconstructed building model (a) has an inward tilt. The
ratio in different directions of model (b) is inaccurate, although the shape is consistent
with the image. These phenomena arise because the network does not distinguish well
between the boundaries of the building and background. Also other buildings in the
images interfere with the features extraction of the main building. (c,d) are examples of two
models that do not fit the training data. The structure of the building in (c) is so complex
that the network failed to reconstruct the complete mesh model. The building in (d) has a
simple but a large aspect ratio structure and the building is not straight. In addition, the
shape of the building reconstructed by the network does not match the real building. The
above two types of buildings pose a great challenge to Scale-ONet. For such completely
different data, the generalization of network for complex building shapes appears to be
insufficient, and that still has some limitations. However it can be improved with the
increase in the amount and diversity of training data.

Figure 10. Some reconstructed models with poor quality. (a,b) are the reconstruction results from the
images with complete background. (c,d) are the reconstruction results with complex building shape.

Scale-ONet consumes a larger percentage of time in the model generation process.
After generating the occupied probability space, the fineness of the generated models is
determined by the resolution of the spatial division. The average times spent by Scale-ONet
to reconstruct an individual model at different mesh resolutions are shown in Table 6. As
the resolution increases, the consumption time increases rapidly.
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Table 6. Time consumption of models with different resolutions generated by Scale-ONet.

Resolutions 323 643 1283 2563

Time (s) 0.0789 0.1774 1.0573 8.2847

4.3.3. Experiment for Optimizing Scale of Models

In this section, experiments tested the proposed model scale optimization network.
The training process of Optim-Net needs reconstruction images, the scale values of recon-
structed mesh models, and corresponding ground truth in the directions of the x, y, and z
axis. For the input images, we use the same datasets as in Section 4.3, and ground truth is
obtained from the model drawn corresponding to these images. We input these images
into the trained Scale-ONet to obtain the corresponding reconstruction models with rough
scale values. Furthermore, the reconstruction results in the previous section are selected as
the test set to optimize. Since there is little difference between the results before and after
optimization from the subjective results, only quantitative test results are given, as shown
in Table 7.

Table 7. Quantitative experiment results with model scale optimization network. In Dortmund, building a–f are the same as
in Table 4. In Yokosuka, building a–f are the same as in Table 5.

a b c d e f Average of Total Dataset

In Dortmund Original RMSE (m) 2.6207 2.0972 2.0401 1.7957 1.9885 2.1867 2.0562
Optimized RMSE (m) 1.6811 1.1386 0.5531 0.9082 0.8619 1.2354 1.0017

In Yokosuka Original RMSE (m) 2.0835 1.6636 2.7004 2.5677 1.9658 1.6228 2.6523
Optimized RMSE (m) 0.9143 0.7474 1.9345 1.3951 1.1802 0.6104 1.5061

The most intuitive result brought by the model scale optimization network is the
reduction of the RMSE value. In this test, the average reconstruction scale error of buildings
is reduced by about 1.05 m and 1.15 m in two areas. Consequently, in assignments that
have certain requirements for reconstruction scale accuracy, the model scale optimization
network can improve the precision of the reconstruction framework well.

To verify the generalization capability of the 3DMR framework, it was tested in terms
of both shape accuracy and scale accuracy. The results are shown in Figure 11. In figure
(a), the horizontal axis indicates the relative scale in images of the reconstructed target.
For Scale-ONet, as mentioned in Section 3.1, a probability space with a size of unit 1 is
generated, which all models are extracted from it when generating the models. Models of
different scales have different occupancy rates in this space. As the proportion decreases,
the EMD value increases, which means that the gap between the model shape and real
target increases. Nevertheless, in most ranges, Scale-ONet achieves good results. In figure
(b), the two lines indicate the average scale error for buildings of different sizes with and
without Optim-Net. As the reconstruction target scale keeps increasing, the RMSE value
also keeps increasing, and the scale accuracy is in a desirable range when the size of the
building does not exceed 100 m. The effectiveness of the Optim-Net can also be seen in
Figure 11.
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Figure 11. 3DMR framework generalization ability tests. (a) EMD with different occupancy percent-
age of building in image. (b) RMSE at different scales.

4.3.4. Restoration of Reconstruction Scenes

By the Model-Image matching algorithm, the reconstructed independent models are
placed in the same scene. The position relationship between the models and the azimuth
angle of the models can be accurately recovered. The 3DMR framework performs the recon-
struction of complete scenes from a single off-nadir satellite image, as shown in Figure 12.
In this chapter, we describe the datasets made for the experiment in detail and verify the
Scale-ONet and the Optim-Net in the proposed framework. The performance of the Scale-
ONet was detailed and comprehensively tested through simulation experiments, different
time experiments, reconstruction experiments with different roof shapes, and panchromatic
image reconstruction experiments with different building plane structures. Using only a
single off-nadir satellite image, the network can accurately reconstruct images with differ-
ent view-angles and imaging quality, which proves the wide applicability of the network.
For the Optim-Net, the experimental results show that it has a very significant effect on the
optimization of the reconstruction results, which can reduce the scale error generated by
the reconstruction network and obtain a higher-precision reconstruction model.

Figure 12. Reconstruct scene recovery results. (a) is the original image, and (b) is the reconstructed scene.
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5. Conclusions

In this paper, a novel 3D model reconstruction framework of buildings based on
single off-nadir satellite image is proposed, which is mainly composed of three parts: A
model reconstruction network named Scale-ONet, a model scale optimization network
named Optim-Net, and a Model-Image matching algorithm for restoring reconstructed
scenes. In the model reconstruction part, Scale-ONet can predict both the building shape
and scale and generate a 3D model of the mesh structure. In the optimization part, we
designed a simple and practical network structure to reduce the scale error of the mesh
model generated from Scale-ONet. Finally, the algorithm placed these building models
together and recovered a consistent scene with the real image area. Verified by experiment,
the EMD value of the reconstructed model could be less than 1, and for the average scale
error, the RMSE was equal to 2.06 m and 2.65 m in two areas, which could be optimized
to about 1 m and 1.5 m by Optim-Net. The subjective results of the reconstructed model
could reach a LoD2 level, meaning models have a complete and accurate roof structure
and plane shape. Our framework could reconstruct models from a single off-nadir satellite
image with different view-angles, sizes of buildings, and spatial resolutions. The result
is water-tight mesh models with both accurate shapes and sizes. Although, the proposed
framework had good generalization for different remote sensing images, it is still limited
with complex building shapes, which is a challenging issue that requires more research
and focus.

In the experiment part, we did not give corresponding comparative experiments. In
the field of 3D building reconstruction using a single off-nadir satellite image, few studies
highly relate to our framework. The single image reconstruction algorithm in computer
vision does not pay enough attention to the view-angle and model scale, which cannot
solve the key problem in remote sensing. Therefore, it is difficult to find similar types
of methods for a fair comparison. Nevertheless, from the scope analysis in the remote
sensing reconstruction field, the 3DMR framework we proposed does have advantages
and actual value. The application of the proposed framework can greatly reduce the
complex requirements of traditional reconstruction methods for input data. Only single
satellite image is used to realize the reconstruction of the building, making the framework
applicable to many scenarios where data acquisition is inconvenient.
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